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SUMMARY

As the only nonlinear and the most diverse biological sequence, glycans offer substantial 

challenges for computational biology. These carbohydrates participate in nearly all biological 

processes—from protein folding to viral cell entry—yet are still not well understood. There are 

few computational methods to link glycan sequences to functions, and they do not fully leverage 

all available information about glycans. SweetNet is a graph convolutional neural network that 

uses graph representation learning to facilitate a computational understanding of glycobiology. 

SweetNet explicitly incorporates the nonlinear nature of glycans and establishes a framework 

to map any glycan sequence to a representation. We show that SweetNet outperforms other 

computational methods in predicting glycan properties on all reported tasks. More importantly, we 

show that glycan representations, learned by SweetNet, are predictive of organismal phenotypic 

and environmental properties. Finally, we use glycan-focused machine learning to predict viral 

glycan binding, which can be used to discover viral receptors.
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In brief

Burkholz et al. develop an analysis platform for glycans, using graph convolutional neural 

networks, that considers the branched nature of these carbohydrates. They demonstrate that 

glycan-focused machine learning can be employed for various purposes, such as to cluster species 

according to their glycomic similarity or to identify viral receptors.

INTRODUCTION

Glycans are complex carbohydrates and are a fundamental biological sequence that is found 

both as isolated entities as well as covalently bound to proteins, lipids, or other molecules 

(Varki, 2017). Because of their wide range of interactions, they are intricately involved 

in protein function (Dekkers et al., 2017; Solá and Griebenow, 2009), cellular function 

(Parker and Kohler, 2010; Zhao et al., 2008), and organismal function (Haltiwanger and 

Lowe, 2004; Stanley, 2016). As the only biological sequence with both a non-universal 

alphabet (consisting of monosaccharides) and nonlinear branching, glycans are highly 

complex biopolymers. This complexity is further compounded by the fact that glycans are 

created through a non-templated biosynthesis involving a stochastic interplay of multiple 

glycosyltransferases and glycosidases (Lairson et al., 2008), such as in the secretory 

pathway of eukaryotic cells that shapes the range of glycans on secreted proteins (Arigoni-

Affolter et al., 2019).
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Despite the important role that glycans inhabit in biology, the complexities in their 

composition and biosynthesis have slowed progress in the experimental and computational 

study of glycans. Computational approaches to analyzing glycans are mostly limited to 

counting the occurrence of curated sequence motifs and using this information as input for 

models predicting glycan properties (Bao et al., 2019; Coff et al., 2020). Recently, deep 

learning has been applied to the analysis of glycan sequences, creating glycan language 

models based on recurrent neural networks (Bojar et al., 2020a, 2020b, 2021). The glycan 

language model SweetTalk views glycans as a sequence of “glycowords” (subsequences that 

describe structural contexts of a glycan) and was used to predict the taxonomic class of 

glycans as well as their properties, such as immunogenicity or contribution to pathogenicity. 

While the usage of glycowords and additional data augmentation strategies in SweetTalk 

partly accounted for the nonlinear nature of glycan sequences, recurrent neural networks 

cannot fully capture the branched or tree-like architecture that is seen in most glycans. This 

implies that alternative model architectures that can fully integrate this nonlinearity should 

be able to extract more information from glycan sequences, thereby increasing prediction 

performance.

Advances in deep learning have produced a number of neural network architectures that are 

capable of analyzing graph- or tree-like structures (Henaff et al., 2015; Wu et al., 2021). 

These graph neural networks capitalize on the information contained in nodes and their 

connecting edges, as well as the contextual information contained in graph neighborhoods 

and modules, to predict properties of both individual nodes and entire graphs. One of 

the most useful methods in graph neural networks is message passing by convolutions, a 

procedure in which a node is described by a combination of the features of surrounding 

nodes (Henaff et al., 2015; Li and Cheng, 2020). Graph convolutional neural networks 

(GCNNs) have been used to great effect for studying social networks (Li et al., 2020) 

or epidemic forecasting (Kapoor et al., 2020) and have also been applied to proteins 

(Gligorijevic et al., 2019) and small-molecule drugs (Nguyen et al., 2020; Torng and 

Altman, 2019). In the latter, molecules are seen as molecular graphs, with atoms as nodes 

and bonds as edges. GCNNs also outperform widely used fingerprint-based methods in 

predicting small-molecule properties such as toxicity or solubility (Liu et al., 2019).

SweetNet is a deep learning method that we developed to take advantage of the 

flexible graph representation structure of GCNNs. SweetNet treats glycan sequences 

akin to molecular graphs and thereby accounts for their tree-like structures. Viewing 

monosaccharides and linkages as nodes and their connections as edges allows for the 

application of GCNNs to glycan sequences without any further manipulations or data 

augmentation. On a range of reported prediction tasks, we demonstrate that SweetNet yields 

considerably better prediction results than reported do glycan prediction models. We further 

demonstrate that the latent representations learned by SweetNet are more informative than 

those derived using other modeling methods. This improved performance is due to the 

representation of glycans as molecular graphs, a conclusion we also confirm by analyzing 

structural graph properties of glycans.

We demonstrate the value of SweetNet and the resulting glycan representations in two 

applications. First, we show that glycans contain information about phenotypic and 
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environmental properties of their organisms that can be extracted via glycan representations. 

We use this phenomenon to identify phenotypic clusters in the plant order Fabales 

(dicotyledonous flowering plants that include the legumes), such as having pronounced 

seeds or fern-like leaves, that are clearly distinguished by their glycans. We further 

extend this to the kingdom Animalia, identifying clusters of animals inhabiting similar 

environmental niches (such as amphibians and fish). Our analyses highlight glycomic 

similarities in related groups and could enable the classification of phenotypically or 

environmentally similar organisms.

Finally, we show that SweetNet can be used to identify glycan receptors for viruses 

by presenting an additional glycan-focused prediction task: the prediction of the binding 

intensities between viral proteins and glycans. For this, we train a SweetNet-based model 

on a glycan array dataset probing interactions of influenza virus strains and glycans. We 

demonstrate that this model can then quantitatively predict the glycan-binding behavior of 

different influenza virus strains. Our model recapitulates known binding specificities of 

influenza virus, and we show that these predictions can be extended to other viruses, such as 

coronaviruses or rotaviruses. We add to these observations by identifying enriched binding 

motifs, such as complex motifs from human milk oligosaccharides for rotaviruses, indicating 

that our model can be used to rapidly identify glycan receptors for viruses. SweetNet thus 

represents a state of the art in glycan-focused machine learning and will enable future 

investigations into the important roles of glycans.

RESULTS

Developing a GCNN for glycans

The nonlinear branching structure of glycans, together with their diversity, has hitherto 

presented an obstacle to the development of machine learning models for glycobiology that 

fully capitalized on the rich information in glycan sequences. The use of a glycoword-based 

language model overcame some of these limitations, allowing for the prediction of glycan 

immunogenicity, pathogenicity, or taxonomic class (Bojar et al., 2020a, 2020b, 2021); data 

augmentation inspired by graph isomorphism further improved predictions (Bojar et al., 

2021). This led us to consider whether the structure of glycans as graphs or trees could be 

better captured by neural network architectures specifically developed for modeling graphs. 

Therefore, we developed SweetNet, a GCNN that uses the connectivities and identities 

of monosaccharides and linkages in a glycan as input to predict glycan properties. While 

linkages might be intuitively interpreted as edges in a graph, we chose to characterize them 

as nodes. This decision was motivated by the prominence of short glycan motifs, such as the 

Tn antigen (“GalNAc(α1-”), which otherwise would have been precluded from our analyses.

To find an appropriate model architecture for a GCNN trained on glycan sequences, we 

chose the task of predicting which species a given glycan sequence came from as the task for 

building SweetNet. This multiclass classification, with 581 unique classes, represented one 

of the most challenging tasks for language models trained on glycan sequences, especially 

regarding rare classes, and thus offered a suitable challenge for identifying a better model 

architecture. We constructed neural networks with several different graph convolutional 

operators, including the simple graph convolutional operator (SGConv) (Wu et al., 2019), 
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the GraphSAGE operator (Hamilton et al., 2018), and k-dimensional graph neural network 

operators (GraphConv) (Morris et al., 2020). All of the graph convolutional operators we 

considered outperformed language-model-based classifiers, which supported our hypothesis 

that graph-based models would be more appropriate for branching glycans. Among these, 

models based on GraphConv operators produced the best models (Table 1).

We then sought to further enhance model performance by including a boom layer, which 

has been shown to enhance model performance in other contexts by escaping local minima 

(Merity, 2019), and observed a further increase in classification performance (Table 1). 

Hypothesizing that unsupervised pretraining on a larger set of glycans that included glycans 

without known species labels would further improve performance, we constructed a context 

prediction task (Hu et al., 2020) in which the model is used to predict the identity of a 

randomly chosen hidden node, given the connectivities and the other nodes in a glycan. We 

reasoned that this procedure should allow the model to learn more regularities and context 

effects from a larger set of diverse glycan sequences. While we were able to successfully 

pre-train our model, fine-tuning on the species prediction task did not further improve 

performance, suggesting that this context-dependent information was already incorporated 

during normal training. Overall, using SweetNet (Figure 1), we achieved an increase of 

nearly 8% in absolute accuracy for the challenging task of predicting the species of a glycan 

relative to the previous best method (SweetTalk).

SweetNet outperforms alternative model architectures on all tasks

Next, we set out to demonstrate that a model architecture focusing on the inherent 

nature of glycans as molecular graphs is both robust and generalizable. For this, we 

tested SweetNet on all other prediction tasks that have been previously attempted with 

glycan-focused machine learning models, predicting higher taxonomic groups of a glycan, 

glycan immunogenicity, and association with pathogenicity. We found that SweetNet models 

outperformed all other methods for all prediction tasks (Table 2; Table S1). Compared to 

previous benchmarks (SweetTalk-based models), SweetNet-based models achieved absolute 

accuracy increases between 1% and 11% (average: 5.16%), depending on the prediction 

task. This made us confident that GCNNs are a more potent architecture for modeling 

glycan characteristics and functions.

Analogous to the species prediction task, we observed that context pre-training did not 

improve predictive performance, but including a boom layer did increase model performance 

in nearly all cases. Further, even with a boom layer, the performance of GraphSAGE 

operators was inferior to that of the GraphConv operator. We also observed that, when 

applied to the task of predicting the taxonomy of a glycan, SweetNet could be trained 

approximately 30% faster than the equivalent SweetTalk models. SweetNet was also 

considerably more data efficient than SweetTalk, surpassing SweetTalk performance even 

if only a third of the full dataset was used for training (Figure S1). These results confirmed 

our hypothesis that graph-based models are more efficient in extracting information from 

glycan sequences than alternative neural network architectures. Further, these data-efficient 

algorithms could allow prediction even given the relative scarcity of available glycan 

sequences, caused by the experimental difficulties of working with them.
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As we anticipated, challenging prediction tasks with many classes and fewer datapoints 

per class, such as the prediction of species or genus, saw greater performance gains when 

using SweetNet than balanced, binary classifications. This is likely the result of a better 

match between the graph-like nature of glycans and the GCNN architecture, allowing the 

model to learn more associations and statistical dependencies to use for prediction. Further, 

the performance of SweetTalk-based models decreased with increased branching, while the 

performance of SweetNet-based models improved with increased branching (Figure S2), 

indicating that GCNNs such as SweetNet use structural properties unique to graphs, such 

as the number of branches or various connectivity statistics as features in the classification 

model.

We next generated a set of graph properties of the glycans in our dataset by calculating 

various connectivity statistics (Table S2; see STAR Methods for details) and trained a 

random forest classifier to predict the taxonomic kingdom of a glycan to evaluate whether 

models could extract information from purely structural features of glycans without their 

sequence. Our trained random forest model achieved a predictive accuracy of 61.4% on a 

separate test set—worse than the random forest model trained on sequence features (Table 

2), yet substantially better than random predictions. This confirmed that graph properties 

by themselves are informative for predicting glycan properties, albeit possibly less so than 

sequence features.

Analyzing the feature importance of this model, we observed that the most important 

graph feature for a kingdom-level classification was the number of node types in a 

glycan (reflecting overall glycan sequence diversity; Figures S3A and S3B), which we 

also observed to be important for predicting the contribution of glycans to pathogenicity 

(Figure S3C), the immunogenicity of a glycan (Figure S3D), and the type of glycan (Figure 

S3E). To our surprise, we found that a smaller number of node types (meaning greater 

homogeneity in the glycan) predicted higher immunogenicity (Figures S3F and S3G); this 

result could be due to the presence of multiple binding sites for antibodies and the innate 

immune system. Other important features for predicting glycan immunogenicity and class, 

for instance, included aspects of the harmonic centrality, which is related to a graph’s 

compactness (Figures S3C–S3E).

Glycan representations learned by SweetNet are more informative compared to alternative 
models

An additional advantage of deep learning models is that during training, representations of 

glycans are learned that can then be used for visualization and downstream prediction tasks. 

Reasoning that a model with superior prediction performance should have also learned more 

informative representations, we extracted glycan representations for some of the SweetNet 

models we trained. For this, we used glycan sequences as input for the trained model 

and extracted the results from the graph convolutional layers, directly prior to the fully 

connected part of the network. These representations can be visualized in two dimensions to 

identify clusters in the data. We demonstrated this with the example of the SweetNet-based 

model predicting glycan immunogenicity that resolved clear clusters of N- and O-linked 

glycans and glycolipids, respectively (Figure 2A). Further, the relative proximity of O-linked 
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glycans and glycolipids to immunogenic bacterial glycans is consistent with phenomena 

of molecular mimicry (Bojar et al., 2021; Carlin et al., 2009), indicating that SweetNet 

incorporates biologically meaningful information.

As we observed the greatest performance increase of SweetNet relative to SweetTalk 

models in the taxonomic task of genus prediction, we compared glycan representations 

from SweetNet and SweetTalk models trained on this task (Bojar et al., 2021) (Figures 

2B and 2C). Coloring glycans by kingdom allowed us to observe that SweetNet-based 

representations improved separation of glycans into taxonomic kingdoms, with clearer 

neighborhood separations; this can also be seen in the higher adjusted Rand index with 

K-means clustering kingdoms from SweetNet-based representations (0.203) than from 

SweetTalk-based representations (0.146).

To further quantify the information in these representations, we trained logistic regression 

models to predict the taxonomic kingdom of a glycan from its representation gained 

by genus-level SweetTalk or SweetNet, respectively. The SweetNet representations again 

demonstrated superior performance (Figure 2D; ~88% accuracy) compared to the model 

trained on SweetTalk representations (~76% accuracy), indicating the value of SweetNet 

representations for downstream analyses. The accuracy achieved by using representations 

from the genus-level SweetNet model even reached the level obtained by the kingdom-

level SweetTalk model (Table 1), suggesting that cross-training for hierarchically related 

tasks could provide additional predictive power (Sarawagi et al., 2003). Additionally, 

representations learned by SweetNet recovered clusters of glycans with certain graph 

properties, such as a high number of node types or high average eigenvalues (Figure S4).

Extracting phenotypic and environmental properties from glycan representations

Considering the rich glycan representations learned by SweetNet, we set out to improve on 

reported glycan-based phylogenies (Bojar et al., 2020a). Conveying phenotypic plasticity 

and covering every cellular surface, glycans are a major driver of evolution (Lauc et 

al., 2014) and mediate organismal properties more directly than DNA. Thus, a glycan-

based phylogeny could offer insights into evolutionary histories and phenotypic similarity 

between species, complementary to that seen through DNA analysis. We constructed a 

proof-of-principle dendrogram of all species in the order Fabales with known glycans 

by averaging their glycan representations, constructing a cosine distance matrix, and 

performing hierarchical clustering. This revealed a clear clustering of taxonomic groups, 

with close association of species in the same genera and families that enabled us to establish 

a glycan-based phylogeny (Figure 3A).

In the dendrogram, we found clusters of plant species that share environmental and/or 

phenotypic similarities. This includes a cluster of plants occurring in tropical environments 

(South America and Africa); a cluster containing Fabaceae species that produce pronounced, 

mostly edible, seeds such as Arachis hypogaea (peanut) or Glycine max (soybean); and 

smaller clusters characterized by plants with similar leaf or flower phenotypes (Figure 

3A). These results indicate that glycans carry considerable information about phenotypic 

and environmental characteristics of species and can be used to group species with shared 
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properties and establish the notion of glycan-based relatedness, including the known effects 

of glycan-mediated phenotypic plasticity (Lauc et al., 2014).

We applied this method to all available species of the kingdom Animalia (Figure 3B) 

to draw a glycan-based tree of (animal) life. While differences in coverage prevented 

us from including all known species and distorted some relationships, we still were 

encouraged to see meaningful patterns emerge from this glycan-based phylogeny. We 

observed adjacent clusters for amphibians and fish, potentially reflecting their overlapping 

environmental range or their evolutionary history. We also find distinct clusters for flying 

animals (birds and bats), invertebrates, and mammals. It is interesting that Homo sapiens 
was absent from the cluster that included primates and instead was clustered with other 

well-studied model organisms, such as pigs, cows, mice, rats, rabbits, and dogs. In these 

organisms, N- and O-linked glycans, as well as glycolipids and free oligosaccharides, 

have been extensively analyzed, compared to perhaps more cursory or restricted analyses 

in more exotic organisms. This indicates that systematic factors, such as the degree of 

characterization, should be considered when interpreting these clustering results. The most 

closely associated species with humans in the model organism cluster, the pig Sus scrofa, 

is a prime candidate for xenotransplantation and is a major source of tissue for heart valve 

transplants (Burlak et al., 2013; Manji et al., 2015), supporting the close clustering of these 

two species we find here.

Using SweetNet to explain virus-glycan binding

Most viruses bind to glycan receptors before, in some cases, transitioning to proteinaceous 

receptors during cell entry (Koehler et al., 2020; Thompson et al., 2019). The specificity and 

affinity of these glycan-binding events are essential for both virulence and host specificity, 

such as for influenza virus strains, which usually prefer either α2–3- or α2–6-linked sialic 

acids in their glycan receptors (Viswanathan et al., 2010). We constructed a model that, 

given a viral protein sequence and a glycan, could predict their interaction in the hopes of 

better understanding viral cell entry, developing methods to monitor emerging viral strains, 

and suggesting glycan-based antivirals.

Our model comprised a recurrent neural network analyzing the protein sequence, a module 

analyzing the glycan sequence (see below), and a fully connected part concatenating the 

results of both prior modules to predict the binding intensity of a protein-glycan pair. Using 

influenza virus and its glycan-binding protein hemagglutinin as a test case, we gathered 

126,894 measured interactions between hemagglutinin variants with available sequences 

and glycans from the glycan array database of the Consortium for Functional Glycomics 

(Gao et al., 2019) (Table S3). Next, we determined which module for analyzing glycan 

sequences led to the highest prediction performance. For this, we tested three different 

modules: (1) a fully connected neural network that used the counts of mono-, di-, and 

trisaccharides of glycan sequences as input; (2) a SweetTalk-based glycan language model; 

and (3) a SweetNet-based GCNN that we introduced here. The SweetNet-based approach 

again yielded an improved performance over the currently available sequence motif-based 

and language-model-based approaches (Table 3; Table S1).
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We then went on to ensure that this mean performance implied that most predictions would 

fall within this level of prediction error. For this, we collected all residuals between observed 

and predicted Z scores (Figure 4A), indeed observing that most residuals fall within the 

margin described by the mean prediction error. Further, the performance of our model 

remained stable for subgroups, such as virus subtypes or host organisms (Figure 4B).

Next, we analyzed the representations learned by the protein-analyzing long short-term 

memory (LSTM) module in our model, observing clustering according to the hemagglutinin 

subtype (Figure 4C). Additionally, while we did observe the separation of hemagglutinin 

from influenza A and B, the split between mammalian and avian hemagglutinin was 

less obvious, even though the classical view is that they differ considerably in their 

glycan-binding specificity. Supporting our findings, systematic binding studies have indeed 

identified several avian influenza hemagglutinin subtypes, such as H4 and H9, that exhibit 

binding properties similar to mammalian influenza hemagglutinin (Shelton et al., 2011).

We then identified glycan motifs that are important for the binding of hemagglutinin. Most 

approaches apply some form of subtree frequency mining to the glycan array data (Coff 

et al., 2020), identifying preferentially bound glycan fragments (Cholleti et al., 2012). 

However, we wanted to capitalize on the predictive nature of our trained model and used our 

19,775 available glycan sequences—which are, for the most part, not covered by existing 

glycan arrays—as inputs to the trained model for each host species. Then, we analyzed the 

resulting binding predictions to ascertain which glycan motifs were most predictive for high-

affinity binding across species (Figure 4D; see STAR Methods for further details). Assaying 

all 23,170 observed glycan motifs with lengths 1, 2, or 3 confirmed results achieved with 

standard methods, with Neu5Ac as the most important motif (median rank 1) and several 

known binding motifs such as Neu5Ac(α2–3)Gal (rank 2) or Neu5Ac(α2–6)Gal (rank 5; see 

Table S4 for all motifs). Published studies also suggest that sulfated glycan motifs may serve 

as binding motifs for influenza hemagglutinin (Ichimiya et al., 2014), which is consistent 

with our results (significant motifs with median ranks between 52 and 198; see Table S4).

We observed that the SweetNet-based model had learned relevant chemical information 

to predict hemagglutinin-glycan interactions by focusing on negatively charged motifs 

(containing carboxylates, sulfates, or phosphates) and sialic acids and structurally 

related monosaccharides in particular (Neu5Ac, Neu5Gc, Kdn, Kdo). This is especially 

encouraging, as monosaccharides such as Kdo (3-Deoxy-d-manno-oct-2-ulosonic acid), a 

bacterial analog of Kdn, were not present in the dataset used to train the model. This 

indicates that the model learns general features of glycans that are predictive of properties 

of “novel” glycan motifs. Although Kdo has, to our knowledge, not yet been proposed 

to bind influenza hemagglutinin, SweetNet suggests that it could be a target for influenza 

hemagglutinin.

We next wanted to test the generalizability of SweetNet for predicting other viral targets. 

For this, we trained a SweetNet model on a dataset combining the influenza virus glycan 

arrays with data from 83 additional glycan arrays that had been probed with a wide range 

of viruses (validation mean square error [MSE]: 0.784; Table S5). We then predicted the 

most important binding motifs for coronaviruses with this model and identified sialic acid 
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motifs as well as sulfated glycan motifs (Table S6). These results are supported by reported 

binding motifs (Milewska et al., 2014) that naturally occur in glycosaminoglycans such as 

heparan sulfate. Next, we used the model to identify glycans with high predicted binding to 

rotaviruses, a common neonatal virus. Among the top 10 predicted glycans, we observed, 

next to expected sialic acid motifs, core 2 O-glycans (Figure 4E) that were indicated to bind 

rotaviruses (Pang et al., 2018). We additionally identified a glycan containing the Gal(β1–

3)GlcNAc(β1–3)Gal(β1–4)Glc motif (Figure 4E; Table S7) that was previously described 

to be a potential decoy receptor from human milk that is bound by rotaviruses (Yu et al., 

2014). Crucially, this glycan was not part of our training dataset, and the authors of this 

previous study had to use a specialized array made from human milk oligosaccharides to 

discover this binding motif. This demonstrates that SweetNet-based models can make useful 

predictions for unobserved glycans and positions our virus-glycan binding model to rapidly 

make predictions of bound glycan receptors for emerging virus variants.

DISCUSSION

We tend to think of nucleic acids as the most important biological molecules, because 

they store the genetic code and facilitate protein synthesis, or proteins themselves because 

of their roles in mediating cellular processes and functions and serving in structural 

roles. However, cells are supported by a vast network of interacting biological molecules 

that also includes lipids and complex carbohydrates that serve in essential functional, 

metabolic, or structural capacities. Glycans represent a unique class of biological molecules 

in that they have nonlinear, branching structures that allow them to carry out a wide 

range of functions, encompassing protein folding and degradation; stress response; cell-

cell interactions; cell migration patterns; self-/non-self-discrimination; and microbiome 

development, composition, and health (Varki, 2017).

Not surprisingly, glycans differ between species and change in response to environmental 

perturbations, and so they have the potential to allow us to understand genetic and 

environmental interactions (Lauc et al., 2014; Springer and Gagneux, 2016). Ideally, one 

would like to use glycan sequences to gain insights into phenotypic and environmental 

properties and to predict processes mediated by glycans such as viral infection. However, 

such applications are still rare, which may be due to the complex structure of glycans and 

the importance of these structures in determining glycan function.

GCNNs are a machine learning method that performs convolutional methods on the input 

graph itself (Henaff et al., 2015; Wu et al., 2021) with structure and features unchanged, 

rather than creating a lower-dimensional representation. Since the graph retains its original 

form, the relational inductive bias that is possible is much stronger. Given that glycans can 

be represented as complex graphs, we believed that GCNNs represented an ideal tool for 

applications involving glycan-based classification.

SweetNet is a GCNN implementation that fully leverages the tree-like structure of branched 

glycans. SweetNet-based models of glycans can be trained faster and are considerably 

more data efficient than models using other neural network architectures, and SweetNet 

outperforms these models in all of the tasks we analyzed. The data efficiency of SweetNet 
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is an important metric because generating glycan data is not yet as easy or high-throughput 

as either DNA sequencing or proteomics, meaning this method can take advantage of the 

relatively sparse existing data available now, and its performance will improve as more data 

become available. To fully realize the potential of glycan-focused machine learning, it will 

be particularly crucial to gather more data from non-standard organisms as well as glycan 

classes beyond commonly investigated N-linked glycans.

In using glycan profiles from a wide range of species, we demonstrated that SweetNet 

can find taxonomic clusters that appear to group species based on both their evolutionary 

relationships and the ecological niche they inhabit, a finding consistent with the known 

genetic and environmental effects on glycan synthesis (Springer and Gagneux, 2016). 

Analyzed in this way, glycans could provide another window into similarities between 

species and their environments and may shed light on the role of glycans in phenotypic 

plasticity and evolution (Lauc et al., 2014).

Once more data become available, the GLYcosylation Metabolic Model of Enzyme 

Reactions (GLYMMER) software suite, used for connecting cellular glycomes with 

enzymatic capabilities (Bennun et al., 2013), could complement our analyses in the future. 

Mechanistic approaches such as GLYMMER elucidate biosynthetic pathways and can 

deepen our understanding of these cellular processes. Further, predicted glycan repertoires 

could also be used to cluster taxonomic groups. The value of our scalable approach with 

SweetNet lies in its capacity to rapidly analyze available glycan information from more 

than a thousand species without having to gather kinetic or specificity parameters for the 

involved enzymes. As these parameters become known for the species involved in this study, 

we envision that approaches such as GLYMMER can be used to extract more mechanistic 

insights from our analyses.

By choosing to consider both monosaccharides and linkages as nodes in our glycan graphs, 

we avoided a limitation of GCNNs that only glycans with a minimum length of at least two 

monosaccharides (disaccharides or larger) could be analyzed. Thus, SweetNet-based models 

can analyze important glycan structures such as the Tn antigen (“GalNAc(α1-”), which 

were inaccessible with previous language-model-based approaches, extending the potential 

applications for glycan-focused machine learning. Additionally, for applications involving 

these short glycans, the respective node representation learned by SweetNet could be used to 

extract information.

Ambiguities in nomenclature have spawned a plethora of different formats for describing 

glycans, yet most formats are either not human readable or insufficiently convey the 

branched structure of glycans. Depicting glycans as graphs circumvents these difficulties 

and offers the most promising nomenclature for predictive models in glycobiology. It 

also readily facilitates glycoengineering efforts (Kightlinger et al., 2020) by adding or 

removing nodes and the corresponding edges to a glycan graph and by querying trained 

models for the predicted properties of the proposed glycans. By using experimentally 

observed structure-activity relationships, such as the influence of N-glycans on antibody 

functionality and stability (Wada et al., 2019), models could be trained to predict glycans 

with improved properties, which could further be refined by removing undesired variants 
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using the immunogenicity prediction model described here. Promising glycans could then be 

prioritized as design targets for antivirals or other purposes.

Further, existing analysis modalities of glycan substructures or subsequences (Bao et al., 

2019) could readily be applied to the subset of glycans with high prediction scores to 

rationalize model predictions. Our trained models predicting virus-glycan binding could 

also be used to obtain relevant glycan-binding motifs to design glycan-based antivirals and 

additionally assess the potential of designed antiviral candidates by predicting their binding. 

As this represents only one of the areas of application for our platform, we envision a place 

in the design-build-test cycles of glycoengineering efforts for our SweetNet-based models.

Glycans have hitherto been neglected in most biological phenomena, at least in part because 

of the difficulties to work with and analyze glycans. The increasing number of applications 

in which glycan-focused machine learning has been shown to be feasible bodes well for 

finally lifting this analysis bottleneck and incorporating glycans into common analysis 

workflows. This is particularly emphasized by the development of model architectures 

and analysis platforms that are more data efficient, broadening the range of possible 

applications. Here, we advance both aspects, contributing applications for glycan-focused 

machine learning with our virus-glycan binding predictions and data-efficient models with 

our GCNN, SweetNet, that can already achieve state-of-the-art performance with small 

datasets. Our workflows are robust as well as rapid, and we envision the application of 

SweetNet-based models to many glycan-focused classification tasks.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Daniel Bojar (daniel.bojar@gu.se)

Materials availability—This study did not generate new unique reagents.

Data and code availability—Data used for all analyses can be found in the 

supplementary tables. All code and trained models can be found at https://github.com/

BojarLab/SweetNet

METHOD DETAILS

Data processing—For comparing SweetNet to previously reported models, the data 

used in this study were largely from previous work (Bojar et al., 2021) and consisted of 

glycan sequences with their associated labels, such as taxonomic class, immunogenicity, or 

pathogenicity. For the model predicting viral glycan binding, we additionally obtained data 

from 587 glycan array screens from the Consortium for Functional Glycomics that measured 

the glycan binding behavior of hemagglutinin from various strains of influenza virus. For 

each array, we transformed the data to Z-scores. All data can be found in Table S3. For our 

expanded dataset, we also included Z score-transformed data from 83 arrays testing various 

viruses (Table S5).
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For traditional machine learning models, we generated count variables that detailed the 

frequency of observed mono-, di-, and trisaccharide motifs in glycans and used these as 

input features. For glycan-based language models, we followed the data processing detailed 

previously (Bojar et al., 2021). Briefly, we extracted “glycowords” (trisaccharides in the 

IUPAC condensed bracket notation) from isomorphic variants of the bracket notation of 

a glycan and used these as input for a bidirectional recurrent neural network. For graph 

convolutional neural networks, we converted glycans from the bracket notation to graphs by 

generating a node list, in which every monosaccharide or linkage constituted a node, and a 

list of edge indices that detailed the graph connectivity.

For the model predicting viral glycan-binding, we selected a hemagglutinin core sequence 

that incorporated relevant binding loops (amino acid position 50 to 300) when the full 

sequence was available, to facilitate comparison to screens in which only partial sequences 

were available. Then, we label-encoded single amino acids in these sequences and used them 

as input for a recurrent neural network. This information was then combined with analyses 

of the corresponding glycan sequences by either 1) motif counting for a fully connected 

neural network, 2) a language model based on a recurrent neural network, or 3) a graph 

convolutional neural network.

Model training—All models were trained with PyTorch (Paszke et al., 2019) and PyTorch 

Geometric (Fey and Lenssen, 2019) on a single NVIDIA® Tesla® K80 GPU and the 

architecture as well as hyperparameters were optimized by minimizing the respective loss 

function via cross-validation of the training set. For all model applications, we used a 

random split into 80% training and 20% test data. As in previous work (Bojar et al., 2021), 

we used a stratified split for the taxonomic classifiers to ensure that all classes are split 

according to this ratio and also only consider classes with at least five known glycans. For 

the language models, all glycans were brought to the same length by padding. Language 

models were initialized using Xavier initialization (Glorot and Bengio, 2010) and GCNNs 

were initialized with a sparse initialization using a sparsity of 10%.

The final SweetNet model consisted of a 128-dimensional node representation layer 

followed by three iterations of graph convolutional layers, leaky ReLUs, Top-K pooling 

layers, and both global mean and global maximum pooling operations. The results from 

these three iterations were added and passed to a set of three fully connected layers 

interspersed with batch normalization layers, dropout layers, and leaky ReLUs as activation 

functions. For the final layer, we used a multi-sample dropout scheme (Inoue, 2019).

All models used a batch size of 32 for training and testing. The ADAM optimizer was used 

in all cases with a weight decay value of 0.001, together with a starting learning rate of 

0.0005 that was decayed according to a cosine function over 80 epochs. Training proceeded 

for 100 epochs and was stopped early if the loss function did not decrease for at least 20 

epochs. Depending on the application, we used binary cross-entropy, cross-entropy, or mean 

squared error loss functions.

Assessing the predictive value of structural graph features in glycans—We 

extracted 42 different graph features from each glycan to assess the predictive value of the 
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graph representation from a structural point of view (Table S2). These features comprised 

the number of nodes, the number of different node types, the diameter of each graph (i.e., 

the maximum shortest path), its branching number (i.e., the number of nodes with 3 or 

more neighbors), the number of leaves (i.e., number of nodes with only one neighbor), 

and statistics on different centrality measures. Node and edge centrality measures assign 

a value to each node or edge in a graph to measure their respective importance. To 

define the same number of features for each graph with varying numbers of nodes, we 

always extracted the maximum value, the minimum value, the mean, and the variance 

across all nodes or edges. All considered centralities are implemented in the Python 

package NetworkX 2.5 (Hagberg et al., 2008). Specifically, we included degree centrality, 

betweenness centrality, flow centrality for nodes and edges, eigen centrality, closeness 

centrality, harmonic centrality, second order centrality, and load centrality. Usually, the 

degree (i.e., the number of neighbors a node has) plays a major role when comparing 

different graphs. As it also measures different aspects of branching, we included additional 

related features in our analysis: the degree assortativity, the number of nodes with at least 

four neighbors, and the maximum and mean number of leaves a node is connected to, which 

describes branching at potential binding sites. Furthermore, we added the maximum size of 

a k-core (comparing different values of k) and a corona to our set of features. These evaluate 

whether highly connected nodes tend to clique together. The most noteworthy features are 

the harmonic, flow, and second order centralities, which identify nodes as central that are 

close to most other nodes in the graph and are visited consistently by random walkers. 

Intuitively, our derived features are thus related to how compactly a graph is organized.

Identifying glycan motifs predictive for hemagglutinin-binding—All glycans 

in Table S8 were used as input for the trained SweetNet-based model predicting 

hemagglutinin-glycan binding. This was performed separately for hemagglutinin sequences 

from viruses of all host species (human, pig, dog, horse, bat, seal, duck, chicken, turkey, 

shorebird, gull). We then extracted all 23,170 glycan motifs of lengths 1, 2, and 3 from 

the glycan sequences that were observed in our dataset, as reported previously (Bojar et 

al., 2021). For each species, we then defined “predicted binding” as a predicted Z-score 

above 1.645, as suggested by related work on glycan array data (Cholleti et al., 2012). For 

each glycan motif, we performed a one-tailed Welch’s t test to ascertain whether glycans 

containing this motif were more prevalent among glycans predicted to bind. The resulting 

p values were subsequently corrected for multiple testing by a Holm-Sidák correction. To 

gauge the overall relevance of the significant glycan motifs, we then calculated the median 

rank of each significant motif across all host species.

QUANTIFICATION AND STATISTICAL ANALYSIS

For statistical analysis, this study used Welch’s t tests with a Holm-Šidák correction for 

multiple testing correction. All experimental details can be found in the STAR Methods 

section and all statistical details of experiments can be found in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Graph convolutional neural networks are suited for analyzing glycans

• Learned glycan representations cluster species according to their similarity

• Glycan-focused machine learning can identify viral receptors
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Figure 1. Schematic representation of the GCNN SweetNet for analyzing glycans
Glycans are processed into a node list containing all occurring monosaccharides and 

linkages as well as a list of edge indices detailing the graph connectivity. This information 

is used as input for SweetNet by generating node features via a representation layer and 

then feeding the input through three graph convolutional layers. Subsequently, three fully 

connected layers, including a boom layer, use this information to generate a prediction.
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Figure 2. Comparison of glycan representations obtained by machine learning
(A) Immunogenic glycan representations learned by SweetNet. Glycan representations for 

all glycans with immunogenic information were extracted from a trained SweetNet-based 

model and are shown via t-distributed stochastic neighbor embedding (t-SNE; van der 

Maaten and Hinton, 2008), colored by their immunogenicity label, and annotated by glycan 

classes.

(B and C) Taxonomic glycan representations learned by SweetTalk and SweetNet. Glycan 

representations for all glycans with taxonomic information in our dataset were generated 

by SweetTalk (B) and SweetNet (C) trained on predicting the taxonomic genus a given 

glycan stemmed from. These representations are shown via t-SNE and are colored by their 

taxonomic kingdom.
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(D) Comparing information value of representations obtained by SweetTalk and SweetNet. 

Logistic regression models were trained on the representations obtained from the genus-level 

SweetTalk and SweetNet models in order to predict the taxonomic kingdom of a glycan. 

The achieved accuracy from representations from five training runs is shown here and was 

compared between models by a Welch’s t test (n per group = 5).

See also Figures S3 and S4.
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Figure 3. Glycan-based phylogenetic trees
For all 30 species from the order Fabales with at least five glycans (A) or 93 species 

from the kingdom Animalia with at least two glycans in our dataset (B), we averaged 

their glycan representations from the species-level SweetNet model, constructed a cosine 

distance matrix among all species, and performed hierarchical clustering to obtain a 

dendrogram. The shown phylogenetic tree was drawn with the Interactive Tree of Life 

v5.5 software (Letunic and Bork, 2019). For (A), we colored species belonging to 

the taxonomic families Fabaceae and Polygalaceae/Quillajaceae. (A and B) We further 

annotated clusters enriched for certain groups of plants (A) or animals (B) that shared 

characteristics. The species Homo sapiens is depicted in bold. Images used for (A) 

stemmed from the public domain. Exceptions were from Creative Commons licenses 
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requiring attribution and included Astragalus sinicus (https://commons.wikimedia.org/

wiki/File:Chinese_milkvetch_Ziyunying.JPG), Glycyrrhiza uralensis (https://

commons.wikimedia.org/wiki/File:Glycyrrhiza_uralensis_IMG_1086.jpg), and Glycyrrhiza 
glabra (https://commons.wikimedia.org/wiki/File:Glycyrrhiza_glabra_Y13.jpg).
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Figure 4. Characterizing the SweetNet-based model predicting virus-glycan binding
(A) Distribution of residuals between predicted and observed Z scores. We calculated the 

difference between all observed and predicted Z scores of hemagglutinin-glycan binding 

interactions, shown here as a histogram.

(B) Analyzing model performance on subgroups in the data. We obtained the mean square 

error (MSE) of our trained model for subgroups such as virus subtype or host organism in 

our data.

(C) Hemagglutinin representations learned by the protein-analyzing module of the model. 

We obtained the representation learned by our protein-analysis module from the last state 

of our LSTM for all 339 unique protein sequences in our dataset. These representations 

are shown via t-SNE and colored/marked by their host organisms and virus subtype, 

respectively. Clusters of hemagglutinin subtypes are further annotated.

(D) Examples of glycan motifs relevant for the prediction of hemagglutinin-glycan binding 

by SweetNet-based models. Some of the glycan motifs that were significantly relevant for 

prediction are shown in the symbol nomenclature for glycans (SNFG), together with their 

median rank across host species.
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(E) Examples of glycans with high predicted binding to rotavirus.
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Table 1.

Selecting an architecture for a glycan-focused GCNN

Model Crossentropy loss Accuracy Matthew’s correlation coefficient

Random forest – 0.3025 0.2920

KNN – 0.3146 0.3015

SweetTalk 3.9550 0.3651 0.3496

SGConv 2.5741 0.4000 0.3882

SAGEConv 2.5183 0.4097 0.3989

GraphConv 2.5173 0.4192 0.4078

GraphConv boom
2.3756

a
0.4430

a
0.4326

a

GraphConv boom pretrain 2.5048 0.4278 0.4166

We trained several machine learning models (random forest, K-nearest neighbor), deep learning models such as the glycan-based language model 
SweetTalk, and GCNNs with different operators (SGConv, SAGEConv, GraphConv) for the prediction of which species a given glycan stemmed 
from. Mean values from five independent training runs (N = 5) for cross-entropy loss (except for random forest and KNN, which do not use 
this loss function), accuracy, and Matthew’s correlation coefficient on a separate test set are shown. The inclusion of a boom layer and context 
pretraining is indicated in the model column. See also Figures S1 and S2.

a
The superior value for each metric.
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Table 3.

Developing a model predicting viral glycan-binding behavior

Model Train MSE Test MSE

Fully connected 0.8508 0.8753

Language model (SweetTalk) 0.8253 0.8726

Graph model (SweetNet) 0.7455
a

0.7352
a

Models consisted of a recurrent neural network analyzing the protein sequences of viral hemagglutinin as well as either a fully connected 
neural network using the counts of mono-, di-, and trisaccharides as input (“Fully connected”); a SweetTalk-based glycan language model; or a 
SweetNet-based GCNN. All models were trained to predict Z score transformed glycan binding of hemagglutinin from various influenza virus 
strains. Average MSEs from five independent training runs (N = 5), from both the training and independent test set, are shown here.

a
The superior value for each metric.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

PyTorch Paszke et al., 2019 https://github.com/pytorch/pytorch

Scikit-learn Pedregosa et al., 2011 https://github.com/scikit-learn/scikit-learn

PyTorch Geometric Fey and Lenssen, 2019 https://github.com/rusty1s/pytorch_geometric

NetworkX Hagberg et al., 2008 https://networkx.org/

SweetTalk Bojar et al., 2021 https://github.com/midas-wyss/sweettalk

SweetNet This paper https://github.com/BojarLab/SweetNet
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