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1 |  INTRODUCTION

In prenatal diagnosis, chromosomal aberrations, such as an-
euploidies and copy number variation (CNV), are one of the 
important reasons for ultrasound structural abnormalities 
and products of conceptions (POC). CNVs are pervasive in 

human genome and account for a large fraction of the pop-
ulation diversity in humans (Girirajan, Campbell, & Eichler, 
2011). Many CNVs located in specific genome regions also 
have clinical significance or have strong associations with 
well-characterized genomic disorders, such as 22q11 deletion 
syndrome (Velocardiofacial/DiGeorge syndrome; Faas et al., 
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Abstract
Background: Current copy number variation (CNV) identification methods have rap-
idly become mature. However, the postdetection processes such as variant interpreta-
tion or reporting are inefficient. To overcome this situation, we developed REDBot as 
an automated software package for accurate and direct generation of clinical diagnos-
tic reports for prenatal and products of conception (POC) samples.
Methods: We applied natural language process (NLP) methods for analyzing 30,235 
in-house historical clinical reports through active learning, and then, developed clini-
cal knowledge bases, evidence-based interpretation methods and reporting criteria to 
support the whole postdetection pipeline.
Results: Of the 30,235 reports, we obtained 37,175 CNV-paragraph pairs. For these 
pairs, the active learning approaches achieved a 0.9466 average F1-score in sentence 
classification. The overall accuracy for variant classification was 95.7%, 95.2%, and 
100.0% in retrospective, prospective, and clinical utility experiments, respectively.
Conclusion: By integrating NLP methods in CNVs postdetection pipeline, REDBot is 
a robust and rapid tool with clinical utility for prenatal and POC diagnosis.
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2010; Liao et al., 2014; Shaikh, 2017; Srebniak et al., 2012; 
Stankiewicz & Lupski, 2010).

Several methodologies are able to identify fetal CNVs in 
prenatal diagnosis, including noninvasive prenatal screening 
(NIPS) and invasive-based methods such as karyotyping, 
chromosomal microarray (CMA), and next-generation se-
quencing (NGS)-based CNV sequencing (CNV-seq; Brady, 
Ardui, & Vermeesch, 2013; Xie & Tammi, 2009). In recent 
years, some of these methods have rapidly become mature 
and have been recommended for clinical application (Oneda 
& Rauch, 2017). As a consequence, a growing number of 
pregnant women are electing for one of these diagnoses. 
For example, 94,085 women were enrolled for a large-scale 
NIPS testing (Liang et al., 2019), and similar studies based 
on CNV-seq or CMA platforms have been conducted (Muys 
et al., 2018; Wang et al., 2018). With the rapid improve-
ments in CNV identification methods, complete clinical ge-
netic diagnostic pipelines including postdetection analysis 
such as annotation and interpretation of CNVs, generation 
of diagnostic reports and genetic counseling approaches are 
in constant development. For post detection analysis, current 
approaches often rely on experts’ interpretation of CNVs: 
(1) CNVs are firstly classified as benign, likely benign, vari-
ants of uncertain significance (VOUS), likely pathogenic 
or pathogenic based on the American College of Medical 
Genetics (ACMG) guidelines (Richards et al., 2015; Riggs 
et al., 2019; Wang et al., 2018); (2) the contents of diagnostic 
reports for individuals are often manually generated by clin-
ical laboratory geneticists. However, these approaches are 
time consuming and laborious, especially for some hospi-
tals or companies where thousands of women may undergo 
prenatal diagnosis per month or the eligible geneticists are 
few. In practice, this inefficiency is mainly due to manual 
interpretation of CNVs and manual generation of diagnos-
tic reports. From the interpretation perspective, despite 
the development of several tools for CNVs interpretation 
(Erikson, Deshpande, Kesavan, & Torkamani, 2015; Gai 
et al., 2010; Spector & Wiita, 2019; Vandeweyer, Reyniers, 
Wuyts, Rooms, & Kooy, 2011; Zhao & Zhao, 2013), none 
have proven the clinical utility in prenatal diagnosis. In addi-
tion, there are difficulties in dealing with VOUS CNVs due 
to limited investigative time as well as the lack of compre-
hensive genotype/phenotype databases (Brady et al., 2013, 
2014; Levy & Wapner, 2018). Therefore, there is an urgent 
need in the field for an automated method that has the built 
in capacity to accurately and efficiently generate clinical di-
agnostic reports.

To address this issue, REDBot was developed to automat-
ically  generate clinical diagnostic reports based on CNVs 
called from the analysis of prenatal and POC samples. In 
this study, we demonstrate our new natural language process 
(NLP) methods and assess the performance of REDBot in a 
clinical diagnostic setting.

2 |  MATERIALS AND METHODS

2.1 | Ethical compliance

The study protocol was approved by the local ethics commit-
tee at the authors’ affiliated institution. Patient consent was 
not required because of the retrospective nature of this study. 
Patient personal data were anonymized in the study.

2.2 | Study design

In light of the time consuming nature of current postdetec-
tion methods, REDBot was developed to provide an auto-
mated postdetection pipeline for reporting CNVs identified 
in prenatal and POC samples (Figure 1). In order to support 
the REDBot pipeline, knowledge bases, evidence-based in-
terpretation methods, and CNV reporting criteria were de-
veloped and periodically updated. For the updating process, 
NLP methods were applied to analyze in-house historical 
clinical reports and eventually update or generate Labeled 
Corpus through supervised learning or active learning de-
pending on whether a previous version of Labeled Corpus 
existed. In addition, the above Labeled Corpus as well as 
public databases were integrated into six knowledge bases 
for the annotation processes. Based on the annotation, 
interpretation, and reporting methods, REDBot was then 
able to directly generate clinical reports and these reports, 
which could be quickly reviewed by clinical experts before 
being sent out to patients.

2.3 | Analysis of historical reports

The processes of analyzing historical reports required the 
application of NLP methods to convert original reports into 
in-house historical Labeled Corpus. The original reports con-
tained the identified CNVs and explanatory information in 
Chinese text. The result explanation was typically organized 
in one paragraph, however, multiple CNVs could be reported 
for a single sample. As such, this often led to one explanatory 
paragraph covering multiple CNVs. To deal with the above 
situation, a three-step NLP approach was developed to ad-
dress paragraph segmentation, CNV-paragraph matching, 
and corpus classification. An example of our three-step NLP 
approach is illustrated in Figure 2.

2.4 | Paragraph segmentation

Paragraph segmentation refers to splitting the original para-
graph into several sub-paragraphs, where each sub-paragraph 
refers to a result explanation of one specific CNV. The whole 
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paragraph was first segmented by comma or period and we 
chose the first sentence of each report as the positive train-
ing data set. Other sentences from one-CNV reports (reports 

that only contain one CNV with related description) were 
chosen as negative training data set. The testing dataset con-
sisted of all historical clinical reports. For each sentence, we 

F I G U R E  1  Current and REDBot approaches. (a) Current postdetection pipeline that includes annotation, interpretation, and reporting 
processes. It heavily relies on CNVs interpretation and diagnostic report generation by clinical laboratory geneticists. (b) The REDBot approaches. 
For postdetection pipeline, REDBot utilizes knowledge bases, evidence-based interpretation methods, and CNVs reporting criteria to directly 
generate of clinical diagnostic reports. The periodic updating mainly focuses on applying NLP methods for analyzing in-house historical clinical 
reports, and then, updating knowledge bases.

F I G U R E  2  The three-step approach for analyzing in-house historical reports. (a) An example of a reported CNV region, and result 
explanation. In this historical report, the result explanation for CNVs was organized in one paragraph. (b) Paragraph segmentation: the original 
paragraph was segmented into two sub-paragraphs based on Jieba for text segmentation, TF-IDF for encoding and naive bayes model for 
classification. (c) CNV-paragraph matching: scoring methods were developed to find best matches between CNVs and sub-paragraphs. (d) 
Corpus classification: all sentences in sub-paragraphs were classified into six categories through supervised learning or active learning. The result 
explanation in this example was originally in Chinese and we translated it to English.
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applied Jieba with parameter HMM = True for Chinese text 
segmentation and scikit-learn with default setting for TF-IDF 
encoding. We did not apply any rule on special tokens (e.g., 
“p11.32”), since these tokens may appear hundreds of times 
when analyzing more than 30,000 reports. After that, all sen-
tences were classified as “begin” or “not begin” by the naive 
bayes model, where “begin” refers to the first sentence of 
CNV explanation. Finally, all sub-paragraphs were generated 
according to the “begin” sentence.

2.5 | CNV-paragraph matching

CNV-paragraph matching aims to find optimized matches 
between CNVs and sub-paragraphs. The relation score be-
tween CNV Ci and sub-paragraph Sj was calculated by:

where chr_score, type_score, cyto_score, and length_score 
were binary values determined by whether chromosome, vari-
ant type, cytoband, CNV length were identical in CNVs and 
sub-paragraphs. For different type of scores, these values were 
calculated according to whether related keywords appear in 
sub-paragraphs. For example, “deletion” or “duplication” re-
fers to keyword of variant type score, “50 Mb” refers to a CNV 
length score and “p11.32” refers to a cytoband score. For a given 
CNV, the cytogenetic location (e.g. “p11.32”) was annotated 

according to UCSC hg19 cytoband file (http://hgdow nload.
cse.ucsc.edu/golde nPath/ hg19/datab ase/cytoB and.txt.gz) and 
based on the CNV location. In addition, we applied empirical 
values as the weights for different type of scores based on our 
data set. For a given CNV C, the most related sub-paragraph 
S was chosen by the following equation and we chose the first 
sub-paragraph when multiple sub-paragraphs had equal scores:

2.6 | Corpus classification

Corpus classification refers to applying sentence-level clas-
sification methods to classify all sentences into six catego-
ries, namely, Basic, Aneuploid, Syndrome, Gene, Paper, 
and Patient (Figure 3) and these categories were integrated 
into Labeled Corpus. For the initial approach, when previ-
ous Labeled Corpus did not exist, a pool-based active learn-
ing strategy was applied for corpus classification. In order 
to select candidate sub-paragraphs for labeling, we applied 
programming training data set generation methods to first 
generate an inaccurate label for each sentence. Then, the 
classification model was trained based on the inaccurate 
label and sub-paragraphs were chosen for labeling by clini-
cal laboratory geneticists if any three consecutive sentences 
were classified as three different categories and if the number 
of different categories were greater than three in one sub-par-
agraph. The label for the final classification model was based 
on those labels from clinical laboratory geneticists as well 

score (Ci, Sj) =5×chr_score+2× type_score

+cyto_score+ legenth\_score

S=argmax(score(C, Si))

F I G U R E  3  Relationship between in-house historical Labeled Corpus, public databases and knowledge bases. In-house historical Labeled 
Corpus demonstrated the six categories in corpus classification. Public databases mainly include OMIM (Hamosh, Scott, Amberger, Bocchini, & 
Mckusick, 2005), DECIPHER (Swaminathan et al., 2012), ClinGen (Kirkpatrick, Riggs, Azzariti, Miller, & Faucett, 2015), Refseq gene (Pruitt, 
Tatusova, & Maglott, 2005), Known gene (Hsu et al., 2006), Clinvar (Landrum et al., 2016), DGV (Macdonald, Ziman, Yuen, Feuk, & Scherer, 
2014), PubMed etc. Knowledge bases described six knowledge bases in REDBot.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
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as from programming training dataset generation. We also 
applied a supervised learning approach if a previous Labeled 
Corpus existed, where we used them as a training data set, 
and new sub-paragraphs as a testing data set. The final classi-
fication results were further evaluated by clinical laboratory 
geneticists in order to improve quality of in-house historical 
Labeled Corpus.

For generation of programming training data sets, we 
applied a keyword string matching method to produce the 
inaccurate label for sentences. For example, if a key-word 
such as “literature” was in one sentence, this sentence would 
be classified as Paper. For the classification model, GloVe, 
a global log-bilinear  regression  model was firstly applied 
to pretrain 200 dimension token-level vectors (Pennington, 
Socher, & Manning, 2014), and the vectors were trained on 
Chinese Wikipedia, in-house historical reports and Chinese 
Human Phenotype Ontology (CHPO) database. Next, sen-
tence vectors were represented by the average of token-level 
vectors, and then, a bidirectional Long Short-Term Memory 
with Conditional Random Field (biLSTM + CRF) model was 
used for classification. This model was applied in both ac-
tive learning and supervised learning and was trained with 
following parameter: batch size  =  64, num_epochs  =  50, 
dropout rate  =  0.1, learning rate  =  0.001, max sequence 
length = 100, num_units = 200, optimizer = Adam.

2.7 | Clinical CNV knowledge bases

Knowledge bases in REDBot were designed for providing 
structured information for clinical laboratory geneticists and 
improving annotation efficiency. We combined informa-
tion from both public databases as well as in-house histori-
cal Labeled Corpus to build six knowledge bases, namely, 
Polymorphism, Aneuploid, Syndrome, Gene, Paper, and 
Patient. The relationship of these databases is outlined in 
Figure 3. Importantly, knowledge bases only contain evi-
dences rather than variant classification at a given point 
in time. Hence, for identical CNVs, variant classification 
in historical reports did not directly affect current variant 
classification.

2.8 | Variant classification

The majority of classification criteria incorporated into 
REDBot (Figure 4) was based on 2011 ACMG guidelines 
(Kearney, Thorland, Brown, Quintero-Rivera, & South, 
2011). The annotation section takes the CNVs region(s), 
gender, and variation type (homozygous deletion, het-
erozygous deletion, duplication, or triplication) as input 
data. Information from six knowledge bases that generally 

F I G U R E  4  Algorithm of annotation, interpretation, and variant classification in REDBot. (a) The Knowledge-based layer demonstrated 
six knowledge bases. (b) The Annotation layer gave the rule of annotation and all annotated information that can be further reviewed by clinical 
laboratory geneticists. (c) The Interpretation layer refers to evidence-based methods for evidence scores calculation. (d) The Variant Classification 
layer shows the equation between evidence scores and final classification. Definitions: overlap_db, the overlap length over the region length in 
knowledge bases; overlap_query: the overlap length over the queried CNVs length; sample_size: the sample size of each study in DGV database; 
frequency: allele frequency of CNVs; paper P/LP cases: total number of reported cases (only count one if several cases in one trio) in published 
literature.
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represent all aspects of CNVs were retrieved based on filters 
in Figure 4b. The interpretation section refers to calculating 
evidence scores for CNVs from the knowledge bases, using 
different calculation methods (Figure 4c). The variant clas-
sification section refers to making a final classification based 
on the equation shown in Figure 4d. In addition, CNVs with 
incomplete penetrance (e.g., some recurrent regions) did not 
influence the variant classification.

2.9 | Generation of clinical 
diagnostic reports

Based on the variant classification results, REDBot auto-
matically generates diagnostic reports for review by clini-
cal laboratory geneticists. For specific types of aneuploidy, 
heteroploidy, and chromosome mosaicism, reports were 
generated by applying the description from the Aneuploid 
knowledge base. For CNVs, the reports were composed by 
(1) basic description: the information about cytogenetic lo-
cation, variation type, and CNV length; (2) special expla-
nation: a clear statement of related syndrome, gene dosage 
sensitivity, or cases followed by clinical significance and 
special considerations. In order to generate the above spe-
cial explanation, we applied sentences (corpus) from knowl-
edge bases for pCNVs and a template sentence “according to 
DGV, DECIPHER, OMIM, UCSC and PubMed databases 
and ACMG guidelines, this is a benign (or VOUS) CNV” for 
benign (or VOUS) CNVs.

2.10 | Assessment and evaluation

Several data sets were selected for development and assess-
ment of REDBot. In general, the performance of REDBot 
was investigated in four ways:

1. NLP for analyzing historical reports: 11,611 prenatal 
and 18,624 POC diagnostic reports between July 2015 
and February 2019 were selected for knowledge bases 
development. We estimated the performance of NLP 
approaches, namely, paragraph segmentation, CNV-
paragraph matching, and corpus classification.

2. Retrospective experiments: 3,372 prenatal and 1,679 POC 
diagnostic reports (5,051 CNVs in total) between January 
2018 and December 2018 were selected for performance 
evaluation of variant classification. These reports were 
also selected for knowledge bases development.

3. Prospective experiments: This approach was basically 
same as for retrospective experiments, except that diag-
nostic reports for 239 prenatal and 185 POC samples (580 
CNVs in total) between March 2019 and April 2019 were 
not included in knowledge bases development.

4. Clinical utility: Only REDBot was applied for vari-
ants classification and reports generation in a randomly 
selected set of 100 prenatal and 100 POC samples (250 
CNVs, aneuploid, etc. in total) in July 2019, and then, 
the results were estimated by clinical laboratory geneti-
cists from perspectives of both variant classification and 
reporting.

All historical clinical reports are in Chinese and CNVs 
with minimum length of 100 Kb were identified on the CNV-
seq platform developed by Berry Genomics Corporation, 
Beijing, China (Liang et al., 2014). The hg19 sequence 
(GCA_000001405.1) from the GRCh37 Genome Reference 
Consortium was used as reference for calling CNVs. The au-
thenticity of called CNVs was reviewed by a group of genetic 
experts in the company.

3 |  RESULTS

3.1 | Information in historical report

The quality of in-house Labeled Corpus is essential not only 
in knowledge base generation, but also the whole postde-
tection REDBot pipeline. Therefore, the results from NLP 
approaches were estimated and corrected manually before 
downstream analysis.

We first estimated the performance of paragraph seg-
mentation combined with CNV-paragraph matching, which 
achieved an overall accuracy of 99.22%. In detail, 5,646 out 
of 30,235 reports contain more than one CNV, aneuploidy or 
chromosome mosaicism. By excluding 44 reports with incor-
rect results, a total number of 37,175 sub-paragraphs were 
eventually obtained for corpus classification. In terms of cor-
pus classification, each sentence was classified as a specific 
class of corpus, namely, Basic, Aneuploid, Syndrome, Gene, 
Paper, and Patient. In reality, the performance on Syndrome, 
Gene, and Paper are extremely important since it influences 
both variant classification as well as CNV description in re-
ports. The class of Aneuploid always indicates pathogenic 
outcomes. In addition, the majority of records from Patient 
knowledge base are from open-access databases and thus are 
only used in annotation. Finally, the class of Basic does not 
directly contribute to variant classification, since it only re-
fers to key indices such as cytogenetic location, CNV size, 
and copy-number state.

We then estimated the performance of programming 
training data set generation, which applies to producing in-
accurate labels for corpus classification based on string 
matches, and thus, the statistic metrics can also be regarded 
as a baseline for active learning. This approach achieved an 
average F1-score of 0.8365, however, but the F1-scores for 
Syndrome, Gene, and Paper were only 0.7868, 0.5041, and 
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0.7758, respectively (Table 1). By applying active learning 
through biLSTM + CRF, we labeled only 815 sub-paragraphs 
among 37,175, and these values improved to 0.9381, 0.8645, 
and 0.9195. On the one hand, in the actual reports, the indi-
cation of specific syndrome, gene, or literature is often fol-
lowed by a description of clinical symptom(s), phenotype, 
or any other recommendations. Therefore, it is unlikely to 
have three different labels for three consecutive sentences. 
However, due to linguistic diversity, this issue did occur in 
generating programming training data sets. Hence, in active 
learning, we aimed to identify and label those sub-paragraphs 
to improve the overall performance of classification. On the 
other hand, due to less diversity of related description, the 
accuracy of Basic, Aneuploid, and Patient was higher than 
that of Syndrome, Gene and Paper. In addition, sentences of 
Basic or Patient were often at the beginning or at the end 
of sub-paragraphs, respectively, further improving the per-
formance of these classes. Finally, comparing different 
classification models in the active learning strategy, the biL-
STM + CRF outperformed NB + CRF for all classes. This 
probably indicates that the semantics of continuous sentences 
play an important role in corpus classification, since biLSTM 
is a powerful tool for modeling context relationship. After 
manual correction of incorrect classification, we eventually 
obtained 15169, 17575, 2260, 1304, 3173, and 1073 records 
for Basic, Aneuploid, Syndrome, Gene, Paper, and Patient, 
respectively. These records were further applied in develop-
ing knowledge bases.

3.2 | Accuracy of variant classification in 
retrospective and prospective experiments

The performance of variant classification using the REDBot 
pipeline was independently evaluated by clinical laboratory 
geneticists, following the five-tier standard terminology sys-
tem from ACMG guidelines (Kearney et al., 2011; Richards 
et al., 2015; Riggs et al., 2019). In addition, for reporting 
criteria, we used benign to represent both benign and likely 

benign from ACMG guidelines and this was clearly indicated 
in reports and laboratory reporting protocols. The classifica-
tion from clinical laboratory geneticists was regarded as the 
gold standards in order to judge the performance of REDBot. 
The accuracy was calculated through two approaches, first 
by, comparing whether CNVs were classified as pCNVs 
(pathogenic or likely pathogenic CNVs) and second by com-
paring the exact variant classification.

For the first approach, among the CNVs in retrospective 
(n = 5051) and prospective (n = 580) experiments respec-
tively, the overall accuracy achieved was 95.7% and 95.2% 
(Table 2), suggesting that REDBot was capable of distin-
guishing pCNVs. In addition, comparing results with clinical 
laboratory geneticists, there were higher negative predictive 
values (NPVs) than positive predictive values (PPVs) indi-
cating that REDBot calls a higher proportion of pCNVs. The 
overall increased in pCNV positive rate calls was 3.5% for 
retrospective and 1.4% for prospective experiments (Figure 
5). For the second approach, we also obtained high accura-
cies of 86.6% and 85.2%, indicating the majority of CNVs 
were correctly classified. In addition, the proportion of dif-
ferent CNV categories in the retrospective and prospective 
experiments was also similar.

The primary reason for incorrect CNV classifications was 
the unbalanced sensitivity between REDBot and clinical lab-
oratory geneticists, whereby REDBot sometimes predicted 
likely pathogenic as pathogenic or VOUS as likely patho-
genic. Therefore, in clinical practice, REDBot may generate 
an increased yield of positive results for human reviewers, 
Conversely, REDBot may reduce false negative results since 
no pathogenic or likely pathogenic CNVs were predicted 
to be benign. In further analyzes, we found that REDBot 
provides more pathogenic evidence according to ClinGen 
Dosage Sensitivity Map. In addition, the paper score might 
be higher in REDBot due to a higher number of annotated 
cases.

Comparing the performance of retrospective and prospec-
tive experiments, the overall accuracy of CNV interpretation 
in the former one was slightly higher. This was attributed to 

T A B L E  1  Performance of active learning in corpus classification.

Label

Programming training data set Active learning (NB + CRF) Active learning (biLSTM + CRF)

Precision Recall F1-score Precision Recall F1-score Precision Recall
F1-
score

Basic 0.9906 0.9734 0.9819 0.9883 0.9654 0.9767 0.9933 0.9735 0.9833

Aneuploid 0.9781 0.9780 0.9781 0.9740 0.9771 0.9755 0.9782 0.9782 0.9782

Syndrome 0.6881 0.9186 0.7868 0.8067 0.8624 0.8336 0.9248 0.9518 0.9381

Gene 0.4092 0.6564 0.5041 0.6207 0.8044 0.7007 0.7973 0.9440 0.8645

Paper 0.7702 0.7816 0.7758 0.7857 0.7813 0.7835 0.9207 0.9184 0.9195

Patient 0.9925 0.9925 0.9925 0.9748 0.9748 0.9748 0.9953 0.9963 0.9958

Average 0.8048 0.8834 0.8365 0.8584 0.8942 0.8741 0.9349 0.9604 0.9466
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clinical laboratory geneticists who were finding additional 
cases in the published literature, which were not included in 
current version of paper knowledge base. However, in gen-
eral, the similarity of the performance indicated that REDBot 

did not have a tendency to “over-fit” the data into each cat-
egory. Hence, REDBot proved to be robust for generating 
accurate prenatal and POC diagnostic reports. Details of the 
results of both retrospective and prospective experiments are 
documented in Table S1.

3.3 | Experiments to assess practice 
clinical utility

In the randomly selected 200 samples, the pathogenic clas-
sification by REDBot was completely consistent with clinical 
laboratory geneticists (Table 2). For practice clinical utility, 
the performance improved, since 38% of reported chromo-
some abnormalities associated with aneuploidy, heteroploidy, 
or chromosomal mosaicism (either duplication or deletion 
events of whole chromosomes), and thus, were pathogenic. 
There were small differences in the illustrated parts. For be-
nign or likely benign CNVs reported by REDBot, clinical 
laboratory geneticists did not generally report them, mainly 
because of the fear of misleading clinicians and patients. To 
sum up, the analysis and illustrations by REDBot were highly 
consistent with geneticists working in the clinical diagnostic 
field. Full details of the results of practice clinical utility ex-
periments are given in Table S2.

T A B L E  2  The performance statistics of variant classification in 
REDBot.

Statistics
Retrospective 
experiment

Prospective 
experiment

Clinical 
utility

Total 5051 580 250

TP 846 141 140

TN 3988 411 110

FP/FPR 197/4.7% 18/4.2% 0/0.0%

FN/FNR 20/2.3% 10/6.6% 0/0.0%

PPV 81.1% 88.7% 100%

NPV 99.5% 97.6% 100%

Sensitivity 97.7% 93.4% 100%

Specificity 95.3% 95.8% 100%

Accuracy 95.7% 95.2% 100%

Kappa 86.0% 87.7% 100%

Abbreviation: FN, false negative; FNR, false negative rate; FP, false positive; 
FPR, false positive rate; NPV, negative predictive value; PPV, positive 
predictive value; TN, true negative; TP, true positive.

F I G U R E  5  The proportion of variant classification from REDBot and clinical laboratory geneticists. The inner pie chart demonstrated 
proportion of pCNVs and the outer one represented proportion of exact classification. (a) Retrospective experiment results from REDBot; (b) 
Retrospective experiment results from clinical laboratory geneticists; (c) Prospective experiment results from REDBot; (d) Prospective experiment 
results from clinical laboratory geneticists.
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3.4 | Implementation of REDBot

REDBot was developed to facilitate the whole postdetec-
tion pipeline and improve the practice utility for prenatal and 
POC diagnosis. We wrote scripts to automatically analyze 
in-house historical reports and public databases to generate 
six clinical knowledge bases. Next, the annotation, interpre-
tation, and report generation algorithms were implemented 
in C++, and static link libraries were constructed to facili-
tate other developers such as front-end developers. We also 
evaluated the efficiency of REDBot, and demonstrated that 
on average 31.54 reports can be generated within 1 second 
on a personal computer.

4 |  DISCUSSION

Testing for fetal genome-wide pCNVs in prenatal diagnosis 
is now well accepted by clinicians and patients. In China, 
with a population of 1.4 billion and 16 million annual births, 
the total number of individuals with chromosomal abnormal-
ities was estimated to be over 10 million. Therefore, prenatal 
diagnosis plays an essential role in prevention by reducing 
the burden of chromosome diseases (Cram & Zhou, 2016). 
From a technical point of view, there have been significant 
improvements in CNV identification methods using both se-
quencing- and array-based platforms, which can provide reli-
able and accurate detection (Chen et al., 2017; Venkatraman 
& Olshen, 2007). In addition, with decreasing of sequencing 
costs combined with the fast growth of the Chinese economy, 
genetic diagnosis is now more affordable for the general 
population. Currently, genetic services for identification of 
genome-wide pCNVs is typically provided by major hospi-
tal laboratories and by commercial companies. Accordingly, 
there is an increasing workload for the laboratory and clinical 
geneticists to deliver reports to the referring clinician.

Given this increasing clinical demand for first-line CNV 
detection, application of REDBot will potentially help to 
solve several current major issues in the genetic service pipe-
line, including inconsistent or incorrect results of CNV an-
notation and interpretation from both commercial companies 
and medical institutions and help reduce the time taken for 
qualified clinical laboratory geneticists to properly interpret 
the clinical significance of CNVs. Further, there are addi-
tional difficulties for clinical geneticists to review or reana-
lyze CNVs based on phenotype due to poor communication 
between commercial companies and medical institutions. 
Despite the fact that pipelines for laboratory experiments and 
bioinformatics approaches for CNVs analysis are completed 
automated, current CNVs interpretation methods and the 
generation of reports is time consuming and, in some cases, 
can comprise management of the pregnancy. Hence, an ac-
curate, efficient, and automated postdetection pipeline like 

REDBot will help to increase the overall efficiency of pre-
natal diagnosis.

Based on a collection of 30,235 historical reports, REDBot 
displayed new approaches for dealing with the postdetection 
dilemmas of CNVs found in prenatal and POC samples. 
We presented NLP methods for analyzing historical reports 
and eventually developed knowledge bases for annotation. 
Therefore, CNV-related information can be easily investi-
gated if the reported CNVs that share similar genome coordi-
nates to previously reported CNVs. The accuracy of variant 
classification is extremely important, since this will influ-
ence the parental decision-making on pregnancy termination. 
In regard to accuracy, we estimated the performance of vari-
ant classification for over 5,000 CNVs through retrospective, 
prospective, and clinical utility experiments. The 95% accu-
racy achieved (Table 2) highlights the stability and reliability 
of REDBot. Thus, REDBot should be a good assistant for 
clinical experts by improving their overall work efficiency 
and decreasing reporting time. In the future, with the growing 
number of historical reports available in different clinical set-
tings, REDBot can be further trained to generate more com-
prehensive clinical reports, allowing clinicians to make better 
decisions for the management of at risk pregnancies.

The classification or interpretation in REDBot relies on 
each CNV alone. In addition, REDBot also assumed all input 
CNVs are true positive for individuals regardless of sample 
type, and generated consistent results for identical CNVs. 
Due to complication of practical clinical settings, such as 
CNVs resulted from structural rearrangements (e.g., unbal-
anced translocation), REDBot should be applied under the 
supervision of laboratory geneticists or clinical experts.

In the immediate future, further improvement of REDBot 
will be focused on three aspects. First, with the rapid devel-
opment of deep learning and natural language generation 
(NLG) technology (Gatt & Krahmer, 2017), it might be pos-
sible to apply these methods for improving personalized di-
agnostic reports. Second, the application of REDBot can also 
be expended to Whole Exome Sequencing (WES) or Whole 
Genome Sequencing (WGS)-based diagnosis by integration 
of the new ACMG interpretation and reporting guidelines 
(Riggs et al., 2019). Third, it is beneficial for REDBot to train 
the model based on reports in different languages as well as 
from different medical institutions, in order to become a 
universally useful tool for the whole postdetection pipeline. 
Finally, with the increasing number of genetic diagnosis re-
ports, REDBot will be continuously updated and improved 
in order to deliver more comprehensive and personalized ge-
netic reports to clinicians.
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