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Abstract

In this article we present a biologically inspired model of activation of memory items in a

sequence. Our model produces two types of sequences, corresponding to two different

types of cerebral functions: activation of regular or irregular sequences. The switch between

the two types of activation occurs through the modulation of biological parameters, without

altering the connectivity matrix. Some of the parameters included in our model are neuronal

gain, strength of inhibition, synaptic depression and noise. We investigate how these param-

eters enable the existence of sequences and influence the type of sequences observed. In

particular we show that synaptic depression and noise drive the transitions from one mem-

ory item to the next and neuronal gain controls the switching between regular and irregular

(random) activation.

Introduction

The processing of sequences of items in memory is a fundamental issue for the brain to gener-

ate sequences of stimuli necessary for goal-directed behavior [1], language processing [2, 3],

musical performance [4, 5], thinking and decision making [6] and more generally prediction

[7–9]. Those processes rely on priming mechanisms in which a triggering stimulus (e.g. a

prime word) activates items in memory corresponding to stimuli not actually presented (e.g.

target words) [10, 11]. A given triggering stimulus can generate two types of sequences: on the

one hand, the systematic activation of the same sequence is required to repeat reliable behav-

iors [12–16]; on the other hand, the generation of variable sequences is necessary for the crea-

tion of new behaviors [17–21]. Hence the brain has to face two opposite constraints of

generating repetitive sequences or of generating new sequences. Satisfying both constraints

challenges the link between the types of sequence generated by the brain and the relevant bio-

logical parameters. Can a neural network with a fixed synaptic matrix switch behavior between

reproducing a sequence and produce new sequences? And which neuronal mechanisms are

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231165 April 16, 2020 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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sufficient for such switch in the type of sequence generated? The question addressed here is

how changes in neuronal noise, short-term synaptic depression and neuronal gain make possi-

ble either repetitive or variable sequences.

Neural correlates of sequence processing involve cerebral cortical areas from V1 [16, 22]

and V4 [14] to prefrontal, associative, and motor areas [23, 24]. The neuronal mechanisms

involve a distributed coding of information about items across a pattern of activity of neurons

[25–29]. In priming studies, neuronal activity recorded after presentation of a prime image

shifts from neurons active for that image to neurons active for another image not presented,

hence beginning a sequence of neuronal patterns [30–33]. Those experiments report that a

condition for the shift between neuronal patterns of activity is that stimuli have been previ-

ously learned as being associated. Considering that the synaptic matrix codes the relation

between items in memory [34, 35], computational models of priming have shown that the acti-

vation of sequences of two populations of neurons rely on the efficacy of the synapses between

neurons from these two populations [10, 36–39].

Turning to longer sequences, many of the models studied to date rely on the existence of

steady patterns (equilibria) of saddle type, which allow for transitions from one memory item

to the next [40–42]. Such models are well suited for reproducing systematically the same unidi-

rectional sequence: as time evolves neuronal patterns are activated in a systematic order. These

works show that the generation of directional sequences relies on the asymmetry of the rela-

tions between the populations of neurons that are activated successively. Regarding the order

of populations n, n+1, n+2 in a sequence, the directionality of the sequence is obtained thanks

to two properties of the synaptic matrix. First, the synaptic efficacy increases with the order of

the populations, that is efficacy is weaker between populations one and two than between pop-

ulations two and three [15, 40]. Second, the amount of overlap increases with the order of pop-

ulations [42]. Indeed, individual neurons respond to several different stimuli [43–45] and two

populations of neurons coding for two items can share some active neurons [46, 47]. Models

have proposed a Hebbian learning mechanism that determines synaptic efficacy as a function

of the overlap between the populations [48, 49]. In models the amount of overlap codes for the

association between the populations and determines their order of activation in a sequence

[11, 40, 42, 50]. These works identify sufficient properties of the synaptic matrix to generate

systematic sequences. However such properties of the synaptic matrix may not be necessary

and neuronal mechanisms may also be sufficient to generate sequences.

Neural network models have pointed to neuronal gain as a key parameter that determines

the easiness of state transitions and the stability of internal representations [51]. Further, a cor-

tical network model has shown that neuronal gain determines the amount of activation

between populations of neurons associated through potentiated synapses [52]. The latter has

shown that variable values of gain reproduce the variable magnitude of the activation of associ-

ates in memory (semantic priming) reported in schizophrenic participants compared to

healthy participants [53–55]. However, these models considered states stability or the amount

of activation but not the reliability nor the length of the sequences that can be activated. This

points to a possible effect of neuronal gain but leaves open the possibility that it could play a

role in the regularity or variability of the sequences that can be activated.

In this work we consider the case of fixed synaptic efficacy and fixed overlap to focus on

sufficient neuronal mechanisms that underlie the type of sequence, reliable or variable. The

present study mathematically analyses a new and more general type of sequences in which the

states of the network do not need to pass near saddle points. The model is based on a more

general mechanism of transition from one memory item to the next, with the saddle pattern

replaced by a saddle-sink pair (see [56], for a prototype of this mechanism of transition). As

time evolves the sink and saddle patterns become increasingly similar, so that even a small
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random perturbation can push the system past the saddle to the next memory item. In the

model those new dynamics alleviate constraints on the synaptic matrix by allowing sequences

that form spontaneously with the transitions obtained between populations related through

fixed overlap, without theoretical or practical restriction on the length of the sequences. We

show that, in addition to regular (predictable) sequences which follow the overlap between the

populations, our system also supports sequences with random transitions between learned pat-

terns. We investigate how changes in parameters with a clear biological meaning such as neu-

ronal noise, short-term synaptic depression (or short-term depression (STD), for short) and

neuronal gain can control the reliability of the sequences.

Our model is mainly deterministic, however small noise is needed to facilitate transitions

from one state to the next. As in [40] we used small noise to activate regular transitions, and,

unlike in other contexts, e.g. [42], we used small noise for random activations. In the context

of large noise (stochastic systems), it is difficult to generate regular sequences if white noise is

used. This is the main reason why we decided to take an almost deterministic approach. As

our goal was to understand the possible effects of deterministic dynamics, we chose time inde-

pendent white noise.

Model

The focus of this paper is to present a mechanism of sequential activation of memory items in

the absence of either increasing overlap, or increasing synaptic conductance, or any other fea-

ture forcing directionality of the sequences. We present this mechanism in the context of a

simple system, however the idea is general and can be implemented in detailed models. We

use the neural network model of the form

_xi ¼ xið1 � xiÞð� mxi � I � l
PN

j¼1
xj þ

PN
j¼1

Jmax
i;j sjxjÞ þ Z ð1Þ

_si ¼
1 � si
tr
� Uxisi ði ¼ 1; � � � ;NÞ; ð2Þ

as in [40], with the variables xi 2 [0, 1] representing normalised averaged firing rates of excit-

atory neuronal populations (units), and si 2 [0, 1] controlling STD. The limiting firing rates

xi = 0 and xi = 1 correspond respectively to the resting and excited states of unit i. Any set

(x1, . . ., xN) with xi = 0 or 1 (i = 1, . . ., N) defines a steady, or equilibrium, pattern for the net-

work. In the classical paradigm the learning process results in the formation of stable patterns

of the network. Retrieving memory occurs when a cue puts the network in a state which

belongs to the basin of attraction of the learned pattern. Eq (1) is usually formulated using the

activity variable ui (average membrane potential) rather than xi, and xi is related to ui through

a sigmoid transfer function. Our formulation in which the inverse of the sigmoid is replaced

by a linear function with slope μ, was shown to be convenient for finding sequential retrievals

of learned patterns, see [40].

The parameters in Eq (1) are μ (or its inverse γ = μ−1 which is the gain, supposed identical,

of the units, or slope of the activation function of the neuron [57]), λ the strength of a non-

selective inhibition (inhibitory feedback due to excitation of interneurons) and Jmax
i;j the maxi-

mum weight of the connexion from unit j to unit i. The parameter I can be understood as feed-

forward inhibition [58] or distance to the excitability threshold. This parameter was used by

[11, 40, 50]. Note that I controls the stability of the completely inactive state (xi = 0 for all i). In

this work we set I to 0, which means that the inactive state is marginally stable (see Section

“Marginal stability of the inactive state” in S1 Appendix). This is reminiscent of the up state

[59], characterised by neurons being close to the firing threshold. Finally, η is a noise term
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which can be thought of as a fluctuation of the firing rate due to random presence or suppres-

sion of spikes. In our simulations we considered white noise with the additional constraint of

pointing towards the interior of the interval [0, 1]. Other types of noise can be chosen, this

does not affect the mechanisms which we have investigated.

STD reported in cortical synapses [60] rapidly decreases the efficacy of synapses that trans-

mit the activity of the pre-synaptic neuron. This is modeled by Eq (2) where τr is the synaptic

time constant of the synapse and U is the fraction of used synaptic resources. In order to be

more explicit for the rest of the manuscript, we re-write Eq (2) as

tr _si ¼ 1 � si � rxisi ði ¼ 1; � � � ;NÞ; ð3Þ

where ρ = τr U. Eq (3) immediately shows the respective roles played by τr and the synaptic

product ρ. The synaptic time constant τr produces slow dynamics when τr� 1, while ρ deter-

mines the value of the limiting state of the synaptic strength. More precisely, for an active unit

xi = 1 with initially maximal synaptic strength si = 1, si decays towards the value S = (1 + ρ)−1

by following

siðtÞ ¼ 1 �
1 � exp ð� ð1þ rÞt=trÞ

1þ r
;

with the decay time constant (1 + ρ)/τr which depends on τr. For an inactive unit xi = 0, si
recovers to si = 1 by following

siðtÞ ¼ 1 � ð1 � sið0ÞÞ exp ð� t=trÞ;

with the recovery time constant τr and si(0) is the synaptic value at the beginning of the recov-

ery process.

The main difference in the model between this paper and [40] is the form of the matrix of

excitatory connections Jmax:

Jmax ¼

1 1 0 . . . 0

1 2 1 . .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
.

1 2 1

0 . . . 0 1 1

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

N�N

: ð4Þ

This matrix is derived by the application of the simplified Hebbian learning rule of [61]

(details provided in [40]) using the collection of learned patterns

x
i
¼ ð0; � � � ; 0; 1; 1; 0; � � � ; 0Þ ; i ¼ 1; � � � ; P ð5Þ

where the two excited units are i and i + 1. Conditions for the stability of these patterns in the

absence of STD were derived in [40]. Note that the overlap between ξi and ξi+1 is constant (one

unit). By the application of the learning rule the coefficients of Jmax are given by the formula:

Jmax
i;j ¼

XP

k¼1

x
k
i x

k
j : ð6Þ

Consequently the matrix Jmax is made up of identical (1 2 1) blocks along the diagonal, so

that there is no increase in either overlap or the synaptic efficacy (weight) along any possible
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chain. We prove mathematically and verify by numerics that Eq (1) admits a chain of latching

dynamics passing through the patterns ξi, i = 1, . . .n − 2, either in forwards or in backwards

direction depending on the activation, as well as shorter chains. The simplest way to switch

dynamically from the learned pattern ξi to ξi+1 is by having a mechanism such that unit i passes

from excited to rest state, then unit i + 2 passes from rest to excited state. STD can clearly result

in the inhibition of unit i. However in the framework of [40] it was not possible to obtain the

spontaneous excitation of unit i + 2 with the connectivity matrix Eq (4), because it was

required that the upper and lower diagonal coefficients of Jmax be strictly increasing with the

order i.
Connectionist models have shown the effects of fast synaptic depression on semantic mem-

ory [62] and on priming [11, 50]. Recall that fast synaptic depression is one of the aspects of

short term synaptic plasticity [63]. For the sake of simplicity, we neglect the other aspects of

short term synaptic plasticity, but their effects on sequential activation of memory items are

likely to be significant [64], and we intend to investigate them in further work. Fast synaptic

depression contributes to deactivation of neurons initially active in a pattern—because they

activate less and less each other—in favor of the activation of neurons active in a different but

overlapping pattern—because newly activated neurons can strongly activate their associates in

a new pattern. The combination of neuronal noise and fast synaptic depression enables latch-

ing dynamics in any direction depending on the initial bias due to random noise. Indeed,

when the parameters lie within a suitable range, the action of STD has the effect of creating a

“dynamic equilibrium” with a small basin of attraction. This dynamic equilibrium could be ξi,
x̂ i (the pattern in which only unit i + 1 is excited) or an intermediate pattern for which the

value of xi is between 0 and 1. Subsequently the noise allows the system to eventually jump to

ξi+1, the process being repeated sequentially between all or part of the learned patterns. This

noise-driven transition is what we call an excitable connection by reference to a similar phe-

nomenon discussed in [56]. Chains of excitable connections can also be activated or termi-

nated by noise. Last but not least we show that our system, depending on the value of the

parameter μ, hence of the neuronal gain γ = 1/μ, will follow the sequence indicated by the over-

lap or execute a random sequence of activations. Changes in neuronal gain change the sensitiv-

ity of a neuron to its incoming activation [57, 65, 66], and are reported to impact contextual

processing [67] to enhance the quality of neuronal representations [68] and to modulate acti-

vation between populations of neurons to reproduce priming experiments [52]. Here we show

how changes in neuronal gain switches the network’s behavior between repetitive (reliable)

sequences and variable (new) sequences.

We proceed to present the results in more detail, as follows. In Sec. Case study: a system

with N = 8 excitable units we present simulations for the network with N = 8, which serves as

an example of the more general construction. In Sec. Case study: a system with N = 8 excitable

units we sketch the methods we use to search for or verify the existence of the chains. In Sec.

Irregular chains and additional numerical results we discuss irregular chains of random activa-

tions versus regular chains defined by the overlap. Simulations were run using the Euler-Mar-

uyama method with time steps of 0.01 ms.

Results

Case study: A system with N = 8 excitable units

We consider sequences of seven learned patterns ξ1, . . ., ξ7 (named ABCDEFG) encoded by

eight units x1, . . ., x8. The sequence represents the sequential activation of pairs of units 1-2, 2-

3, 3-4, 4-5, 5-6, 6-7 and 7-8, corresponding to patterns A and B, B and C, etc. with an overlap

of one unit between them (see Fig 1a). Learning is reported to rely on changes in the efficacy
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of the synapses between neurons [69] through long term potentiation (LTP) and long term

depression (LTD) [70–72]. As a consequence, LTP/LTD potentiates/depresses synapses

between units coding for patterns as a function of their overlap, that is synapses between units

coding for overlapping patterns are more potentiated. Due to the constant overlap, all synapses

between overlapping patterns are equal. Note that the matrix Jmax is learned as a function of

the overlap between patterns without imposing any sequences. A consequence is that learning

of independent pairs of patterns generates a matrix that allows for the activation of sequences.

A system of N = 8 excitatory units can encode P = N − 1 = 7 regular patterns in Jmax (see Fig

1a). Encoded memory items can be retrieved either spontaneously (in a noisy environment) or

when the memory network is triggered by an external cue [42, 73]. Units x1 and x8 are the least

self-excited units with Jmax
1;1
¼ Jmax

8;8
¼ 1, thus it is very unlikely to active them unless they are

part of the initial activity state. Hence, the longest chain has P − 1 = 6 consecutive patterns.

Directional sequences from a stimulus-driven pattern in the sequence. Starting from

the first pattern A, the directional activation corresponds to the sequence ABCDEFG (Fig 1b

left panel). The forward direction is imposed by Jmax because x1 is less excited since Jmax
1;1
¼ 1.

Hence, while the synaptic variables s1 and s2 are equal and decreasing together as the system

lies in the vicinity of ξ1, x1 is deactivated before x2. In the same interval of time s2 < s3 and s2 −
s3 increases so that x2 becomes unstable before x3 and the system now may converge to ξ2. The

process can be repeated between ξ2 and ξ3 etc. Similarly, starting from the last pattern G gives

the reverse direction (GFEDCBA) to the system (Fig 1b right panel).

Initialising the system from a middle pattern ξi does not introduce any direction, since the

two active units of ξi are equally excited. While their synaptic variables are decreasing together,

Fig 1. Directional sequences of an endpoint stimulus-driven system. (a) Each numbered circle represents a unit.

Consecutive units encode a pattern. Except for x1 and x8, each unit participates in two patterns. A forward sequence is

the activation of units in increasing order. A backward sequence is the activation of units in decreasing order. (b) Left

panel: System initialised from the pattern A follows the forward sequence until the pattern F. Right panel: System

initialised from the pattern G follows the backward sequence until the pattern B. Same colour code is used to represent

units’ indices in (a) and (b). Parameters: μ = 0.41, λ = 0.51, I = 0, ρ = 1.8, τr = 900, η = 0.02.

https://doi.org/10.1371/journal.pone.0231165.g001
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depending on the noise at the moment when ξi becomes unstable, either ξi−1 or ξi+1 is activated

with equal probabilities. Fig 2 shows the response of the system starting from a mid-point pat-

tern D. The activated sequence can go in either direction DEFG or its reverse DCBA. The ran-
dom choice for a sequence is driven by a bias in the noise at the time of stimulus-driven

activation of the mid-point pattern.

Noise-driven random sequence from a mid-point pattern in the sequence. The units

that participate in two patterns (overlapping units) have stronger self-excitation as it is mani-

fested by the diagonals of Jmax. These units (xi, i 6¼ {1, 8}) are likely to be excited by random

noise and they can activate others which they encode a pattern with. After a pattern ξi or the

associated intermediate pattern x̂ i ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ being randomly excited by noise,

the system can follow either ξi−1 or ξi+1. The robustness of activity depends on the system

parameters. Fig 3 shows an example of spontaneous activation of a mid-point pattern D where

the directional oriented sequence can be either DEFG or its reverse DCBA. Similar to the sys-

tem initialised from a middle pattern, the random choice for a direction is driven by a bias in

the noise at the time of noise-driven activation.

Sensitivity of the dynamics upon parameter values. We have seen that patterns can be

retrieved sequentially when the system is triggered by a cue or spontaneously by noise. How-

ever the effectiveness of this process depends on the values of the parameters in Eqs (1) and

(2). The dynamics of the system can follow part of the sequence, then either terminate on one

Fig 2. Directional sequences of a midpoint stimulus-driven system. (a) Each numbered circle represents a unit.

Consecutive neurons encode a pattern. Except for x1 and x8, each unit participates in the encoding for two patterns.

When the system initialised from the pattern D, it follows either the “DCBA” or “DEFG” sequence. (b) Left panel:

System initialised from the pattern D follows the “DCBA” sequence until the pattern B. Right panel: System initialised

from the pattern D follows “DEFG” sequence until the pattern F. The same colour code is used to represent units’

indices in (a) and (b). Parameters: μ = 0.414, λ = 0.51, I = 0, ρ = 1.8, τr = 900, η = 0.02.

https://doi.org/10.1371/journal.pone.0231165.g002

PLOS ONE Neuronal mechanisms for sequential activation of memory items

PLOS ONE | https://doi.org/10.1371/journal.pone.0231165 April 16, 2020 7 / 28

https://doi.org/10.1371/journal.pone.0231165.g002
https://doi.org/10.1371/journal.pone.0231165


pattern ξi with i<N − 1, or converge to a non learned pattern. Moreover we identified two dif-

ferent dynamical scenarios by which a sequence can be followed, depending mainly on the

value of μ. This will be analyzed in Sec. Analysis of the dynamics. Here we comment on

numerical simulations which highlight the dependency of the sequences upon parameter

values.

The behavior of the model was tested on simulation data by measuring the length of regular

sequences generated by the network (chain length) and by computing the distance made from

the initial pattern after irregular sequences (distance). Chain length and distance were analyzed

by fitting linear mixed-effect models (LMM) to the data, using the lmer function from the

lme4 package (Version 1.1–7) in R (Version R-3.1.3 [74]). All predictor parameters (inverse of

the gain μ, inhibition λ, time constant τr, synaptic constant ρ and noise η) were defined as con-

tinuous variables and they were centered on their mean. The optimal structure was determined

after comparing the goodness of fit of a range of models, using Akaike’s information criterion

(AIC); the model with the smallest AIC was selected, corresponding to the model with main

effects and interactions between all of the parameters. The significance of the effects was

tested using the lmerTest package. For the sake of clarity of the text, we flag the levels of signifi-

cance with one star (�) if p-value <0.05, two stars (��) if p-value <0.01, three stars (���) if p-

value<0.001.

Fig 4 shows time series of the full or partial completion of sequences of retrievals (for N = 8

units) for two different values of noise amplitude η = 0.02 (first row) and η = 0.04 (second and

third row). In each case the two first columns show time series with the STD parameters ρ =

1.8 and τr = 300 while the last column corresponds to the choice ρ = 1.8 and τr = 900. By fixing

the synaptic constant ρ = 1.8, we ensure that the synaptic variables si decay to the same value S
with a decay time depending on τr (see Sec. Model). The global inhibition coefficient λ is set at

0.51 in rows Fig 4a and 4b and λ = 0.56 in row Fig 4c. For each choice of the STD parameters μ
takes two values, either μ = 0.41 or μ = 0.21.

Observe that the sequence and the pattern durations are shorter in the system with fast syn-

apses (τr = 300) than the one with slow synapses (τr = 900). In the case of weaker noise (Fig 4a)

and fast synapses, the system follows the sequence ABCDEF when μ = 0.41 whereas it stops at

the pattern B when μ = 0.21. In other words, increasing μ (decreasing neural gain) in the sys-

tem with fast synapses recruits more units sequentially. Another way to increase the chain

length for μ = 0.21 is slowing down the synaptic variables. The system with slow synapses can

Fig 3. Directional sequences of a spontaneously activated system. System activated spontaneous by random noise

can move in backward (a) or forward (b) directions. Parameters: μ = 0.21, λ = 0.51, I = 0, ρ = 1.8, τr = 300, η = 0.04.

https://doi.org/10.1371/journal.pone.0231165.g003
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follow the sequence ABCDEF for a wide range of μ values. In fact the two different values of μ
in Fig 4 correspond to the two different dynamical scenarios which have been evoked in the

beginning of this section. This point will be developed in Sec. Analysis of the dynamics. When

noise is stronger (Fig 4b) the picture is different: the full sequence can be completed with fast

synapses even for μ = 0.21. However, the sequence is shorter with slow synapses and the system

quickly explores unexpected patterns like one with three excited units 2, 3, 4 around t = 600

(which is not a learned pattern) in third panel of Fig 4b. These type of activity can be observed

for a wide range of μ values with slow synapses.

Fig 4. Response of the system initialised from pattern A (units 1-2) to different levels of noise η and system

parameters λ, μ, τr. Synaptic variables are faster along the first two columns (τr = 300) than the last column (τr = 900).

In all simulations I = 0. Row (a) η = 0.02, λ = 0.51. The system with fast synapses can follow the longest sequence from

A (units 1-2) to F (units 6-7) for μ = 0.41 (the first panel) but not for μ = 0.21 (the second panel), while the slow

synapses can trigger the longest sequence (the third panel). Row (b) η = 0.04, λ = 0.51. Increasing the noise amplitude

enables the activation of the whole sequence with fast synapses (the first two panels), whereas the slow synapses give

either very short patterns or 3 co-active units, the third panel, respectively. Row (c) η = 0.04, λ = 0.56. Increasing the

global inhibition λ regulates the transition for slow synapses (the third panel), whereas the system with fast synapses

and μ = 0.41 (the first panel) randomly activates learned patterns and yields short regular and irregular sequences. On

the other hand, the system with μ = 0.21 and fast synapses (the second panel) can preserve a regular sequence.

https://doi.org/10.1371/journal.pone.0231165.g004
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Comparison between Fig 4b and 4c exemplifies the effect of changing inhibition λ and μ
(inverse of neural gain) for the same noise amplitude. Increasing the inhibition coefficient λ
regulates the transition for slow synapses, while fast synapses and high values of μ (low neural

gain) randomly activates the learned patterns and yields short sequences. The latter is also due

to the self inhibition in the system given by the −μxi term in Eq (1) which facilitates deactiva-

tion of an active unit, but makes difficult for an inactive unit to be activated if it is too high.

Notice the self inhibitory effect in the fast synapses can be compensated for slow synapses and

small μ (high neural gain) which can regularize sequences.

Length of a chain. When the patterns in a chain are explored in the right order by the sys-

tem we call it regular. As we saw in Sec. Sensitivity of the dynamics upon parameter values it

can happen that only part of the full regular chain has been realised before it stops or starts

exploring patterns in a different order, hence activating an irregular chain. We call the partial

regular chain a regular segment and its length is the number of patterns it contains. Here we

investigate the maximal length that a regular segment starting at pattern A can attain. This

length is the rank of the last activated pattern over simulations. It depends on noise η but also

on the neuronal parameters (μ, λ) and on the synaptic parameters (τr, ρ). As it can be read in

Eq (3), ρ characterizes the limiting decay state of the synaptic variable. Possible impact of τr
and ρ on the dynamics has been investigated in [40]. It has been shown in a system with a a

structured connectivity matrix that deactivation of a unit is harder for ρ being small while too

high ρ prevents recruiting new units. Thus, ρ determines the reliability of a sequential activa-

tion. On the other hand, the threshold of the noise need for activation of a chain decreases

with increasing τr for ρ constant.

The relation between the model parameters and the sequential activation is more subtle

with the learning matrix (4) derived from the most simplified Hebbian learning rule than a

structured one as in [40]. In Figs 5 and 6 we present the mean chain length for two different

noise intensities; η = 0.02 and η = 0.04, respectively. In each figure synaptic parameters are ρ 2
{1.2, 2.4},τr 2 {300, 900}. Neural parameters λ and μ are varied within a range assuring the exis-

tence of chains of at least length 2. Details of the sequences are shown in S1 and S2 Figs. Statis-

tics on chain length show main effects of each parameter (η (���), μ (��), λ (���), τr (���) and

ρ (���). They also show an interaction between the five parameters altogether (���).

In all panels of Fig 5 where η = 0.02, the average chain length increases with μ, unless μ is

too large. In Fig 5a and 5b we observe a sharp increase in the chain length for λ = {0.551,

0.601} (less pronounced for λ = {0.501, 0.651}). The sharp increase in the average chain length

occurs when the bifurcation scenario changes around μ� μ� (for the definition of μ� see Sec.

Analysis of the dynamics and section “Dynamic bifurcation scenarios” in S1 Appendix) While

middle range inhibition leads to longer sequences for ρ = 1.2, weak inhibition is more suitable

for ρ = 2.4 (Fig 5c and 5d). Indeed, λ and ρ have interacting effects on chain length (���).

In Fig 6, the noise level is increased to η = 0.04. Generally speaking, increasing the noise

level prolongs the chains by facilitating the activation. Especially for τr = 900 and λ = 0.651, the

average chain length is considerably higher with η = 0.04 (Fig 6) than η = 0.02 (Fig 5). On the

other hand, the relation between the average chain length and μ becomes more delicate. In Fig

6a and 6b for ρ = 1.2, the average chain length peaks for the intermediate values of μ. Strong

inhibition λ = 0.651 prolongs the chains for small values of μ and slow synapses, whereas inter-

mediate values of inhibition λ = {0.551, 0.601} favor longer chains as μ increases. For ρ = 2.4

(Fig 6c and 6d) chains are longer under weak inhibition λ = 0.501. However, increasing μ
under weak inhibition considerably shortens the chains. The average chain length increases

with μ under strong inhibition for λ = {0.601.0.651} Parameters λ and μ have interacting effects

on chain length (���).
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Our analysis unveils a nonlinear relation between μ and the chain length. When μ is small,

an increase of μ provokes an increase of the length of the chain. However, in most cases we

find that the chain lengths are maximal for intermediate values of μ. This is clear intuitively:

large gain (small μ) prevents the units from deactivating, making the transition from one pat-

tern to the next difficult. Small gain, on the other hand, prevents the next unit from activating.

Another factor is the occurrence of the transition from scenario 1 to 2 (see Sec. Analysis of the

dynamics and section “Dynamic bifurcation scenarios” in S1 Appendix). The synaptic product

ρ and the global inhibition parameter λ also influence the system’s behaviour. For ρ = 1.2, inhi-

bition in the middle range leads to longer sequences, whereas weak inhibition is more suitable

for ρ = 2.4.

Analysis of the dynamics

Latching dynamics is defined as a sequence (chain) of activations of learned patterns that de-

activate due to a slow process (e.g., adaptation, here synaptic depression), allowing for a transi-

tion to the next learned pattern in the sequence [11, 75]. Here we refine this description using

Fig 5. Average chain length in a regular segment for noise η = 0.02. Synaptic time constant equals to τr = 300 on

panels (a) and (c), and τr = 900 on panels (b) and (d). (a, b) Activity for ρ = 1.2. The chain length increases with μ (1/

neural gain) and τr. The global inhibition value, λ, should be high enough for a sequential activation, but the chain

length decreases if λ is too high. (c, d) Activity for ρ = 2.4. The chain length increases with μ and τr, but decreases with

λ. See S1 Fig for the details of the activity.

https://doi.org/10.1371/journal.pone.0231165.g005
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the language of dynamics and multiple timescale analysis. The main idea is to treat the synaptic

variables si as slowly varying parameters, so that the evolution of the system becomes a movie of

the dynamical configurations of the units xi. On the other hand the firing rate Eq (1) is well

adapted to analyze latching dynamics. Indeed, from the form of Eq (1) (assuming for the

moment that noise is set to 0) one can immediately see that whenever xi is set to 0 or 1, this

variable stays fixed at any time. Therefore considering any face in the hypercube [0, 1]N

defined by two coordinates (xi, xj), the other coordinates being fixed at 0 or 1, it is invariant

under the flow of Eq (1). In other words, any trajectory starting on the face stays entirely on it.

This is of course true also for the edges and vertices at the boundary of each face. Each vertex is

an equilibrium of Eq (1) and connections between such equilibria can be realised through

edges of the hypercube, which greatly simplifies the analysis.

When the couple (xi, si) of unit i is set at (1, 1), xi is fixed as we have seen but STD Eq (3)

induces an asymptotic decrease of the synaptic variable towards the value S = (1 + ρ)−1. This in

turn weakens the synaptic weight Jmax si in Eq (1), which may destabilize ξi in the direction of

Fig 6. Average chain length in a regular segment for noise η = 0.04. Synaptic time constant equals to τr = 300 on

panels (a) and (c), and τr = 900 on panels (b) and (d). (a, b) Activity for ρ = 1.2. The chain length increases with τr.
Chains are longer for intermediate values of μ (intermediate values of neural gain), but shorter for μ too high (low

neural gain). Increasing inhibition λ facilitates regular pattern activation for the low values of μ, see for instance λ =

0.501 vs λ = 0.601 in (a), but ceases if it is too strong. (c, d) Activity for ρ = 2.4. The chain length increases with τr, but

decreases with λ. Increasing μ lengthens the chains more with τr = 900 than τr = 300. See S2 Fig for the details of the

activity.

https://doi.org/10.1371/journal.pone.0231165.g006
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x̂ i. Considering si as a slowly varying parameter this can be seen as a dynamic bifurcation of an

equilibrium along the edge from ξi to x̂ i. The following scenario was described in [40]. For the

sake of simplicity we now assume i = 1 (the same arguments hold for any i). The patterns ξ1, x̂1

and ξ2 lie at the vertices of a face, which we call F, generated by the coordinates x1 and x3, with

x2 = 1 and the rest of the coordinates being set to 0.

Fig 7 shows three successive snapshots of the movie onF. The left panel illustrates the ini-

tial configuration, with the stable pattern ξ1 corresponding to the top left vertex. Then at some

time T0 an equilibrium bifurcates out of x̂1 in the direction of ξ1 (here the ‘slow’ STD time

plays the role of bifurcation parameter, see middle panel). After a time T1 (right panel) this

bifurcated equilibrium disappears in ξ1 which becomes unstable and a connecting trajectory is

created along the edge with x̂1. Simultaneously a trajectory connects x̂1 to ξ2 along the corre-

sponding edge. It results that the following sequence of connecting trajectories is created:

x
1
! x̂1 ! x

2
. As a result, any state of the system initially close to ξ1 will follow the ‘vertical’

edge towards x̂1, then the ‘horizontal’ edge towards ξ2. The process can repeat itself from ξ2 to

ξ3 and so on. It was shown in [40] that in order to work, this scenario requires that the coeffi-

cients of the matrix Jmax satisfy the relation Jmax
1;2

< Jmax
2;3

(more generally Jmax
i;iþ1

< Jmax
iþ1;iþ2

, i = 1, . . .,

P − 1, for the existence of a chain of P patterns), a condition which does not hold with Eq (4).

The results of this paper rely on the observation that the existence of the connections x
1
!

x̂1 ! x
2

for t> T1 (right panel of Fig 7) is not needed for the occurrence of chains. We will

show below that for the connectivity matrix J given by Eq (4) the connections exist for at most

a unique value of t = T1 and yet regular chains or segments can occur. For t> T1 the connect-

ing trajectory along the edge x̂1 � x
2

is broken by a sink (stable equilibrium) close to x̂1. In

such case strong enough noise perturbations could push a trajectory out of the basin of attrac-

tion of the sink to the basin of attraction of ξ2. As a result the trajectory would get past x̂1 and

converge towards ξ2, as expected. When such chains driven by noise exist, we call them excit-
able chains by reference to [57] who introduced the concept. In the case when the connections

exist for t = T1 chains occur with noise of arbitrarily small amplitude, because as t approaches

Fig 7. Representative phase portraits of the fast dynamics on the faceF corresponding to the scenario of [40]. The

phase portraits are shown at three different ‘slow’ STD times. Green, orange and purple dots represent the stable,

completely unstable and saddle equilibria, respectively. The blue lines illustrate segments of trajectory starting near ξ1.

(a) The learned patterns ξ1 and ξ2 are stable for t< T0. (b) The bifurcation of a saddle point on the edge between ξ1 and

x̂1 happens for T0 < t< T1. (c) Pattern ξ1 has become unstable along the edge x
1
� x̂1 whilst ξ2 is still stable for t> T1.

The saddle point in the interior ofF merges with the bifurcated equilibrium before (c) is realised.

https://doi.org/10.1371/journal.pone.0231165.g007
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T1 from above the amplitude of noise needed to jump over to the basin of attraction of ξ2 con-

verges to 0. We extend the terminology excitable chain to this case also.

Under this new scheme of excitable chains the number of possible transitions is much

larger and multiple outcomes are possible. We have identified two scenarios (named 1 and 2)

by which these excitable chains can occur in our problem. Typical cases are illustrated on Fig

8. As in Fig 7, snapshots of the dynamics at three different “slow” times are shown. The red

line marks the boundary of the basin of attraction of ξ2 and the dashed circles mark the closest

distances for a possible stochastic jump out of it. In both scenarios a completely unstable equi-

librium point exists on the edge from ξ1 to the unnamed vertex on F, which corresponds to

the pattern (1, 1, 1, 0, . . ., 0) (not a learned pattern).

Under Scenario 1 the pattern ξ1 first loses stability by a dynamic bifurcation of a sink (stable

equilibrium) along the edge x
1
� x̂1. The trajectory, which was initially in the basin of attrac-

tion of ξ1, follows this sink while it is traveling along the edge x
1
� x̂1 towards x̂1 (Fig 8b). In

this time interval the distance between the sink and the attraction boundary of ξ2 (the red line

in Fig 8b) is decreasing. Hence it becomes more likely for the noise to carry the trajectory over

the ξ2 stability boundary, activating a transition to ξ2. The noise level necessary for the jump

becomes smaller as the sink approaches x̂1. The critical transition shown in Fig 9a occurs as

Fig 8. Phase portraits of the fast dynamics on the faceF at three different ‘slow’ STD times. Stable patterns are

coloured in green. The red trajectories are separatrices between the basins of attraction of the stable equilibria. The

blue lines illustrate segments of a trajectory starting near ξ1. Box (1) panels (a,b,c) Phase portraits illustrate the

mechanisms that can lead to transition ξ1! ξ2 with excitable connections in Scenarios 1 as time evolves. (a) Trajectory

starting near ξ1 converges to ξ1. (b) Trajectory follows the saddle between ξ1 and x̂1 on the x1-axis. (c) Trajectory

“jumps” out of the basin of attraction of x̂1 under the effect of noise and converges towards ξ2 to ξ1. Box (2) panels (d,e,

f) Phase portraits illustrate the mechanisms that can lead to transition ξ1! ξ2 with excitable connections in Scenarios

2 as time evolves. (d) Trajectory starting near ξ1 converges to ξ1. (e) Trajectory remains in the basin of attraction of x1

defined by the saddle on the x1-axis. (f) Trajectory “jumps” out of the basin of attraction of x̂1 under the effect of noise

and converges towards ξ2.

https://doi.org/10.1371/journal.pone.0231165.g008
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the sink reaches x̂1. At this moment, noise of arbitrarily small amplitude can cause the transi-

tion. Subsequently x̂1 is transiently stable and the distance to the ξ2 attraction boundary

increases. Therefore, it becomes likely that the trajectory remains trapped in the basin of

attraction of x̂1, as shown in Fig 8c). A further decrease of s2 occurring with the passage of

time gives a loss of stability of x̂1 and the trajectory leaves F to the inactive state. This is the

mechanism of the termination of the regular part of the chain (see Fig 2 for an example).

In Scenario 2 the overlap equilibrium point x̂1 becomes a stable before ξ1 loses stability. At

the critical transition (Fig 9b), a sequence of connections from ξ1 to ξ2 does not exist, hence

the trajectory cannot pass from ξ1 to ξ2 unless the noise is sufficiently large. In the context of

this scenario regular chains tend to be substantially shorter.

As we have described above, noise is indispensable for crossing the attraction boundary of

the next pattern, hence it is crucial for the chains we study. Minimum noise level required for

jumps is scenario dependent. In Scenario 1, as s1 and s2 decrease along the trajectory, the dis-

tance between the sink and the ξ2 attraction boundary also decreases, becoming arbitrarily

small as the critical transition is approached. Thus the noise amplitude required for a jump

also decreases to 0. In Scenario 2 noise needs to be stronger to make the trajectory cross over

the excitability thresholds of ξ1 and x̂1. On the other hand, we should also keep in mind that

too strong noise can hinder regular chains. Simulations (and analysis, see S1 Appendix) iden-

tify μ as the main control parameter which determines the choice between these scenarios: the

system follows Scenario 1 for higher values of μ and Scenario 2 for lower values of μ. This

explains the difference in behavior seen in Fig 4 at lower and higher values of μ. The boundary

between the two regions is defined by the value μ = μ� for which ξ1 and x̂1 change stability at

the same time. For an analytic definition of μ� and more detailed analysis, see S1 Appendix. In

the next section we will see how these scenarios affect irregular activation.

Fig 9. Phase portraits corresponding to critical transitions in Scenario 1 and Scenario 2. These phase portraits

occur for a special value of σ such that x̂1 changes from a saddle to a sink. (a) The phase portrait of the critical

transition corresponding to Scenario 1 contains a sequence of connecting trajectories from ξ1 to ξ2, allowing for a

transition from ξ1 to ξ2 with arbitrarily small noise (e.g. for ρ = 2.4, τr = 900, λ = 0.55, μ = 0.45, the critical transition

occurs at s1� 0.45, s2� 0.56). (b) In the phase portrait of the critical transition corresponding to Scenario 2, a

transition from ξ1 to ξ2 would fail unless the noise amplitude is sufficiently large. (e.g. for ρ = 2.4, τr = 900, λ = 0.55, μ =

0.15, the critical transition occurs at s1� 0.37, s2� 0.49).

https://doi.org/10.1371/journal.pone.0231165.g009
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Irregular chains and additional numerical results

The question we address here is what happens after the last pattern of a regular segment has

been reached. We let (i, i + 1) denote the last pattern of the regular sequence. It follows from

previous analysis that the trajectory will remain near x̂ i for a considerable amount of time.

Subsequently x̂ i can lose stability and the trajectory passes to the inactive state, or x̂ i remains

stable indefinitely. By our choice of parameters (setting I = 0, see Sec. Model) the inactive state

is marginally stable, which means that an irregular activation will eventually happen due to

small noise and a the next pattern will be chosen at random. The mechanism of random activa-

tion from x̂ i, is similar, with the exception that chain reversal is likely to occur in this case. The

transition time to an irregular activation may be significantly longer than in the case of regular

transitions, which allows for the recovery of the synaptic variables. Table 1 assembles the fea-

tures of regular and irregular activations, as predicted by the analysis.

Our numerical results confirm the trends of the analytical predictions, at the same time

showing that the dynamics of the model is more complex and other parameters play a very

important role. In particular, interestingly, the longest regular segments are observed for μ val-

ues corresponding to scenario 1 close to μ = μ�, which is the boundary value separating scenar-

ios 1 and 2 (see Sec. Analysis of the dynamics). Regular segments typically become shorter if μ
is increased significantly beyond μ�, see Figs 5 and 6. This means that there exists an optimal μ
window for the existence of long regular segments, or, in other words, neuronal gain needs to

be not too small and not too large.

In this section we will discuss features of irregular activation, based on numerical results.

To show statistics of irregular activation we define a measure of ‘distance’ Δ, as follows. Sup-

pose at a time t, xp and xq are the two most recently activated units, with xp preceding xq in its

activation. We define

D ¼ q � p:

Note that a regular chain satisfies Δ = 1 for all t until the last pattern is reached.

We distinguished two cases of irregular continuation of chains: reversing the chain

(Δ = −1) and random reactivation of new chains (Δ 6¼ −1). We allow the possibility of Δ = 1 as

such chains can occur in an irregular way for the following reason: an irregular activation is

typically preceded by a complete deactivation, usually with a prolonged passage time. The new

activation is random, so that an activation to the pattern which is next in the overlap sequence

can occur, for instance the sequence [1, 2]![2]![]! [3]![2, 3]. . .. Such reactivations are

documented in details in S3 and S4 Figs.

Recall the scenarios 1 and 2 for transitions from one pattern to the next (Fig 8). The former

occurs for “large” values of μ and the latter for lower values of μ. Let x̂p be the last intermediate

state at the end of the regular segment. In Scenario 2 either x̂p remains stable indefinitely or it

destabilizes after some (long) time due to the repotentiation of sp. The latter case corresponds

to a dynamic scenario for a chain’s reversal. We refer to the prolonged residence of the system

Table 1. Features of regular and irregular transitions as predicted by the analysis of Sec. Analysis of the dynamics.

Cognitive function Regularity Dynamic mechanism

Predicted sequence of

activation of learned patterns

Deterministic behaviour Dynamic bifurcation, mostly scenario 1,

computable transition time by integration

Irregular activation of

learned patterns

Non-uniform probability

distribution (Fig 12, S3 and S4 Figs)

Transition to a neutrally stable de-activation

or overlap state, random transition time

https://doi.org/10.1371/journal.pone.0231165.t001
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at x̂p as pending and note that it likely leads to a reversal. However, for high values of noise,

random activation (Δ 6¼ −1) may also occur. The scenario 1 is more likely to yield random re-

activation as x̂p loses stability in the xp+1 direction with the decrease of sp+1, so that a transition

to the inactive state is possible. Notice that in this case too other Δ values are possible when the

noise is large. Statistics on distance of irregular chains show main effects of parameter η (�), μ
(���), λ (�) and ρ (��). The four parameters η (�), μ (���), λ (�) and τ also have effects on activa-

tion distance and interact with each other (���).

Figs 10 and 11 show the average activation distance Δ for η = 0.02 and η = 0.04, respectively.

For λ = {0.501, 0.551} and small values of μ, the system remains on the last activated pattern.

Activity with Δ = −1 is generally supported for ρ = 1.2 and for ρ = 2.4 if (μ, λ) are small. Indeed,

λ, ρ and μ have interacting effects on the activation distance (���). We do not see any activation

for small values of μ in Fig 10 which indicates that the activity remains either on a pattern ξ or

on an intermediate state x̂. Increasing μ introduces a backwards activation, except for λ =

0.651 for which the new activity is in the forward direction. For ρ = 2.4, we observe that the

average distance increases with λ and μ if τr = 300, but decreases with μ if τr = 900.

Increasing the noise level η (Fig 11) facilitates activation of new patterns. As Fig 11a demon-

strates, the system remains on the last activated pattern only for λ = {0.501, 0.551} and small

values of μ, New activation mostly stays in the negative distance for ρ = 1.2 unless for high val-

ues λ and μ (Fig 11b and 11c). Indeed, there are interactive effects between λ, η and ρ (��) and

between λ, ρ and μ (��). Taking ρ = 2.4 considerable changes the average Δ for both synaptic

time constants. Probability of a new activity is above 0.5 for all parameter combinations (Fig

11d). For τr = 300, the average stays in the positive region for the whole range of μ, unless λ =

0.501 for which average Δ climbs from negative to positive values (Fig 11e). A similar pattern

is observed with λ = 0.501 and the synaptic time constant τr = 900 (Fig 11f). However, the aver-

age Δ decreases with μ and for the other values of λ when τr = 900.

Supporting materials S3 and S4 Figs show the percentage of Δ values after a new activation

for η = 0.02 and η = 0.04, respectively. Recall that as the chains get longer with increasing μ,

regular segments get longer, as well, specially when noise is high (η = 0.04). Regarding the type

of forward and/or backward irregular chains, high values of ρ and high values of μ (e.g. low

gain) for low values of noise η (S3 Fig) increase the possibility for irregular chains in the for-

ward direction, while the combination of high values of μ (e.g. low gain), ρ and noise η increase

the possibility for irregular chains in both directions (S4 Fig). The difference between the per-

centages of Δ for τr = 300 and τr = 900 indicates the capability of slow synapses to yield longer

chains.

In order to see the relation between the chain length and distance Δ for each combination

of (η, ρ, τr), we categorized the regular sequences with respect to the last activated pattern.

Then, we extracted the Δ values among the trials with activation and obtain a Δ set for a each

possible last activated pattern of the sequence ABCDEF. Fig 12 shows the distribution of Δ at

patterns from A to F in a violin plot. Left side of each violin shows the results with η = 0.02,

and right side with η = 0.04. We remark at first glance that Δ depends on the chain length.

Activation is in the forward direction in short chains whereas it is in the backward direction

for long chains (still preserving a preference for Δ = −1). While this is related to being a

bounded system (in terms of the system size N = 8), for the intermediate patterns, like D, nega-

tive and positive values of Δ are almost equally distributed (especially for ρ = 2.4, τr = 900). We

also observe that after passing C, the system activates more and more the units in negative dis-

tance Δ 6¼ −1. Increasing noise spreads the distribution of Δ, very visibly in ρ = 1.2 for patterns

A, B; also for pattern F in ρ = 2.4, τr = 900. Finally, distribution of Δ approximates to a normal

distribution for shorter chains.
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Perturbed connectivity matrix

In order to test the robustness of our model, we randomly perturbed the off-diagonal elements

of the connectivity matrix (4) while ensuring its diagonally symmetric structure. We consider

two levels of perturbations (5% and 10%) and a parameter set for which we obtain a wide

range of behaviour with matrix (4) (the parameter set: η = 0.04, ρ = 1.2, τr = {300, 900}). The

simulation results are presented in Table 2 and in S5 Fig. Looking at Table 2, we see that the

difference in the chain lengths are less than 10%, and in the probability of a new activity is

around 15%. Furthermore, these two features follow similar patters to the ones of the regular

matrix as S5(a)–S5(d) Fig show. The differences between the average distance Δ values are

around 18% for τr = 300 and 32% for τr = 900. In particular, the difference in Δ increases with

μ and λ for τr = 900 S5(e) and S5(f).

Fig 10. Probability of a new activity and average distance Δ for noise η = 0.02. Synaptic time constant equals to τr =

300 in panels (b) and (e), and τr = 900 in panels (c) and (f). (a, b, c) Activity for ρ = 1.2. (a) The probability of a new

activity after the initial sequence for ρ = 300 (upper panel) and τ = 900 (lower panel). Small values of μ (1/neural gain)

tends to keep the system on the last activated pattern. Minimum μ value required for a new sequence decreases with

inhibition λ and τr. (b, c) Activated patterns mostly remain in negative distances except for λ = 0.651 for τr = {300,

900}, for high values for μ for λ = 0.601 with τr = 300. (d, e, f) Activity for ρ = 2.4. (d) The probability of a new activity

after the initial sequence for ρ = 300 (upper panel) and τ = 900 (lower panel). Minimum μ value required for a new

sequence decreases with inhibition λ and time constant τr. A new activation is always observed for τr = 300, λ = 0.651;

and for τr = 900, λ = {0.601, 0.651}. (e) Average distance Δ is positive and increases with μ. (f) Average distance Δ is

negative and increases with mu for λ = 0.501. Average distance Δ is positive and decreases with μ for λ = {0.551, 0.601,

0.651}.

https://doi.org/10.1371/journal.pone.0231165.g010
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Discussion

Experimental evidence indicates that the brain can either replay the same learned sequence to

repeat reliable behaviors [12–16] or generate new sequences to create new behaviors [17–21,

76]. The present research identifies biologically plausible mechanisms that explain how a neu-

ral network can switch from repeating learned regular sequences to activating new irregular

sequences. To make the problem analytically tractable, the combined effects of the parameters

were analyzed on neuronal population firing rates in a simplified balanced network model by

use of slow-fast dynamics and dynamic bifurcations. We demonstrated how variations in neu-

ronal gain, short-term synaptic depression and noise can switch the network behavior between

regular or irregular sequences for a fixed learned synaptic matrix.

Fig 11. Probability of a new activity and average distance Δ for noise η = 0.04. Synaptic time constant equals to τr =

300 in panels (b) and (e), and τr = 900 in panels (c) and (f). (a, b, c) Activity for ρ = 1.2. (a) The probability of a new

activity after the initial sequence for ρ = 300 (upper panel) and τ = 900 (lower panel). Minimum μ (1/neural gain) value

required for a new sequence decreases with inhibition λ and time constant τr. (a, b) Average distance is negative except

for μ> 0.3, λ = 0.651 and τr = 300. (d, e, f) Activity for ρ = 2.4. (d) The probability of a new activity after the initial

sequence for ρ = 300 (upper panel) and τ = 900 (lower panel). A new activation is always observed for τr = 300, λ =

{0.601, 0.651}; and in almost all trials for τr = 900.(e) Average distance Δ is positive except for λ = 0.501 where it

increases from negative to positive with increasing μ. (d) Average distance Δ decreases for all cases except for λ = 0.501

where it increases from negative to positive with increasing μ.

https://doi.org/10.1371/journal.pone.0231165.g011
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Let us point out that the model we have considered represents a general framework of net-

works with adaptation, thus is likely to have applications in other fields, such as population

dynamics, genetics, game theory, sociology or economics.

Synaptic matrix

In the present model the overlap had the same number of shared units for all the overlapping

populations. This allowed us to show that variable overlap is not a necessary condition for the

Fig 12. Distribution of activation distance Δ at last activated patterns from A to F over all trials. The distributions

are bounded by the minima and maxima of the Δ sets. Each violin is colored with respect to the color code of the last

activated units of a pattern in the forward direction as in Figs 1 and 2. Left half of each violin corresponds to activity

with noise η = 0.02 and the hashed right halves correspond to activity with noise η = 0.04. (a) Activity for ρ = 1.2, τr =

300. (b) Activity for ρ = 1.2, τr = 900. (a) Activity for ρ = 2.4, τr = 300. (b) Activity for ρ = 2.4, τr = 900.

https://doi.org/10.1371/journal.pone.0231165.g012

Table 2. Relative difference between the features of the unperturbed and irregularly perturbed synaptic matrices.

Feature τr = 300 τr = 900

5 % perturbation 10 % perturbation 5 % perturbation 10 % perturbation

Average chain length 4.5% 6.8% 6.8% 8.6%

Probability of a new activity 12% 16% 12% 14%

Average distance Δ 18.5% 18% 34% 30%

https://doi.org/10.1371/journal.pone.0231165.t002
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activation of sequences of populations. A consequence of the constant overlap is that

sequences from a stimulus-driven end-point pattern in the sequence (e. g. first pattern A of the

sequence) are directional but sequences from a mid-point pattern can go in any of the two pos-

sible directions. The model can then generate bi-directional sequences interesting in free

recall. Starting from the first pattern A (or G), the sequence ABCDEFG is oriented in one

direction (or in the other direction), and starting from a middle pattern e.g. D, the sequence

can be oriented in any of the two possible directions. The present model allows for bi-direc-

tionnal sequences as well as for new sequences depending on the value of neuronal gain γ =

μ−1.

Our model is robust against small perturbations of the connectivity matrix. In other words

our results would hold, with small modifications, in a slightly heterogeneous network.

Regular vs. irregular sequences

Regarding regular sequences, the chain length increases with noise and for combinations of

strong STD (high values of ρ) and low inhibition, or weak STD (low values of ρ) and strong

inhibition. Further, for most combinations of noise, STD and inhibition, there is an optimal

value of gain that generates the longest chains. The sensitivity of a neuron to its incoming

activation varies with changes in its gain [65]. Simulations and analysis show that the neu-

ronal gain (1/μ) is a key control parameter that selects the length and type of sequence acti-

vated: regular or irregular. Large neuronal gain impairs the deactivation of the units in a

pattern and hence makes the transition to the next pattern difficult, and small gain impairs

the activation of the next unit and again makes the transition difficult. Consequently

there is an optimal window for the gain corresponding to long sequences. Experimental evi-

dence shows that presentations of a given stimulus reproduces the same sequence reliably

[14, 16, 22, 77]. The present model can repeat systematic full sequences of activation for

some values of the parameters that make the network change patterns in a given order. This

‘reliable’ mode could be well adapted to the reliable reproduction of learned sequences of

behaviors.

Regarding irregular sequences, a large neuronal gain leads to the second scenario describing

transitions from one pattern to the next (as in Fig 8). According to this second scenario, the

last intermediate state of the network at the end of a regular segment can destabilize and leads

to a reversal of the sequence. In that case the network activates patterns backward in the

reverse order. Further, for high values of noise, Scenario 2 can lead to random activation of

patterns in either the forward or backward direction. Such variable sequences are more likely

to be generated according to the first scenario that makes possible a transition to another state

in the forward or backward direction and that does not necessarily overlap with the current

state (forward or backward leaps). Direction of recall has been linked to the stimulation ampli-

tude presence of non-context units in [78]. Our model can generate variable sequences over

repetitions of the same triggering stimulus for high values of gain, in line with a memoryless
system [56] that activates a new pattern in an unpredictable fashion. Behavioral studies indi-

cate that presentation of a triggering stimulus can activate distant items that are not directly

associated to it [79]. The generation of new sequences corresponding to the activation of new

possibilities [80] and the execution of new information-seeking behaviors such as saccades or

locomotor explorations of unknown locations [1] rely on variable internal neural dynamics

such as in the medial frontal cortex [81]. This ‘creative’ mode of variable activation not follow-

ing a given sequence could correspond to a mind wandering mode [19, 82] or divergent think-

ing involved in creativity [83–86].
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Neuromodulation of the switch between regular and irregular sequences

Neuronal gain is reported to depend on neuromodulatory factors such as dopamine [51, 87–

89] involved in reward-seeking behaviors and punishment [90–92]. Dopamine is reported to

modulate the magnitude of the activation between associates in memory (priming; [93, 94])

and dopamine induced changes in neuronal gain have been reported to account for changes in

activation in memory [52] and for changes in neuronal activity that controls muscle outputs

[95]. A novel feature of our network model is that neuronal gain influences the type of

sequences that are generated: regular or irregular. Typical computational models of sequence

generation reproduce learned sequences [15]. However, if the brain must in some case repro-

duce systematic behaviors, it must also have the capacity to liberate itself from repetition in

order to create new behaviors. The present research shows that the network can exhibit the

dual behavior of activating regular or irregular sequences for a given synaptic matrix. The tran-

sition depends on biological parameters, in particular on gain modulation. Given that changes

in gain change the length of the regular sequence, and that when the regular sequence stops it

becomes irregular, the gain controls the regularity of the sequences. The present research

sheds light on how the brain can switch between a ‘reliable’ mode and a ‘creative’ mode of

sequential behavior depending on external factors such as reward that neuromodulate neuro-

nal gain.

Fixed versus increasing overlap size

Earlier works [40–42] proved the existence of regular sequences under the assumptions of

increasing overlap and synaptic efficacy. In this work we showed that neither of these condi-

tions is needed: regular sequences can exist in the context of equal overlap. It is know that pop-

ulations of neurons coding for memories, and their overlaps, can vary (due to learning) on

time scales that are long in the context of this paper, but still relatively short [96]. Sequences

arising through increasing overlap can be understood as learned as opposed to the regular

sequences in this paper, that occur merely due to the semantic relation between concepts. Con-

sequently, it is interesting to extend our modelling framework to a setting where overlap could

vary on a super-slow timescale.

Supporting information

S1 Appendix.

(ZIP)

S1 Fig. Percentage of last activated patterns in a regular segment for noise η = 0.02. Pattern

colours follow to the colour codes of the last activated units in Figs 1–4 (see the legend on the

right). The height of each colour on a bar indicates the percentage of the corresponding pat-

tern for a given parameter combination over 100 trials. Synaptic time constant equals to τr =

300 on panels (a) and (c), and τr = 900 on panels (b) and (d). (a, b) ρ = 1.2. The chain length

increases with μ (decreases with neural gain) and τr. The global inhibition value, λ, should be

high enough for a sequential activation, but the chain length decreases if λ is too high. (c, d)

ρ = 2.4. The chain length increases with μ and τr, but decreases with λ.

(EPS)

S2 Fig. Percentage of last activated patterns in a regular segment for noise η = 0.04. Pattern

colours follow to the colour codes of the last activated units in Figs 1 and 2 (see the legend on

the right). The height of each colour on a bar indicates the percentage of corresponding last

activated pattern for a given parameter combination over 100 trials. Synaptic time constant

equals to τr = 300 on panels (a) and (c), and τr = 900 on panels (b) and (d). (a, b) ρ = 1.2. The
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chain length increases with τr. Chains are longer for intermediate values of μ (intermediate val-

ues of neural gain), but shorter for μ too high (low neural gain). Increasing inhibition λ facili-

tates regular pattern activation for the low values of μ, see for instance λ = 0.501 vs λ = 0.601 in

(a), but ceases if it is too strong. (c,d) ρ = 2.4. The chain length increases with τr, but decreases

with λ. Increasing μ lengthens the chains more with τr = 900 than τr = 300.

(EPS)

S3 Fig. Activity after the initial sequence for noise η = 0.02 of the simulations given in S1

Fig. Bars are coloured according to the activation distance Δ (see the legend on the right) and

the height of each colour indicates the percentage of the corresponding distance Δ. (a, b)

Activity for ρ = 1.2. (a) Percentage of Δ for ρ = 300. (b) Percentage of Δ for ρ = 900. New

sequences are generated as μ (1/neural gain) and inhibition λ increase, with a preference in the

backward activity with Δ = −1. Forward activity is possible if both λ and μ are high. (c, d)

Activity for ρ = 2.4. (c) Percentage of Δ for ρ = 300. Increasing (μ, λ) ensures activation in the

forward direction. (d) Percentage of Δ for ρ = 900. Backward activation is observed for small

values of λ. Increasing (μ, λ) ensures activation in the forward direction. Overall, the probabil-

ity of new (forward) activity is higher in ρ = 2.4 than ρ = 1.2.

(EPS)

S4 Fig. Activity after the initial sequence for noise η = 0.04 of the simulations given in S2

Fig. Bars are coloured according to the activation distance Δ (see the legend on the right) and

the height of each colour indicates the percentage of the corresponding distance Δ. (a, b) Activ-

ity for ρ = 1.2. (a) Percentage of Δ for ρ = 300. (b) Percentage of Δ for ρ = 900. New sequences

are generated as μ (1/neural gain) and inhibition λ increase, with a preference for backward

activity for small values of λ. Activation in distance Δ = −1 has the largest probability. Fast syn-

apses activate in distance Δ> 0 for λ = 0.651 and high values of μ while slow synapses activate

in distance Δ< 0. (c, d) Activity for ρ = 2.4. (c) Percentage of Δ for ρ = 300. Increasing (μ, λ)

ensures activation in the forward direction. (d) Percentage of Δ for ρ = 900. Probability of dis-

tance being Δ< 1 is considerably high for λ = 0.551 but very small for λ. Overall, the probabil-

ity of generating new activation is higher for ρ = 2.4 than ρ = 1.2 and activation in distance Δ
< 0 is much higher with τr = 900 than τr = 300.

(EPS)

S5 Fig. Average chain length, probability of a new activity and average distance Δ with

irregularly perturbed connectivity matrices. Off-diagonal elements of the connectivity matrix

are perturbed by 5% and 10% while keeping the resulting synaptic matrix diagonally symmet-

ric, and for each 10 synaptic matrices are generated. System parameters: Noise η = 0.04, synap-

tic constants ρ = 1.2 with τr = {300, 900}, global inhibition λ = {0.501, 0.551, 0.601, 0.651}, and

μ = [0.05, 0.50] (1/neural gain) (100 simulations for each combination). Left row shows the

results for τr = 300 and right row for τr = 900. In each panel bold traces show the results

obtained with unperturbed connectivity matrix (4), dotted traces (. . .) with 5% perturbed con-

nectivity matrices, and dash-dotted traces (−.) with 10% perturbed matrices connectivity matri-

ces (mean over 10 different symmetric matrices for each). (a,b) Average chain length with (4)

and perturbed connectivity matrices. (c,d) Probability of new activation with (4) and perturbed

connectivity matrices. (e,f) Average distance Δ with (4) and perturbed connectivity matrices.

(EPS)
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