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Abstract

Variants in the NR5A1 gene encoding SF1 have been described in a diverse spectrum of disorders
of sex development (DSD). Recently, we reported the use of a targeted gene panel for DSD where
we identified 15 individuals with a variant in NR5A1, nine of which are novel. Here, we examine the
functional effect of these changes in relation to the patient phenotype. All novel variants tested
had reduced trans-activational activity, while several had altered protein level, localization, or con-
formation. In addition, we found evidence of new roles for SF1 protein domains including a region
within the ligand binding domain that appears to contribute to SF1 regulation of Miillerian devel-
opment. There was little correlation between the severity of the phenotype and the nature of the
NR5A1 variant. We report two familial cases of NR5A 1 deficiency with evidence of variable expres-
sivity; we also report on individuals with oligogenic inheritance. Finally, we found that the nature
of the NR5A1 variant does not inform patient outcomes (including pubertal androgenization and
malignancy risk). This study adds nine novel pathogenic NR5A1 variants to the pool of diagnos-
tic variants. It highlights a greater need for understanding the complexity of SF1 function and the

additional factors that contribute.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
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1 | INTRODUCTION

Steroidogenic Factor 1 (SF1), encoded by the gene NR5A1 (Ad4BP;
MIM# 184757), is a member of the orphan nuclear receptor
family of transcription factors and plays a central role in sex
development, steroidogenesis, and reproduction in both males and
females (reviewed in Ferraz-de-Souza, Lin, & Achermann, 2011; Lin &
Achermann, 2008). SF1 protein expression is observed in both the
developing ovaries and testes from the time of the bipotential gonad
and all through sex determination (Hanley et al., 1999). In the devel-
oping testis, SF1 is expressed by fetal Sertoli cells (Hanley et al.,
1999) where it upregulates the expression of two genes crucial for
male sex determination and differentiation, SOX9 and Anti Miillerian
Hormone (AMH) (De Santa Barbara et al., 1998a), through synergis-
tic interactions with SRY (Sekido & Lovell-Badge, 2008) and GATA4
(Shen, Moore, lkeda, Parker, & Ingraham, 1994), respectively. SF1 is
also expressed within the Leydig cells, where it controls various fac-
tors involved in steroidogenesis ultimately leading to male virilization
in utero and in the pre-pubertal gonad (Hoivik, Lewis, Aumo, & Bakke,
2010).

Pathogenic variants in the NR5A1 gene are thought to account
for 10%-15% of non-syndromic 46,XY disorders of sex development
(DSD) (EI-Khairi & Achermann, 2012). Given SF1 plays multiple roles
in both testicular development and steroidogenesis it is not surprising
that variants in NR5A1 have been associated with a diverse and ever
growing spectrum of 46,XY DSD phenotypes. These include gonadal
and testicular dysgenesis with or without Mullerian remnants (Lin
et al., 2007), ambiguous genitalia, mild and severe forms of hypospa-
dias (Allali et al., 2011; Koéhler et al., 2009), varying degrees of under-
virilization; such as micropenis (Wada, Okada, Hasegawa, & Ogata,
2005), cryptorchidism (Ferlin et al, 2015; Wada, Okada, Fukami,
Sasagawa, & Ogata, 2006), as well as anorchia (Philibert et al., 2007)
and male infertility (Ropke et al., 2013). These clinical phenotypes
often manifest in conjunction with normal adrenal function (Pedace
etal, 2014).

Most NR5A1 variants described are heterozygous and either de
novo or maternally inherited in a sex-limited manner, where the
mother may develop premature ovarian insufficiency or remain asymp-
tomatic (Eggers et al., 2015; Fabbri et al., 2014; Kohler et al., 2008).
To complicate matters, paternal inheritance of NR5A1 variants has also
been reported, where the father may be unaffected (Swartz et al. 2017;
Yagi et al., 2015) or may present with a milder phenotype and sponta-
neous fertility (Baetens et al., 2014; Ciaccio et al.,, 2012). The varying
degrees of expressivity and incomplete penetrance of NR5A1 variants,
even within a single pedigree, mean that genotype-phenotype correla-
tions are difficult to establish.

Upwards of 130 genetic variations in NR5A1 have been described
[HGMD], most of which cause a loss or reduction in function.

Missense variants are common and often dispersed throughout the

coding sequence, with no evident clustering. However, a substantial
number of frame-shift, nonsense, and in-frame deletions have been
described (Barbaro, Cools, Looijenga, Drop, & Wedell, 2011). Recently,
several splice site variants have also been reported in the literature
(Fabbri, Ribeiro de Andrade, Maciel-Guerra, Guerra-Junior, & de Mello,
2016; Hussain et al. 2016; Swartz et al. 2017).

We recently reported the use of a massively parallel sequencing
(MPS) targeted gene panel on a large cohort of DSD patients (Eggers
et al,, 2016). During the course of this study, we identified 15 individ-
uals with variants in the NR5A1 gene, including nine novel previously
unreported variants. Here, we have assessed the impact of these novel
variants in NR5A1 on the function of SF1.

2 | MATERIALS AND METHODS

2.1 | Study subjects and clinical evaluation

Patients were recruited by collaborating clinicians and EDTA bloods for
DNA extraction were collected after obtaining written informed con-
sent from the patient (as detailed in Eggers et al., 2016). Approval for
this study was obtained from the Human Ethics Committee of the Fac-
ulty of Medicine at the Royal Children's Hospital, Melbourne, Victoria,
Australia (HREC22073).

2.2 | Targeted gene capture, MPS, molecular, and
biochemical data analysis

Genomic analysis was carried out as previously described (Eggers
et al, 2016). DNA mutation numbering is based on GenBank ref-
erence DNA sequence NM_04959.4, with the A of the ATG initia-
tion codon designated +1. Annotations were initially created by our
custom pipeline (Eggers et al., 2016; Sadedin et al., 2015) and were
also processed through Mutalyser name checker (https://mutalyzer.nl)
(Wildeman, van Ophuizen, Dunnen den, & Taschner, 2008). The splice
site mutation annotations are provided in relation to NC_000009.12
as well as cDNA reference sequences. Predicted protein annotations
are based on NP_004950. The sequencing data for each patient variant
are available from the Sequencing Read Archive using reference num-
bers SRP092281 and project PRJINA350857. All biochemical profiling,

where available, was performed by our collaborators/pathology labs.

2.3 | Variant confirmation using Sanger sequencing

NR5A1 variants were visually inspected using Integrative Genome
Viewer and in cases where coverage was low or of reduced qual-
ity Sanger sequencing was used for variant confirmation. Primers for
each affected exon were manually designed (Supp. Table S1). PCR
was carried out using the Phusion High Fidelity DNA polymerase
(NEB, Ipswich, Massachusets, USA) or AmpliTag Gold DNA polymerase
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(ThermoFisher Scientific, Waltham, Massachusetts, USA). PCR clean-
up was performed with ExoSAP (ThermoFisher) according to the man-
ufacturer's instructions and BigDye v3.1 Terminators sequencing was
performed at the Australian Genomics Research Facility (AGRF).

2.4 | Mutant NR5A1 expression vectors

The mutant NR5A1 expression vectors (p.Gly35Asp, p.Arg84His,
p.His310Asp, p.Asp364Tyr, p.47_54del, p.Arg89Glyfs17*,
p.Leu209Cysfs87% p.[Pro210GIn;Tyr211*]) were created by site-
directed mutagenesis (QuickChange Il XL Site-directed Mutagenesis
Kit; Agilent Technologies Inc., Santa Clara, CA) according to the manu-
facturer's instructions (for primer sequences see Supp. Table S2) using
the mammalian expression vector pPCMV6-Entry-hNR5A1 (RC207577;
OriGene Technologies Inc., Rockville, MD) containing the human
cDNA ORF of NR5A1. Sanger sequencing using vector primers was

used to confirm the presence of the mutation in the vectors.

2.5 | TESCO luciferase assay

Cells were co-transfected with reporter construct, pGL4-mTesco
(75 ng/well), Renilla (pRL-TK, 20 ng/well) as a marker for trans-
fection efficiency and SF1 expression vectors (WT, p.Gly35Asp,
p.Arg84His, p.His310Asp, p.Asp364Tyr, p.47_54del, p.Arg89Glyfs17*,
p.Leu209Cysfs87% p.[Pro210GIn;Tyr211*]) either (i) alone or in con-
junction with (ii) SOX9 (50 ng/well) or (iii) SRY (50 ng/well). Negative
controls were included with mTesco and either SOX9 or SRY (with-
out SF1). Empty pcDNA was used to adjust total DNA amounts to
200 ng for each reaction. Cells were harvested 24 hr post-transfection
and luciferase activity was measured using (Dual-Luciferase Reporter
1000 Assay System Kit; Promega; Fitchburg, Wisconsin, USA) on an
Infinite M200 Pro plate reader (Tecan; Mannedorf, Zirich, Switzer-
land). Data represent the mean with standard error of four indepen-
dent experiments performed in duplicate transfections. The relative
fold change (compared with negative control—without SF1) was calcu-
lated for each technical replicate. These fold changes were then aver-
aged across biological replicates, and standard error calculated.

2.6 | Splice site variants and in silico protein
structure analysis

Human Splicing Finder Version 3.0 - UMD (https://www.umd.be/
HSF3/index.html, Desmet et al., 2009) and SpliceAid2 (https://193.
206.120.249/splicing_tissue.html, Piva, Giulietti, Burini, & Principato,
2012) were used to analyse the consequences of the two splice
site acceptor mutations (Parameters used can be found in Supp.
Table S3.). In silico protein structure was predicted for SF1 variants
using the online protein modeling I-TASSER server (https://zhanglab.
ccmb.med.umich.edu/I-TASSER/, Roy, Kucukural, & Zhang, 2010;
Zhang, 2008). The resultant crystal structures were visualized and
compared using the PyMOL Molecular Graphics System v1.7.6.6
Enhanced for Mac OS X (https://www.pymol.org). We also used HOPE
to analyze the functional and structural effects of the missense muta-
tions identified (https://www.cmbi.ru.nl/hope/, Venselaar, Beek Te,
Kuipers, Hekkelman, & Vriend, 2010).

2.7 | Protein immunofluorescence and confocal
analysis

COS-7 cells were seeded on eight-well chamber slides (Lab-Tek;
Brendale, QLD, AUS), and transfected with SF1 expression vectors
(WT, p.Gly35Asp, p.Arg84His, p.His310Asp, p.Asp364Tyr, p.47_54del,
p.Arg89Glyfs17* p.Leu209Cysfs87* p.[Pro210GIn;Tyr211*]) using
Lipofectamine 2000 (Invitrogen). Twenty-four hours after transfec-
tion, cells were washed once with PBS, then fixed, permeabilized with
1% Triton and blocked using 2%BSA in PBS. Cells were incubated
overnight with a polyclonal SF1 (E18) antibody (1:300; Santa Cruz
SC10976) in 1% BSA. Cytoskeleton was stained with actin (1:200;
5060 Sigma; St Louis, Missouri, USA). Cells were washed three
times with PBS then incubated with secondary antibodies Alexa 488
(1:1,000; green, Invitrogen; Waltham, Massachusetts, USA) and Alexa
594 (1:1500; Invitrogen, red) in 1% BSA/PBS. Nuclear counterstaining
was performed with DAPI (blue). Cells were imaged on a Zeiss LSM
780 confocal microscope. Images were taken at 10x and 40x magnifi-
cation. Two images at 10x were taken per well and CellProfiler (Jones
et al., 2008) was used to quantify number of expressing SF1. To quan-
tify protein expression, we assessed the number of cells co-expressing
SF1 and DAPI above a baseline threshold, compared with the total
number of cells (assessed by DAPI), in two different quadrants within

each transfection.

3 | RESULTS

3.1 | MPS identifies known and novel NR5A1 variants
in patients with 46,XY DSD

We have developed a MPS-targeted DSD gene panel that allowed us to
screen 64 diagnostic DSD genes in affected patients (see Eggers et al.,
2016). From a total of 279 patients with a 46,XY DSD sequenced using
this panel, 15 individuals were found to harbor a rare change within
NR5A1. All NR5A1 variants identified within our cohort were heterozy-
gous and only reported if they were rare (present in less than 0.01 of
the population in EXAC). Detailed clinical information was collected for
these 15 patients where available (Table 1, biochemical profiling val-
ues can be found in Supp. Table S4). The majority of the patients pre-
sented with some genital ambiguity at birth such as clitorohypertrophy,
micropenis, or hypospadias, while two had completely female external
genitalia (Patients 6 and 7; Table 1). At least seven of the individuals
were assigned as females at birth; Mdllerian structures were reported
in three individuals; one patient has a rudimentary uterus and streak
gonads, while a pair of siblings with normal AMH levels was found
to have retained Millerian remnants (Table 1). Nine of the individu-
als presented with hypospadias, some of which are also noted to have
micropenis. Where gonadal histology was available, variable degrees
of gonadal dysgenesis were noted. Gonadoblastomas were identified
in two individuals (Patients 3 and 6; Table 1). Basal testosterone (T)
levels varied between low to normal with some patients exhibiting
high T/dihydrotestosterone (DHT) ratios (Table 1). Human chorionic
gonadotropin (hCG) test results were available for nine patients who

showed mostly a minimal response. AMH levels were available for
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f I p. G178R" P5.1&5.2 P11
nl Znll p. H310D p-K372del
P8.1& 8.2 P6
p.R8IGFs*17 p.D364Y
N T C
[ — FtZ|F1 LBD [—
P box T box A box AF1 AF2
G35D 47_54del R84H R89Gfs*17
HUMAN MDYSYDEDLDELCPVCGDKVSGYHYGLLTCESCKGFFKRTVQNNKHYTCTESQSCKIDKTQRKRCPFCRFQKCLTVGMRLEAVRADRMRGGRNKFGPMYKRDRALKQQKKAQIRANGFKL 120
MOUSE  MDYSYDEDLDELCPVCGDKVSGYHYGLLTCESCKGFFKRTVONNKHYTCTESQSCKIDKTQRKRCPFCRFQKCLTVGMRLEAVRADRMRGGRNKFGPMYKRDRALKQOKKAQIRANGFKL 120
BOVIN MDYSYDEDLDELCPVCGDKVSGYHYGLLTCESCKGFFKRTVQNNKHYTCTESQSCKIDKTQRKRCPFCRFQKCLTVGMRLEAVRADRMRGGRNKFGPMYKRDRALKQQKKAQIRANGFKL 120
PIG MDYSYDEDLDELCPVCGDKVSGYHYGLLTCESCKGFFKRTVQNNKHYTCTESQSCKIDKTQRKRCPFCRFQKCLTVGMRLEAVRADRMRGGRNKFGPMYKRDRALKQQKKAQIRANGFEL 120
Zinc Finger Motif | Zinc Finger Motif Il NLS
G178R" L209Cfs P210Q+Y211X
HUMAN  HGPLAGYLYPAFPGRAIKSEYPEPYASPP- QPGLPYGYPEPFSGGPNVPELILQLLOLEPDEDQVRARILGCLQEPTKSRPDQPAAFGLLCRMADQTFISIVDWARRCMVFKELEVADOMTLL 298
MOUSE  HGPLAGYLYPAFSNRTIKSEYPEPYASPPQQPGPPYSYPEPFSGGPNVPELILOLLOLEPEEDQVRARIVGCLOEPAKSRSDAPAPFSLLCRMADQTFISIVDWARRCMVFKELEVADQMTLL 299
BOVIN  HGPLAGYLYPAFPGRAIKSEYPEPYASPP-QPGPPYGYPEPFSGGPGVPELILOLLOLEPDEDQVRARIVGCLOEPAKGRPDOPAPFSLLCRMADQTFISIVDWARRCMVFKELEVADQMITLL 298
PIG HGPLAGYLYPAFPGRAIKSEYPEPYASPP-QPGPPYGYPEPFSGGPGVPELIVALLOLEPDEDOVRARIVGCLQEPAKGRPDOPAPFSLLCRMADQTFISIVDWARRCMVFKELEVADOMTLL 298
 ww—"  P— | L J [ )
Helix1 Helix2 Helix3 Helix4
H310D D364Y K372del
HUMAN  QNCWSELLVFDHIYRQVQHGKEGSILLVTGQEVELTTVATQAGSLLHSLVLRAQELVLQLLALQLDRQEFVCLKFI ILFSLDLKFLNNH ILVKDAQEKANAALLDYTLCHYPHCGDKFQQLLLC 422
MOUSE  QNCWSELLVLDHIYRQVQYGKEDSILLYTGQEVELSTVAVOAGSLLHSLYLRAQELVLQLHALGLDROEFVCLKFLILFSLDVKFLNNHSLVKDAQEKANAALLDYTLCHYPHCGDKFQQLLLC 423
BOVIN  QNCWSELLVFDHIYRQIQHGKEGSILLVTGQEVELTTVAAQAGSLLHSLVLRAQELVLOLHALOLDROEFVCLKFLILFSLDVKFLNNHSLYKEAQEKANAALLDYTLCHYPHCGDKFQOLLLE 422
PIG QNCWSELLVFDHIYRQIQHGKEGSILLVTGQEVELTTVAAQAGSLLHGLVLRAQELVLOLHALQLDRQEFVCLKFLILFSLDVKFLNNHSLVKDAQEKANAALLDYTLCHYPHCGDKFQQLLLC 422
l— o e | ) e —
Helix5 Helix6 Helix7 Helix8 Helix9 Helix10

FIGURE 1 VariantsinSF1identified in patients with disorders of sex development using massively parallel sequencing. A: A schematic represen-
tation of the predicted protein structure of SF1 showing the approximate location of the variants identified in a cohort of DSD patients. The protein
domains are as follows: DNA binding domain (DBD) containing two zinc finger motifs (Zn) and the Fushi-tarazu factor 1 box (Ftz-F1), the hinge
region and ligand binding domain (LBD). P Box, T-box, A-box, as well as two activational domains—AF1, AF2. Patient variants (with patient number
denoted by P#) are shown. Five missense mutations were identified in our cohort of 46,XY DSD patients, some of which were recurrent. Two fell
within the DBD (p.G35D, p.R84H) one in the hinge region (p.G178R), two were in the LBD (p.H310D and p.D364Y). Two in-frame deletions were
found, one within the second zinc finger motif (p.47_54del) and the other in the LBD (p.K372del); two frame-shifts were identified (p.R89Gfs*17
and p.L209Cfs*87) as well as a nonsense mutation at position 211. Blue boxes denote single nucleotide variants, yellow are in-frame deletions and
pink are variants that cause a frame-shift and the black box is a nonsense mutation. B: Evolutionary conservation of the SF1 protein (the last 40
amino acids are not shown). All variants are indicated, in-frame deletions are shaded in yellow while frame shifts are indicated with pink shading at
the point of the new transcript, in addition the zinc finger motifs, nuclear localization signal (NLS), and the conserved helices which are in the LBD
are shown

eight patients, five of whom had normal levels, while three were con-
sidered low (Table 1). All of the individuals were found to have normal
adrenal function at the time of sample collection, based on hormonal

profiling and clinician interpretation.

3.2 | Variantsin NR5A1 affect conserved residues in
important SF1 protein domains

SF1 protein comprises a DNA binding domain (DBD) containing two
zinc finger motifs (Zn | and Il), a ligand binding domain (LBD) made up
of 12 helices, which interacts with various cofactors, as well as a hinge
region that is crucial for stabilizing the interactions of the LBD, con-
trolling SF1 transcriptional activity and is subject to post-translational
modification (Figure 1A). SF1 also contains a Fushi-tarazu factor 1 box
(Ftz-F1), which aids in DNA anchoring; as well as P, T, and A boxes,
which assist with DNA binding. Two activation functional domains
(AF1 and 2) are also present and AF2 is crucial for trans-activational
activity (Hoivik et al., 2010) (Figure 1A).

Together our 15 patients had 12 unique NR5A1 variants, nine of

which are novel (Table 2). Missense variants were identified in seven

individuals who presented with a range of phenotypes (Tables 1 and 2).
Further investigation of the variants showed that each change affected
highly conserved amino acid(s) (Figure 1B) and all changes were
deemed to be damaging by the in silico algorithms used (PolyPhen2,
MutationTaster, SIFT, LRT; numerical output from the in silico analy-
ses can be found in Supp. Table S5). The only exception was the known
c.G532A (p.Gly178Arg, rs543895681:G>A) variant, which was pre-
dicted damaging only by PolyPhen2. We mapped these variants on a
schematic representation of the predicted SF1 protein (see Figure 1A).
Patient 1 had a variant in the P-box of the first zinc finger motif within
DBD (c.G104A, p.Gly35Asp). Two unrelated individuals (Patients 2 and
3) both harbored a previously described change c.G251A (p.Arg84His,
rs548473217:G>A), which falls within the Ftz-F1 box. This variant was
previously found in a 46,XY patient with severe hypo-androgenization
(Kohler et al.,, 2008) and acts as a positive control in our study. A
rare variant c.G532A (p.Gly178Arg ExAC all population total fre-
quency: 4.544e-05) was identified in the hinge region of Patient 4
who was initially suspected of having androgen insensitivity. An andro-
gen receptor mutation was ruled out using our targeted MPS panel
(Table 1). Three variants were identified in the LBD. In a pair of
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TABLE 2 Molecular characteristics of the NR5A1 variations identified in our cohort
Patient ID DNA change Protein Change Zygosity Inheritance Novel or known Insilico
1 c.G104A p.Gly35Asp Heterozygous N/A Novel Damaging
2 c.G251A p.Arg84His Heterozygous N/A K&hler 2008 Damaging
rs548473217
ExAC all pop.:
4.262e-05
3 c.G251A p.Arg84His Heterozygous N/A Kéhler 2008 Damaging
rs548473217
ExAC all pop.:
4.262e-05
4 c.G532A" p.Gly178Argh Heterozygous N/A rs543895681 1of4
ExAC all pop.:
4.544e-05
5.1 c.C928G p.His310Asp Heterozygous N/A Novel Damaging
5.2 c.C928G p.His310Asp Heterozygous N/A Novel Damaging
6 ¢.G1090T p.Asp364Tyr Heterozygous N/A Novel Damaging
7 c.140_163del p.47_54del Heterozygous N/A Novel Loss of Zn Il finger
8.1 c.265delA p.Arg89Glyfsx17 Heterozygous Paternal Novel Frameshift in
DBD
8.2 c.265delA p.Arg89Glyfs+17 Heterozygous Father of 8.1 Novel Frameshift in
DBD
9 c.624delG p.Leu209Cysfs+87 Heterozygous N/A Novel Frameshift in
Hinge
10 c.[C629A;C633A] p.[Pro210GIn;Tyr211+] Heterozygous N/A Novel Terminationin
hinge
11 c.1114_1116del” p.Lys372del” Heterozygous N/A Eggers 2015 In-frame del in
LBD
12 c.G991-1C splice Intron 5 Heterozygous N/A Novel Loss of WT
site acceptor”® splicing
13 ¢.G1139-1T splice Intron 6 Heterozygous De novo Novel Loss of WT
site acceptor” splicing

In silico (only available for missense changes): PolyPhen2, MutationTaster, SIFT, LRT, damaging: deleterious or possibly deleterious in 4/4 predictors—
numerical output can be found in Supp. Table S5; DBD, DNA Binding domain; LBD, ligand binding domain; *, not included in functional analyses; N/A, not
available. Known refers to either or previous publication and ExAC; All pop., all populations total. DNA mutation numbering is based on GenBank reference
DNA sequence NM_04959.4, with the A of the ATG initiation codon designated +1. Predicted protein annotations are based on NP_004950.

siblings (Patients 5.1 and 5.2) with suspected PGD and retained Mul-
lerian remnants, we identified a c.C928G change, predicted to lead to a
histamine to aspartic acid transition at residue 310, which falls within
the highly conserved alpha helix 5 of the LBD. Patient 6 was found to
have c.G1090T, predicted to lead to a aspartic acid to tyrosine substi-
tution adjacent to predicted alpha helix 8 at position 364 (Figure 1A).
Six patients had in-frame deletions or nonsense mutations (Table 2).
We identified an in-frame deletion of eight amino acids (c.140_163del,
p.47_54del) in the second zinc finger motif of the DBD in a female
with CGD (Patient 7). Another in-frame deletion of a single codon
(c.1114_1116del, p.Lys372del) was identified in Patient 11 who has
proximal hypospadias. The same variant has been previously pub-
lished by us in an unrelated Indonesian family (Eggers et al., 2015). A
paternally inherited frame-shift with a premature stop codon insertion
after 17 amino acids (c.265Adel, p.Arg89Glyfs17*), truncating the
protein from the accessory DBD, was identified in a Patient 8.1 who
presented with penoscrotal hypospadias and a hormonal profile
suggestive of gonadal dysgenesis. The patient's father, Patient 8.2
(also included in the study) had hypospadias as a child. Additionally,
Patient 9 was found to have a single base pair deletion at coding

position 624 that lead to a frame-shift midway through the hinge
region of the protein and premature stop codon at position 87 of the
new transcript (c.624delG, p.Leu209Cysfs87*). Lastly, we identified a
nonsense mutation (c.[C629A;C633A]:p.[P210Q;p.Y211*] on the same
allele) in an individual with penoscrotal hypospadias (Patient 10 who
had micropenis with testicular tissue, minimal T response following
hCG), most intriguingly this individual has entered spontaneous and

progressive puberty (Table 1).

3.3 | NR5A1 splice site variants and oligogenecity in
DSD

Two splice site acceptor mutations in NR5A1 were identified within
our cohort (Table 2 and Figure 2). Patient 12 who presented with
clitoromegaly and no internal female structures (Table 1) had a het-
erozygous splice site mutation inintron 5 (c.G991-1C, NC_000009.11:
8.127253508C>G) predicted to affect the splice site acceptor for exon
6 (Table 2 and Figure 2A). Patient 13, who had proximal hypospadias,
bifid scrotum, and chordee, was found to have a de novo splice site
mutation in intron 6 (c.G1139-1T, NC_000009.11:g.127245285C>A)
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FIGURE 2 Splice site mutations identified in 46,XY individuals. A: A schematic representation of NR5A1, showing the six coding exons and the
position of the two splice site acceptor mutations identified. B and C:Human Splicing Finder (Desmet et al., 2009) and SpliceAid 2 (Piva et al., 2012)
were used to analyze the consequences of the two splice site acceptor mutations. Both of which suggest that wild-type splicing would be affected

predicted to be affecting the splice site acceptor for exon 7 (Table 2
and Figure 2A). Publicly available prediction programs Human Splicing
Finder (Desmet et al., 2009) and SpliceAid 2 (Piva et al., 2012) were
used to analyze the consequences of the two splice site acceptor
mutations. Both programs predicted that each mutation has a high
chance of loss or alteration of wild-type splicing of the acceptor site.
In the instance of c.G991-1C, a new splice acceptor site is predicted
(exon length variation -6), which would skip bases 991-996 and may
lead to the in-frame deletion of residues 330 and 331, which fall within
the LBD (p.330_331del, according to the HSF Matrices algorithm)
(Figure 2B). While the c.G1139-1T change is predicted to lead to a new
splice acceptor site eight base pairs into exon 7, which may lead to a
frame-shift at position p.Asp380Alafs (Figure 2C).

A recent study (Mazen et al., 2016) identified pathogenic variants
in NR5A1 and MAP3K1 in an individual with 46,XY gonadal dysgen-
esis, highlighting the possibility that digenic inheritance may play a
role in the large phenotypic spectrum associated with NR5A1 variants.
We also identified two patients with multiple affected diagnostic DSD
genes (Table 3). Patient 3 was found to harbor a previously reported
p.Arg84His variant in NR5A1, alongside a rare variant in ZFPM2
(c.A2107C, p.Met703Leu, rs121908603:A>C), which has been previ-
ously reported in individuals with a diaphragmatic hernia 9 (Bleyl et al.,
2007) (Table 3). We also identified a monoallelic change in SRD5A2
(c.G68OA, p.Arg227GlIn, rs9332964:G>A) in Patient 11, who also har-
bored a single codon deletion at position 372 of NR5A1 (Table 3).

3.4 | All novel SF1 variants have reduced
trans-activational activity

To assess the activity of the seven novel protein-affecting NR5A1
variants, we used a well-established Dual-Luciferase reporter assay.
Wild-type and variant human SF1 activity was assessed in this assay
using the mouse Tesco-Sox9 (mTesco) reporter, a construct that
responds strongly to SF1 with its co-activators in vitro. hNR5A1-
expression plasmids (either wild-type or novel variant) were trans-
fected into COS-7 cells with the mTesco-Luciferase reporter and a
Renilla control plasmid. hSF1 was transfected either alone, with hSOX9
or with hSRY (Figure 3). A previously reported pathogenic variant—
p.Arg84His (Kohler et al., 2008)—was used as a positive control. Neg-
ative controls (no SF1) were included for each condition. Consistent
with previous reports (Sekido & Lovell-Badge, 2008), SF1 (wild-type
or variant) alone showed little activation of the mTesco reporter (Fig-
ure 3). In contrast, when wild-type SF1 was co-transfected with hSOX9
expression vector a significant increase in transactivation activity is
seen (four times that seen for wild-type SF1 alone) (Figure 3). A com-
plete loss of this trans-activational activity was noted for the pro-
teins with missense mutations located in the LBD (p.His310Asp and
p.Asp364Tyr), the SF1 p.47_54del, as well as both frame-shift muta-
tions assayed (p.Arg89Glyfs*17 and p.Leu209Cysfs*87) (Figure 3).
Intriguingly, a nonsense SF1 variant (p.[Pro210GIn;Tyr211*]) seemed

to retain a low level of activity (Figure 3). A similar pattern was seen
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TABLE 3 Oligogenicinheritance of DSD-related genes
Patient ID Gene Coding change Protein change Zygosity Novel or known Insilico
3 NR5A1 c.G251A p.Arg84His Heterozygous Kohler et al., 2008 Damaging
ZFPM2 c.A2107C p.Met703Leu Heterozygous Bleyl et al. (2007) rs121908603 3of4
11 NR5A1 c.1114_1116delr p.Lys372del” Heterozygous Eggers et al. (2015) In-frame del
SRD5A2 c.G680A p.Arg227GIn Heterozygous Sasaki et al. (2003) rs9332964 as homoz. N/A

In silico (only available for missense changes): PolyPhen2, MutationTaster, SIFT, LRT; damaging: deleterious or possibly deleterious in 4/4 predictors—
numerical output can be found in Supp. Table S5; #, not included in functional analyses. Known refers to both literature and ExXAC. NR5A1 DNA mutation
numbering is based on GenBank reference DNA sequence NM_04959.4, with the A of the ATG initiation codon designated +1. Predicted protein annota-
tions are based on NP_004950. ZFPM2 DNA mutation numbering is based on the GenBank reference DNA sequence NM_012082.
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FIGURE 3 Reduced trans-activational activity of SF1 variants. The trans-activational activity of each variant compared with wild-type SF1 was
tested using a dual-luciferase reporter assay in COS-7 cells. Each SF1 variant was transfected either alone (blue bars), with hSRY (red bars) or with
hSOX9 (green bars) and transcriptional activity was measured by activation of the mTesco promoter driven luciferase reporter (p.GL4). Empty vec-
tor, in place of SF1 was run in each condition as a negative control. Briefly wild-type SF1 alone shows only low activation of mTesco, however trans-
activation activity increased around four times with the addition of SOX9. All SF1 variants tested show a significant decrease in trans-activational
activity with SOX9 and with SRY. Complete loss of trans-activational activity was noted for the proteins with missense mutations located in the LBD
(p.H310D and p.D364Y), the p.47_54 in-frame deletion, as well as both frame-shift mutations assayed (p.R89Gfs*17 and p.L209Cfs*87). The non-
sense mutation SF1 (p.[P210Q;Y211*]) seemed to retain a low level of activity. Data represent the mean with standard error of four independent
experiments performed in duplicate transfections. Unpaired t-test was applied and for **P value < 0.005; *P value < 0.05

with the SRY/SF1 transfected cells; however, the magnitude of acti-
vation was in general lower than that of the SOX9/SF1 transfection
(Figure 3). All the SF1 variants identified in our DSD patients showed
reduced transactivation activity in vitro when co-transfected with SRY
or SOX9. This suggests that the reason these variants are pathogenicis
because they result in a dramatic reduction or loss of SF1 transactiva-

tion activity in these patients.

3.5 | Protein expression is affected in some SF1
variants

A reduction in SF1 activity could be due to several factors; unstable
mRNA or protein, protein conformational changes or a reduction

in DNA or co-activator binding. To assess whether the SF1 variants

affected the levels or localization of the protein, we used immunoflu-
orescence (Figure 4). Wild-type SF1 shows strong nuclear localization
with nucleolar exclusions as previously described (Kéhler et al., 2008)
(Figure 4A-b and C-b). Missense variants p.His310Asp (Figure 4A-x)
and p.Asp364Tyr (Figure 4A-aa) were found to be localized within the
nucleus, albeit with lower expression levels than that of the wild-type
protein. The p.Arg84His variant used as a control (Kéhler et al., 2008)
seemed to be highly concentrated at the nuclear edge (Figure 4A-k&l).
This was not the case in the previously published study and may be
cell type dependent. SF1 p.Gly35Asp was dispersed within the cell
cytoplasm with low levels of staining in the nucleus (Figure 4C-d). Of
note, SF1 p.47_54del was localized in sub-nuclear aggregates. This
has been described previously for other mutations in SF1, that is,
p.Cys33Ser (Kohler et al., 2008), pVal15Met, p.Met78lle (Lin et al.,
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FIGURE 4 A: Protein expression is affected in some SF1 variants. Protein expression of each variant and wild-type SF1 was assessed in COS-7
cells with an SF1 antibody (green). Cells were transfected with an equal amount of SF1 expression vector (wild-type or variant). Nuclear counter-
staining was performed with DAPI (blue) and the cytoskeleton was stained with actin (red). Wild-type SF1 showed strong nuclear staining with
nucleolar exclusions. All SF1 expression vectors with missense mutations and in-frame deletion were found to be expressed while none of the trun-
cated proteins were detected (p.R89Gfs*17, p.L209Cfs*87, and p.[P210Q;Y211*]). B: This was quantified as the number of SF1 expressing nuclei
per image (2-10x, two cropped areas c.f. 40x displayed in the image). C: Mutant protein p.G35D was dispersed through the cytosol; while the
in-frame deletion affecting the Zn Il motif was clumped in sub-nuclear aggregates; and p.R84H seemed to be concentrated on the nuclear border

2007), and they are thought to represent nuclear domain bodies which
inhibit the transcription factors’ ability to enter in the nuclear cytosol
thereby affecting trans-activational activity. The proteins predicted to
result in frame-shifts (p.Arg89Glyfs*17 and p.Leu209Cysfs*87) as well
as the nonsense change (p.[Pro210GIn;Tyr211*]) were not expressed
at all. This may be due to RNA mediated decay or unstable protein
being produced. Alternatively, even though a polyclonal antibody was
used in the staining of SF1, the antibody may not be able to bind to
the altered epitopes of the mutated protein. We found all missense
changes to be expressed at levels comparable, if not higher to that of
wild-type (Figure 4B).

3.6 | Protein conformational changes are seenin
some SF1 variants

To investigate the potential impact of each variant on protein con-
formation we performed an in silico analysis. Results are shown for
affected residues in individuals with gonadal dysgenesis, some with
retained Miillerian remnants (Figure 5). The truncated proteins have
also been imaged and can be found in Supp. Figure S1. In the wild-type
SF1, the glycine at position 35 falls within a highly specific 3*KGFFK?38
motif, where both lysine residues are thought to be subjected to post-

translational acetylation. In Patient 1, the glycine residue which is a
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FIGURE 5 Conformational changes in SF1 variant proteins. To investigate the potential impact of each variant on protein conformation, we
performed an in silico prediction with the WT SF1 and each variant using I-Tasser and PyMol modeling software. For variants identified in patients
with CGD or PGD, the side chains are shown on the implicated residues. A: Wild-type Gly at position 35 falls within a highly specific 3*KGFFK?38
motif (motif side chains shown), where both lysine residues are thought to be subjected to post translational acetylation. The glycine residue is
substitute with a larger, negatively charged aspartic acid, (B) decreasing the distance between the two lysine residues at position 35 and 38, from
10.4 to 7.1 A. C: Wild-type His residue at position 310 falls within the highly conserved alpha helix 5 of LBD (circled) and is a large, neutral amino
acid commonly involved in stacking, (D) while mutant Asp is negatively charged and much smaller. E: The Asp to Tyr transition at position 364, which
falls within the LBD, adjacent to a highly conserved alpha helix 8. The wild-type Asp is quite small and secondary structure is predicted be at a turn,
(F) unlike the bulky Tyr, which would not have that secondary structure. G: Eight amino acid deletion in the second Zn finger motif of the DNA
binding domain, (H) results in a loss of one of the cysteine residues, which is crucial for the Zn2+ interaction and possible loss of stability and ability
to bind conical 6-bp HRE
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very small, neutral, and highly flexible amino acid is substituted with a
larger, negatively charged aspartic acid. The resultant change appears
to decrease the distance between the two lysine residues at position
34 and 38, from 10.4 A to 7.1 A. (Figure 5A and B), which may affect
the cyclical acetylation and deacetylation of the motif.

In the pair of siblings who presented with PGD with retained Muil-
lerian remnants, a histidine residue at position 310 has been replaced
with aspartic acid. This His310 is in the highly conserved alpha helix
5 of the LBD and is believed to be involved in ligand interaction
(Venselaar et al., 2010). The large and neutral side chain of histidine
is commonly involved in stacking (Betts and Russell 2003) and may
play a role in the stability of the alpha helix pocket that is crucial
for activity (Hoivik et al., 2010). The mutant aspartic acid is nega-
tively charged and much smaller, and this substitution is predicted to
lead to loss of external interactions (Venselaar et al., 2010) (Figure 5C
and D).

We also found that replacing the aspartic acid at position 364 with
a bulky and highly reactive tyrosine, as is observed in Patient 6 had a
strong effect on SF1 conformation (Figure 5E and F). This residue is
adjacent to the evolutionarily conserved alpha helix 8. The wild-type
aspartic acid is predicted to form hydrogen bonds with the glutamic
acid at position 367 and tyrosine at position 404, as well as a salt
bridge with the serine at position 218 and the lysine at 415 (Venselaar
et al., 2010); the difference in hydrophobicity and charge of the mutant
residue will thereby affect hydrogen bond formation as well as ionic
interactions, respectively.

Lastly, we modeled an in-frame deletion of eight residues located
in the second zinc finger motif of the DBD which was identified in a
patient with CGD (Patient 7) (Figure 5G and H). The deletion results
in a loss of one of the cysteine residues which is crucial for Zn2* inter-
action. Without the second zinc finger motif, the stability of the mutant
protein may be compromised and its ability to bind the zinc metal ion,
and in turn the conical 6-bp sequence hormone response element is
likely affected (Little et al., 2006).

4 | DISCUSSION

SF1 has highly specific interactions with a multitude of co-factors
at various time points throughout development. Variants in NR5A1
have been shown to be causative in a substantial number of 46,XY
DSD patients and are now associated with an ever increasing DSD
phenotypic spectrum. Yet, to date, a clear correlation between
genotype and phenotype remains elusive, plagued with complicated
heritability, varying degrees of expressivity, incomplete penetrance
and limited understanding of the molecular function of the SF1
protein.

In a previous study, we found that pathogenic variants in NR5A1
accounted for 15%-20% of 46,XY DSD cases and we identified numer-
ous novel, uncharacterized variants in this gene (Eggers et al., 2016).
In this study, we set out to examine these newly identified variants by
assessing their pathogenicity using a variety of in vitro and in silico
methods. Our studies show that all these novel NR5A1 variants have

reduced SF1 function, suggesting they contribute to the patients’ phe-
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notypes. Nevertheless, we found little correlation between the sever-
ity of the phenotype and the nature of the change or its associated
reduction in SF1 function. This may be due to a variety of factors, some
of which we discuss below.

It is known that the same genetic changes in NR5A1 can display
markedly different clinical phenotypes (variable expressivity). One
explanation for this may be oligogenecity, highlighted by a recent study
in which pathogenic variants in NR5A1 and MAP3K1 were identified
in an individual with 46,XY gonadal dysgenesis (Mazen et al., 2016).
We found two additional examples of this. Patients 2 and 3, in whom
we identified the known p.Arg84His change, have greatly differing
clinical phenotypes. This p.Arg84His change was first identified in a
severely under-virilized child with inguinal testes and no Mdllerian
structures (Kohler et al., 2008). In keeping with this, our Patient 2 had
an inguinal gonad with marked testosterone production (although low
levels of DHT), which is suggestive of some testicular function. How-
ever, Patient 3 with the same variant had a more severe clinical presen-
tation with atrophic testes, no testosterone and seminoma and carci-
noma in situ, currently known as Germ Cell Neoplasia In Situ (GCNIS)
(Berney et al., 2016). Our functional analyses showed that the altered
protein retains a low level of trans-activational activity, while protein
expression and localization was not affected. Most intriguingly, the
more severely affected of the two patients, Patient 3, was found to har-
bor a known heterozygous variant in ZFPM2 (c.A2107C, p.Met703Leu,
rs121908603:A>C), a testes determining gene associated with heart
anomalies, and this variant has been previously reported in an individ-
ual with diaphragmatic hernia (Bleyl et al., 2007). We postulate that the
cumulative effect of these changes in two different genes may be con-
tributing to the patient's more severe phenotype.

In a second example, we identified a monoallelic change in SRD5A2
(c.G680A, p.Arg227GlIn, rs9332964:G>A), in conjunction with the sin-
gle amino acid deletion at position 372 of SF1. Monoallelic inher-
itance of SRD5A2, although uncommon, has been reported in a
severely under-virilized individual with hypospadias and bilateral
inguinal testes (Chavez, Ramos, Gémez, & Vilchis, 2014). Addition-
ally, the p.Arg227GIn SRD5A2 change has been previously found to be
causative of micropenis, where it was found in compound heterozygos-
ity or homozygosity in three individuals (Sasaki et al., 2003). Our find-
ings further highlight the possibility that oligogenic inheritance may
play a role in the large phenotypic spectrum associated with NR5A1
variants, and this may involve numerous genes associated with gonadal
development or steroidogenesis.

In addition to known DSD genes, other as yet uncharacterized genes
may also contribute to the vast spectrum of NR5A1-associated phe-
notypes. Environmental or epigenetic changes may also play a role
(Gunes, Metin Mahmutoglu, & Agarwal, 2016). Another example of
variable expressivity in our cohort was found in Patient 8.1, a severely
under-virilized child with a hormonal profile suggestive of gonadal dys-
genesis. This patient has a paternally inherited frame-shift in NR5A1.
Our in vitro analyses of the truncated protein showed complete loss
of activity for the p.Arg89Glyfs17* variant; yet the father presented
with a much milder phenotype of hypospadias and retained sponta-
neous fertility. Paternally inherited cases of NR5A1 insufficiency have

been previously reported where the father has been asymptomatic
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(Philibert et al., 2011; Swartz et al. 2017; Yagi et al., 2015) or affected
with retained spontaneous fertility (Baetens et al., 2014; Fabbri et al.,
2016). Furthermore, there have been reports of siblings with the same
mutation who present with vastly different effects on Leydig and Ser-
toli cell function (Coutant et al., 2007; Philibert et al. 2007). Such vari-
ability between individuals harboring identical genetic changes, even
within a single pedigree may be a result of a difference in expression
of wild-type and mutant allele (allelic expression imbalance) or even a
potential mosaicism. Although beyond the scope of this paper, analysis
of allelic expression levels in patient cells will be important to assess
this effect in the future.

Although we did not find a strong correlation between the pro-
tein changes and patient phenotypes, our analysis does reveal sev-
eral interesting observations about SF1 form and function. Much is
known about the protein structure of SF1, yet analysis of mutations
in specific regions or amino acids highlight their importance in differ-
ent biological functions, including how they may affect certain essen-
tial post-translational modifications (reviewed in Gunes et al., 2016). A
34KGFFK?38 motif that resides within the DBD is known to be impor-
tant for SF1 function, as the post-translational acetylation of lysine
residues at position 34 and 38 regulates trans-activational activity and
sequence specific DNA binding (Jacob, Lund, Martinez, & Hedin, 2001).
Indeed, previous studies have shown that inhibition of deacetylation
led to the accumulation of SF1 in the cytosol (Chen, Weng, Huang,
& Chung, 2007). One of the first mutations characterised in SF1 was
a glycine to glutamic acid substitution at codon 35 in an individual
with complete gonadal dysgenesis and adrenal insufficiency (Acher-
mann, lto, Ito, Hindmarsh, & Jameson, 1999). In the current study,
we identified and characterized a glycine to aspartic acid transition at
the same position (amino acid 35), enforcing the importance of this
residue. We found that the mutant protein localized in the cytosol
(compared to wild-type nuclear expression). Our in silico modeling sug-
gests that the glycine to aspartic acid change may alter the structure
and the resultant interactions of the motif as it introduces a negatively
charged, hydrophobic residue which changes the conformation of the
motif and decreases the distance between the two lysine residues.
Inhibition of deacetylation has been shown to reduce steroidogen-
esis through ubiquitination and degradation of NR5A1 (Chen et al.,
2007). This is consistent with the phenotype of our patient, who was
found to have Leydig cell hypoplasia and no detectable testosterone
production.

Inaddition toits role in steroidogenesis, another key function of SF1
is the induction of AMH (Shen et al., 1994). This process is thought
to be reliant on a multi protein complex, which includes the likes of
GATA4, WT1, SOX9, and NROB1 (Arango, Lovell-Badge, & Behringer,
1999). AMH is responsible for the repression of Miillerian duct devel-
opment, and Millerian remnants are absent in 75% of affected indi-
viduals (Pedace et al., 2014) suggesting that in these cases a certain
amount of SF1 activity (and therefore AMH production) has been
retained. However, the AMH receptor, AMHR2, is also thought to
be upregulated through synergistic interactions between p-catenin
and SF1 (De Santa Barbara et al. 1998b). Little is known about this
role of SF1 and the site of protein-protein interaction has yet to be

mapped. Interestingly, we observed that in a pair of siblings with sus-

pected PGD and retained Millerian remnants, normal AMH levels
were recorded. Siblings 5.1 and 5.2 had a single amino acid change at
residue 310 in SF1, which falls within the highly conserved helix 5 of
the LBD, and is thought to be involved in ligand interactions (Vense-
laar et al., 2010). While the mutant SF1 protein was still expressed, it
had a complete loss of trans-activational activity in the Tesco luciferase
assay. However, given the normal levels of AMH, these results sug-
gest that AMHR2 expression may have been hampered in these indi-
viduals. Further validation of the role of the SF1 alpha helix 5 and
the possible interaction with g-catenin and the AMHR2 promoter are
warranted.

Outcomes can differ vastly in DSD patients with NR5A1 mutations.
Some individuals with NR5A1 variants present with under-virilized
genitalia and a hormonal profile resembling disorders of androgen syn-
thesis or action, such as androgen insensitivity or 5-alpha reductase
deficiency, where serum testosterone at the neonatal stage can be nor-
mal or even high (Fabbri et al., 2014; Swartz et al. 2017; Wu et al,,
2013), and there have been reports of pubertal androgen production
and virilization in a number of patients (Pedace et al., 2014). In keeping
with previous findings, three of our patients (siblings 5.1 and 5.2 and
Patient 10) who were severely under-virilized in the neonatal period,
have had progressive and spontaneous androgenization and puber-
tal development, suggesting partial rescue of Leydig cell function in
the pubertal gonads. As mentioned above, siblings 5.1 and 5.2 shared
a single amino acid change within the LBD but by contrast, Patient
10 had a premature termination at residue 211 in the hinge, and yet
retained some trans-activational activity. Therefore, the genetic etiol-
ogy of a DSD patient does not allow us to predict the eventual outcome
for that individual. Clearly, further studies are needed to address this
issue.

Patients with a DSD can also have an increased risk of gonadal
germ cell tumors (Hersmus et al., 2017). Although only a limited num-
ber of cases have been reported in individuals with gonadal dysgene-
sis and NR5A1 mutations, they do appear to have a heightened can-
cer risk (Barbaro et al., 2011; Cools et al., 2012; Cools, Looijenga,
Wolffenbuttel, & T'Sjoen, 2014). Indeed, Patient 3 was found to have
seminoma and GCNIS while Patient 6 was found to have gonadoblas-
toma. These patients were both 46,XY DSD (females) with gonadal
dysgenesis. While they both have variants affecting different SF1 pro-
tein domains, with different loss of SF1 activity, they share the risk
of development of the precursor of germ cell tumors, either GCNIS
or gonadoblastoma, which appears to be higher in the more severely
affected patient. Surveillance in these patients is highly recommended,
irrespective of mutation type.

Undoubtedly there are significant implications for patients and
families diagnosed with a NR5A1-associated DSD. Given the known
incomplete penetrance and variable expressivity of these changes,
one cannot assume these changes are de novo. Consequently, if a
variant in NR5A1 is identified in a DSD patient, the family of the
index patient ought to be screened for the change. Where applicable,
fertility preservation should be considered as there are reports of
progressive decline in testicular function (Philibert et al., 2011) as well
as the possibility of ovarian dysfunction in 46,XX carriers (Baetens
et al., 2014; Fabbriet al. 2014).
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Phenotypic variability among individuals with NR5A1 mutations is
remarkable. Our study and others (Camats et al., 2012; Swartz et al.
2017) have suggested that neither the mutation in NR5A1 nor its
reduction in SF1 activity is a good indicator of a patient's phenotype
or clinical outcome. Inherited mutations in DSD tend to be rare as
fertility is often affected; however, familial cases of NR5A1 including
those shown here are shifting this paradigm (Brauner et al., 2016).
Our studies suggest that oligogenecity may be a contributing factor in
the variable expressivity and incomplete penetrance is often observed
with NR5A1 variants in DSD patients. However, neither of these fac-
tors explains all phenotypic differences observed. Additional genes,
polymorphisms, and contributing environmental factors may also play
a role. Only very large-scale studies that compare a range of NR5A1
mutations and DSD patient phenotypes, as well as investigations into
patient cell specific effects, will likely reveal the complexities of these

interactions.
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