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Ancient and modern: hints of a
core post-transcriptional network
driving chemotherapy resistance
in ovarian cancer
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RNA-binding proteins (RBPs) and noncoding (nc)RNAs (such as microRNAs,
long ncRNAs, and others) cooperate within a post-transcriptional network to reg-
ulate the expression of genes required for many aspects of cancer behavior
including its sensitivity to chemotherapy. Here, using an RBP-centric approach,
we explore the current knowledge surrounding contributers to post-
transcriptional gene regulation (PTGR) in ovarian cancer and identify commonal-
ities that hint at the existence of an evolutionarily conserved core PTGR network.
This network regulates survival and chemotherapy resistance in the contempo-
rary context of the cancer cell. There is emerging evidence that cancers become
dependent on PTGR factors for their survival. Further understanding of this net-
work may identify innovative therapeutic targets as well as yield crucial insights
into the hard-wiring of many malignancies, including ovarian cancer. © 2017 The
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INTRODUCTION

Epithelial ovarian cancer (EOC) is diagnosed in
approximately 239,000 women every year

worldwide. It is the most lethal of gynecological
cancers; only 45% of those with the disease remain
alive 5 years after their diagnosis.1 The most signif-
icant contributor to its high mortality is that,
owing to its subtle presenting symptoms, EOC is
predominantly diagnosed at an advanced stage but
also has a high rate of recurrence. Initial treatment
comprised of surgery and chemotherapy is usually
effective at inducing remission but, in 70–80%
patients, the cancer recurs within 2 years. At this
point re-treatment with chemotherapy becomes
increasingly futile as the cancer cells become more
‘chemoresistant.’2

Unlike many cancers with an average of 30–60
mutations each, EOC has a relatively bland muta-
tional profile. According to The Cancer Genome Atlas
(TCGA) Research Network data only nine nonsynon-
ymous gene mutations are present in high-grade
serous ovarian cancer (HGSOC), the most common
histological subtype. The two most frequent are TP53
and BRCA mutations, present in 96 and 22%, respec-
tively.3 The other mutations are present in only 2–6%
cases. Although poly(adenosine diphosphate (ADP)-
ribose) polymerase (PARP) inhibitors have trans-
formed the management of those with hereditary
BRCA mutations and p53-targeted therapies are in
clinical trials, the low penetrance of the others limits
the utility of mutation-driven approaches.4,5 HGSOC
has a high degree of chromosomal instability (CIN),
attributed to mutations and promoter methylations in
DNA homologous repair genes. High CIN is a predic-
tor of greater sensitivity to DNA-damaging che-
motherapies like platinum agents.3,6,7 Tumors like
EOC with low mutational burden show limited
response to immune checkpoint inhibitors, such as
those designed to target PD1 and PDL1.8 This is
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borne out in current clinical practice where studies of
checkpoint inhibitors as monotherapies in EOC have
shown limited efficacy.9 For these reasons, cytotoxic
chemotherapy remains the mainstay of treatment for
non-BRCA mutated ovarian cancer patients, in the
primary (newly diagnosed) context and at relapse.

CHEMOTHERAPY RESISTANCE

Two chemotherapies predominate in the clinical
management of ovarian cancer: the pseudoalkylating
agent carboplatin and the microtubule spindle poison
paclitaxel. Carboplatin is derived from cisplatin and
functions by inducing cell damaging cross-links
between DNA, RNA, and protein in rapidly dividing
cells. Paclitaxel functions by binding β tubulin micro-
tubules and preventing spindle remodeling during cell
division, resulting in mitotic arrest.10 Resistance
mechanisms to paclitaxel include point mutations or
alterations in the expression of β-tubulin isotypes
such as upregulation of the β3-tubulin (TUBB3) iso-
form and overexpression of the efflux protein P-
glycoprotein 1 (encoded by the gene MDR1) that
exports paclitaxel from the cell.11,12 For carboplatin
(and other platinum agents such as cisplatin) whose
cellular uptake is reliant on heavy metal pathways,
resistance mechanisms include down-regulation of
the copper channel influx transporters CTR1 and
CTR2, upregulation of the efflux transporter ATP7B,
increased DNA damage repair, and enhanced sur-
vival signaling.13,14 It is likely that at diagnosis ovar-
ian cancer contains a proportion of innately resistant
cells that gain clonal dominance with each recurrence
and utilize multiple resistance mechanisms.15 Thera-
pies to successfully reverse resistance remain elusive
and, for patients with recurrent disease, death from
progressive disease is unfortunately inevitable.

There is now an accumulating body of evidence
that therapeutic opportunities lie within the realm of
post-transcriptional biology.

POST-TRANSCRIPTIONAL GENE
REGULATION (PTGR)

The former central dogma of molecular biology was
that nucleic acids regulate protein in an irreversibly
linear sequence.16 However, comparisons between
gene and protein expression within cells and more
recently within HGSOC itself have revealed that the
ratio of mRNA to protein is not 1:1 and the abun-
dance of a particular cellular protein cannot necessar-
ily be predicted from the copy number of its
encoding gene.17,18 It is now understood that post-

transcriptional factors bind mRNAs and modify (and
in some cases dominate) the amount of protein they
can generate.19 These regulatory factors have been
identified as noncoding RNAs (ncRNAs) and RNA-
binding proteins (RBPs). Both influence protein
expression by controlling the maturation, modifica-
tion (including stability and translation efficiency),
subcellular transport, and/or degradation of their tar-
get mRNAs.20 While it was once assumed these two
classes of PTGR factors worked in isolation they are
now known to act co-operatively. Pier Paolo Pandolfi
was the first to describe a competing endogenous (ce)
RNA network, initially around microRNAs but later
including other ncRNAs, that collectively coordinates
gene expression.21 Although current descriptions of
the ceRNA network include RBPs, we will refer here
to this cooperation between RBPs and ncRNAs as
the ‘PTGR network.’ In cancer, it is apparent that a
PTGR network is co-opted to regulate the expression
of genes that participate in pathological processes
such as cell migration, invasion, and metastasis.
Advances in computational biology have allowed the
collation of expression profiling datasets in common
cancers and their correlation with known, validated
interactions to generate putative ceRNA network
maps. In EOC these maps have focused around micro-
RNAs, lncRNAs and mRNAs but are yet to include
RBPs.22,23 Here we discuss RBPs that have been iden-
tified and known to be deregulated in ovarian cancer
and their interactions with other PTGR factors.

RNA Binding Proteins
From the moment mRNA transcripts are synthesized
they become bound to RBPs that are involved in
every stage of their lifespan.20 Although RBPs can be
found bound at many sites along an mRNA tran-
script, they tend to bind within the untranslated
regions (UTRs) of mRNA transcripts. Some bind to
conserved sequences [such as adenylate-uridylate
(AU)-rich elements], others recognize structural con-
formations like stem loops or hairpin bends.24,25

RBPs have RNA binding domains, such as RNA rec-
ognition motifs (RRM) and hnRNP K-homology
domains.26 While the first RBPs to be identified were
members of the canonical eIF4F cap-binding com-
plex, other RBPs have since been characterized,
including those with noncanonical roles in specialized
protein synthesis.27 There are now an estimated
1542 genes encoding RBPs.28 This has led to com-
parisons of the differential levels and patterns of RBP
expression between normal and cancer cells. Cellular
levels of RBP genes are significantly higher than
ncRNAs suggesting RBPs have a more prominent role
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in PTGR.29 Although RBPs function in the synthesis of
all proteins, they have an important role in cellular
stress by selectively modulating gene expression to pro-
vide a stress response. Thus, RBPs are important for
disease prevention in normal cells but their deregulation
can contribute to many pathological conditions such as
inflammation and cancer.30 For this reason, and
because they bind multiple mRNAs within a single
physiological or pathological pathway, RBPs have been
identified as potential drug targets.19 Recent advances
in drug discovery have led to an expanded repertoire of
what is considered ‘druggable’ and now includes gene
depletion by anti-sense oligonucleotides and RNA inter-
eference as well as inhibitors of protein–protein, and
protein–RNA interactions in addition to classical kinase
inhibitors.31 This, combined with preclinical evidence
of efficacy but minimal toxicity from serendipitous
RBP inhibitors like the eIF4E inhibitor ribavirin, has
highlighted the feasibility of targeting RBPs.32 How-
ever, RBPs do not act alone and there is accumulating
evidence of interactions with other PTGR network fac-
tors to be considered (Figure 1).

Noncoding RNAs
It is estimated that <2% of the human genome is stably
transcribed into protein, the rest is believed to tran-
scribe mRNAs that do not encode proteins and are
termed noncoding RNAs (ncRNAs). NcRNAs are clas-
sified by size into long noncoding RNAs (lncRNAs) of
over 200 and small RNAs with fewer than 200 nucleo-
tides. While some ncRNAs like transfer, ribosomal and
spliceosomal RNAs have established cellular house-
keeping functions and are constitutively expressed,
others including lncRNAs, microRNAs (miRNAs or
miRs), small interfering RNAs (siRNAs), and PIWI-
interacting RNAs (piRNAs) were initially perceived as
transcriptional ‘junk.’ However, as detailed in a num-
ber of reviews, they are now recognized as having
important regulatory roles in gene expression.33–36

New classes of small RNAs have more recently been
defined such as transfer RNA-related fragments (tRFs),
pseudogenes, and circular RNAs (circRNAs) although
these have yet to be fully characterized in EOC.37–39

Long Noncoding RNAs
LncRNAs range from 200 to 100,000 nucleotides in
length. They have some overlapping characteristics
with mRNA being transcribed by RNA Polymerase II
and are (usually) 50 capped and polyadenylated. How-
ever, unlike mRNAs, they do not have a typical open
reading frame, are usually shorter, and are expressed
at lower levels.40 Importantly, lncRNAs are processed
and regulated differentially and appear to have

expression patterns that are specific to subcellular site,
cell type, developmental stage, or disease. Approxi-
mately 23,000 lncRNAs have been described so far, of
which only a few have been shown to have important
roles in cellular regulation and fewer still have been
linked to cancer.41 LncRNAs act by multiple mechan-
isms such as altering chromatin remodeling, binding
and regulating transcription factors and acting as
protein–protein interaction scaffolds. Through these
mechanisms, lncRNAs fine-tune protein expression and
in cancers act as oncogenes, tumor suppressors, or as
both depending on the circumstances. Intriguingly,
some lncRNAs have been shown to act as microRNA
sponges and carry microRNA response elements
(MREs) to bind and sequester miRNAs away from
their intended mRNA targets.42 LncRNAs have also
been identified as RBP-sponges, an area of discovery in
its infancy as data from Photoactivatable Ribonucleo-
side-Enhanced Crosslinking and Immunoprecipitation
(PAR-CLIP), individual-nucleotide resolution UV cross-
linking and immunoprecipitation (iCLIP), and other
RBP-immobilization methods become available.43

Those such as MALAT1, HOST2, PVT1 NEAT1, and
HOTAIR have been identified in EOC and both PVT1
and HOTAIR have been linked to platinum resistance
by regulating apoptosis factors and via NF-κB activa-
tion, respectively.44–46

MicroRNAs
MicroRNAs (miRs) are a class of endogenous, small
noncoding RNAs of approximately 22 nucleotides in
length that bind and repress translation. It is estimated
that each microRNA regulates around 100 genes and
that, as PTGR factors, microRNAs fine-tune protein
expression.47 They are transcribed from intronic,
exonic, or intragenic regions of protein encoding ‘host’
genes, in parallel with host gene expression. A ‘cluster’
of multiple microRNAs can be transcribed from a sin-
gle gene. After undergoing a series of processing steps,
mature single-stranded microRNA is integrated with
Argonaute (Ago) into an RNA induced silencing com-
plex (RISC) which then binds its targets by partial base
pairing between the microRNA 50 ‘seed region’ and the
30 MRE in the target mRNA. Depending on the com-
plementarity between these two sequences, the target
mRNA is either degraded by Ago-mediated cleavage or
attenuated. The latter occurs at translation initiation by
the RISC hindering assembly of the eIF4F complex or
preventing the recruitment of ribosome components.48

Since microRNAs were first discovered, the number to
have been identified in human cells has now reached
2500 and it is estimated that around 60% all genes are
associated with miRNAs.49–52 For this reason, they are
involved in almost all biological processes. In cancer, in
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which microRNAs are generally downregulated, they
contribute to many aspects of the disease, from its ini-
tial formation to its chemotherapy responsiveness.53–55

This is partially because microRNA clusters are often
located within genomic regions amplified, deleted,
hyper-, or hypomethylated in cancer.56 This is particu-
larly relevant in EOC with its high genomic instabil-
ity.57 Of the 34 miRNAs currently known to be
deregulated in cancer, 17 have been associated with
HGSOC.58,59 Those linked to cisplatin resistance
include Let-7 family members let-7e and 7i and miR-
214 and miR-30a-5p, whereas miR-663, miR-622,
and miR-130b regulate paclitaxel resistance via the
expression of p53 network genes and MDR1
respectively.60–63 In addition, miR-200c is associated
with reversal of resistance via its regulation of TUBB3.

Although these studies identify putative target mRNAs
that could explain the resistance phenotype, it is highly
likely that there are hundreds of other genes regulated
by each microRNA that contribute incrementally
toward chemotherapy resistance.

As summarized by Ciafrè and Galardi,64 RBPs
work collaboratively with miRNAs, either by attract-
ing the miRNA-RISC complex to degrade mRNAs or,
if the RBP-binding or ‘USER’ site on the target mRNA
is close or overlapping the MRE, by preventing the
interaction between a miRNA and its target mRNA
resulting in translation derepression. RBPs can com-
pete with microRNAs by binding and modifying the
structure of the target mRNA or by sequestering it
away from microRNAs to another location within
the cell.
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FIGURE 1 | (a)–(c) RNA-binding proteins influence epithelial ovarian cancer (EOC) progression through complex networks with mRNAs,
noncoding RNAs, and other proteins. (a) RNA-binding motif protein 3 (RBM3) regulates platinum sensitivity and patient survival through regulation
of mRNAs involved in apoptosis and the stress response. (b) HuR exerts an oncogenic effect through stabilization and therefore increased
translation of a range of mRNAs. (c) RNA-binding proteins, such as YB1, LARP1, and IMP1 may converge on multiple subsets of mRNAs and
signaling pathways as part of a network that drives progression of EOC and/or resistance to chemotherapy.
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PATHOLOGICAL RBPS AND
THEIR PTGR NETWORKS IN
OVARIAN CANCER

The relationships that exist between RBPs and micro-
RNAs, lncRNAs and other ncRNAs have yet to be fully
characterized but this is becoming achievable using state-
of-the-art computational models like SimiRa (http://
vsicb-simira.helmholtz-muenchen.de), CircInteractome
(circinteractome.nia.nih.gov), doRiNA (dorina.mdc-
berlin.de.), and StarBase (starbase.sysu.edu.cn) that inte-
grate and interrogate data from publically available
RNA-Seq and CLIP datasets to generate interaction
maps and/or provide functional categorisations.65 The
RBPs described below have been previously been charac-
terized in the context of EOC and any known interac-
tions with ncRNAs are outlined (Table 1).

RNA-Binding Motif Protein 3
RNA-binding motif protein 3 (RBM3) is a member of
the glycine-rich RNA binding protein (GRP) family.
Transcript levels of RBM3 are elevated in cell lines
immediately following cold shock (when taken from
37 to 32�C) and RBM3 is often co-expressed with
another GRP family member, cold-inducible RNA-
binding protein.66 Levels of RBM3 have subsequently
shown to be elevated across multiple cancers, generally
in association with a favorable outcome. In the context
of EOC, mRNA and protein levels of RRM3 were cor-
related with outcome in tissue collected from 163 and
151 patients with EOC respectively. Messenger RNA
levels of RBM3 were found to be an independent pre-
dictor of better relapse-free and overall survival while
presence (vs absence) of RBM3 protein was strongly
associated with prolonged overall survival. Higher
RBM3 (mRNA or protein) was associated with
increased platinum-sensitivity, attributed to its interac-
tome of apoptosis regulating mRNAs such as BCL-2,
BAX as well as genes involves in DNA integrity; upre-
gulation of RBM3 impaired DNA damage repair after
chemotherapy and improved its cytotoxic effect.67

RBM3 also inhibits PERK phosphorylation and pre-
vents cell death from endoplasmic reticulum (ER)
stress.68 In addition, RBM regulates the biogenesis of
temperature sensitive miRNAs such as miR-142 and
miR-143 but has not yet been associated with any
oncomiRs or lncRNAs.69

HuR
The ubiquitously expressed mRNA-binding protein
HuR (ELAVL1) is one of the four membered embry-
onic lethal abnormal visual (ELAV) system family of

proteins expressed in human cells.70 In embryos, these
evolutionarily conserved proteins are involved in neu-
ronal development. In normal adult cells HuR is
expressed at low levels and shuttles from the nucleus
into the cytoplasm in response to stress where it stabi-
lizes and/or promotes the translation of mRNAs con-
taining AU-rich elements within their 30 UTRs.71 In
cancers, elevated levels of cytoplasmic HuR positively
correlate with treatment resistance and adverse sur-
vival outcome, attributed to its target mRNAs such as
PIM1, the DNA damage-regulated G2 checkpoint
gene Wee1, the TNF-related apoptosis-inducing ligand
(TRAIL) component DR4 and the cell survival regula-
tor TP53.72–78 In addition, HuR is linked to paclitaxel
resistance as it binds and stabilizes the mRNA encoding
TUBB3 in competition with miR-200c. When HuR is
nuclear, miR-200c binds the 30 UTR of cytoplasmic
TUBB3 inhibiting it and conferring a good prognosis,
but when HuR is cytoplasmic it competes with miR-
200c and the expression of TUBB3 is derepressed.79

Similarly, HuR has been shown to compete with
miR-125b in binding the 30 UTR of TP53 during
DNA damage preventing miR-125b from reaching
its MRE site.80 Control of the shuttling of HuR
between the cytoplasm and the nucleus is a crucial
component of its regulation. In a recent study using
murine macrophages, HuR was shown to be bound
and PARylated by the DNA damage-repair protein
PARP1 following immune stimulation. This post-
translational modification (the addition of a poly-
meric poly-ADP ribose chain) of HuR appears to sta-
bilize its interaction with target mRNAs in the
cytoplasm.81

HuR interacts with lncRNAs such as nuclear
enriched abundant transcript 1 (NEAT1). NEAT1 is
up-regulated in EOC where it is associated with more
advanced disease and poorer prognosis.82 In ovarian
cancer cell lines, ectopic expression of NEAT1 pro-
motes cell proliferation and invasion. Work by Chai
et al. in OVCAR3 ovarian cells showed that HuR
binds and stabilizes NEAT1 and increases its expres-
sion. However, the microRNA miR124-3p competes
with HuR to destabilize NEAT1.83 In other cancers,
HuR has been shown to bind the lncRNAs HOX tran-
script antisense intergenic RNA (HOTAIR) and
metastasis-associated lung adenocarcinoma transcript-
1 (MALAT1) enhancing their activity as microRNA
sponges.84,85 HOTAIR is upregulated in patients with
EOC where it drives proliferation, migration, and inva-
sion and acts as a sponge for miR-373, thereby dere-
pressing the Ras oncogene family member Rab22a.86

Levels of MALAT1 have been shown to be elevated in
a number of cancers including EOC and, in SKOV3
cells, MALAT1 drives proliferation, invasion, and

WIREs RNA Hints of a core post-transcriptional network

Volume 9, January/February 2018 © 2017 The Authors. WIREs RNA published by Wiley Periodicals, Inc. 5 of 14

http://vsicb-simira.helmholtz-muenchen.de
http://vsicb-simira.helmholtz-muenchen.de
http://circinteractome.nia.nih.gov
http://dorina.mdc-berlin.de.
http://dorina.mdc-berlin.de.
http://starbase.sysu.edu.cn


TABLE 1 | RNA-Binding Proteins (RBPs) Described in Epithelial Ovarian Cancer and Their Known Interactions with ncRNAs

RBP Abbreviation Family Biological Role
Role in Epithelial
Ovarian Cancer (EOC) RBP–ncRNA Interaction

RNA-binding
motif
protein 3

RBM3 Glycine-rich RNA
binding protein
(GRP)66

Regulates global protein
synthesis under normal
physiological
conditions and in
response to cold
temperature and low
oxygen tension114

Elevated mRNA and
protein levels are
associated with a
favorable prognosis
and sensitivity to
platinum-based
chemotherapy through
post-transcriptional
regulation of the
apoptosis mediators
BCL2, BAX, and genes
involved in DNA
integrity as well as
impairment of DNA
damage repair
following
chemotherapy67

RBM3 regulates the
expression of
temperature sensitive
miR-142-5p and miR-
143 to attenuate
pathological
hyperthermia and
downregulates miR-
143-mediated nitric
oxide-induced
apoptosis by interfering
with p38 MAPK kinase
signaling in human SH-
SY5Y neuroblastoma
cells115

ELAV-like
protein 1

HuR Embryonic lethal
abnormal visual
system (ELAV)116,117

• Promotes the stability
of many AU-rich
element (ARE)-
containing mRNAs71

as well as translation
of various mRNAs
(reviewed in Ref 118)

• Essential for placental
branching
morphogenesis and
embryonic
development119

HuR positively regulates
stability and/or
translation of ZEB2
mRNA which plays a
key role in ovarian
cancer progression,
where concomitant
high cytoplasmic HuR
and nuclear ZEB2
correlates with
unfavorable
prognosis120

• In ovarian cancer,
cytoplasmic HuR
competes with miR-
200c in binding to
TUBB3 mRNA,
derepressing TUBB3
expression79

• HuR antagonizes miR-
125b-mediated
translation repression of
TP53 through its binding
to TP53 mRNA 30 UTR
during DNA damage80

• lncRNA NEAT1
expression is enhanced
by HuR, but suppressed
by miR124-3p in
OVCAR3 ovarian cancer
cells83

• HuR binds the lncRNAs
HOTAIR and MALATI,
enhancing their miRNA
sponge activity84,85

IGF2 mRNA-
binding
protein 1

IGF2BP1/
IMP1

IGF2 mRNA-binding
protein (IMP)121

• Key regulator of
neural crest migration,
neurite development,
and stem cell
properties122–125

• Stabilizes its target
mRNAs during cellular
stress, transiently
forming stress
granules126

Stabilizes mRNAs that
drive drug resistance
such as c-myc and
MDR191–93

IMP1 is a downstream
target gene of let-7
miRNA. Let-7
negatively regulates
IMP1 expression,95,96

increasing the
sensitivity of resistant
ovarian cancer to
Taxanes92

Y-box binding
protein 1

YBX1/YB-1 Cold-shock domain
containing proteins99

Transcription, translation,
DNA damage

Nuclear expression
positively correlates

miR-190a negatively
regulates mRNA and

(continued overleaf )
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tumorigenicity.87 The mechanism of action for
MALAT1 in EOC has remained elusive although it has
been shown, in endometrial cancer, to sponge miR-
200c thus derepressing TUBB3 expression.88 More
recent studies in EOC lines have demonstrated
MALAT1 acts as a sponge tomiR-506 and derepresses
the apoptosis inhibitor iASPP.89 It is therefore likely
that, in EOC, HuR drives oncogenic behavior and che-
moresistance through direct interactions with its target
mRNAs and indirectly via its PTGR network.

IGF2 mRNA-Binding Protein
1 (IGF2BP1/IMP1)
The IMP family is comprised of IMP 1–3 and is so
named because its members bind to the 50-UTR of
insulin-like growth factor 2 (IGF2) mRNA. They are
important for embryogenesis and (apart from IMP2)
are expressed at low levels in adult cells but all three
paralogues are highly expressed in cancers where
levels are associated with poor prognosis.90 IMP1
modulates the turnover of target mRNAs during stress
by trafficking mRNAs to cytosolic mRNP complexes,
presumably to protect them from degradation. In
addition to its eponymous target IGF2, IMP1 stabi-
lizes c-myc as well as the Adenosine triphosphate
(ATP)-dependent efflux pump MDR1 and thus has
been implicated in ovarian chemoresistance.91–93

RNAi knockdown of IMP-1 in cell lines from several
types of cancers reduces c-Myc levels, inhibits cell pro-
liferation, and triggers apoptosis.94 IMP1 is negatively
regulated by the microRNA let7 and cooperates within
an ‘oncogenic triangle’ between IMP1 and two other let-
7 targets (the RBP) LIN28B and the transcriptional

regulator HMGA2.95,96 Although an inhibitory interac-
tion between IMP1 and lncMyoD has been postulated in
skeletal muscle cells, there are currently no documented
interactions between IMP1 and lncRNAs in cancer.97

Y-Box Binding Protein 1 (YBX1/YB1)
YB-1 is a member of an evolutionarily conserved
family of cold-shock domain containing proteins.98,99

YB-1 is essential for normal embryogenesis and
levels of the protein are high in embryos but
decline in subsequent stages of development.100

Initially classified as a transcription factor, YB-1
was also shown to have RNA-binding capability
by virtue of two RNA-binding motifs contained
within its cold shock domain. It has both nuclear
and cytosolic localization and elevated expression
of YB-1 has been observed in many cancers,
including EOC where higher levels are correlated
with adverse survival outcome. YB-1 null cells
have enhanced sensitivity to multiple stresses
including from genotoxic drugs such as cisplatin.
The mechanism behind the YB-1-regulated stress
response is not yet fully understood and may have
transcriptional and post-transcriptional compo-
nents. The protein undergoes nuclear accumula-
tion under stress. YB-1 binds CCAAT elements (Y-
box) in the promoter region of MD1 and nuclear
levels of YB-1 correlate with expression of P glyco-
protein.101 Reduction of YB-1 in colorectal cancer
cell lines causes induction of p53-dependent cell
death and TP53 levels rise after YB-1 repression.
YB-1 has also been shown to directly bind p53
protein at the site of DNA damage.102 As yet YB-1

TABLE 1 | Continued

RBP Abbreviation Family Biological Role
Role in Epithelial
Ovarian Cancer (EOC) RBP–ncRNA Interaction

repair,127,128 mRNA
stability and
translational regulation
in the cytoplasm129–131

with poor prognosis132

and cisplatin
resistance133

protein levels of YB-1
in prostate cancer103

La-related
protein 1

LARP1 La-related protein
(LARP)104

Regulates the stability
and/or translation of
mRNAs required for
ribosome biogenesis
and cell survival and
proliferation106,107

Promotes EOC
progression and
resistance to
chemotherapy through
post-transcriptional
regulation of cell
survival mRNAs such
as BCL2 and BIK108,109

• LARP1 is directly
regulated by miRNA-
26a/b, inhibiting
cancer cell invasion in
prostate cancer111

• lncRNA TGFB2-OT1
derepresses LARP1
expression in vascular
endothelial cells through
its binding to miR-
4459113
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has not been associated with ncRNAs in EOC. In
prostate cancer, miR-190a has been shown to directly
bind and repress YB-1. In advanced prostate cancer
miR-190a expression is reduced resulting in YB-1
derepression and activation of androgen-receptor cell
signaling.103

La-Related Protein 1
La-related protein 1 belongs to a seven-member fam-
ily of RBPs called the LARPs. It is highly evolutionar-
ily conserved with orthologues present in all
metazoan species.104 In Drosophila, LARP1 is
required for normal embryonic development as well
as spermatocyte formation.105 In normal human cells
LARP1 is predominantly cytoplasmic and expressed
at low levels where it acts downstream of mTORC1
to bind and regulate the translation of mRNA tran-
scripts required for ribosome manufacture (biogene-
sis) and cell proliferation.106,107 These are TOP
mRNAs characterized by a consensus 50 terminal oli-
gopyrimidine (TOP) sequence. Levels of LARP1 pro-
tein are elevated in a number of epithelial
malignancies including EOC and confers adverse sur-
vival outcome. LARP1 is required for stress response;
cells depleted for LARP1 have heightened sensitivity
to genotoxic agents like cisplatin and paclitaxel, as
well as other stresses such as hypoxia and glucose
starvation. In cancer cell lines, LARP1 has been
shown to bind an interactome of approximately
3000 mRNAs that is enriched for transcripts encod-
ing cell survival and RNA biogenesis proteins. In
vitro and in vivo inhibition of LARP1 induces cell
death in part through its post-transcriptional regula-
tion of the apoptosis mediators BCL2 and
BIK.108,109 Although no consensus binding sequences
within its targets have yet been identified, LARP1
binds these mRNAs via its C-terminal ‘DM15 repeat
region’ that adopts a HEAT domain-like configura-
tion.110 Although it has not been associated with
ncRNAs in EOC, in breast and prostate cancer LARP1
has recently been shown to be one of several targets of
miR-26a.111,112 In endothelial cells, the lncRNA
TGFB2-OT1 acts as a sponge to miR-4459 resulting in
derepressed expression of LARP1.113

SUMMARY AND FUTURE
PERSPECTIVES

It is evident that, as with other cancers, a PTGR net-
work exists in EOC that regulates the malignant
characteristics of the disease. There are notable simi-
larities between the RBPs described here. They are all
oncofetal genes required for embryonic development

that are mobilized during stress in normal adult cells
but are highly expressed in cancer where they drive
cell migration, invasion, and tumorigenesis. They are
also evolutionarily ancient. RBM3 and YB1 are
ancestral cold-shock genes, LARP1, HuR, and IMP1
belong to gene families that predate eukaryotes.
Unlike ncRNAs that have tumor site, type and stage
specificity, the RBPs described here have activities
that are consistent across multiple cancer types. The
majority are proto-oncogenic and their inhibition
induces apoptotic cell death. This indicates not only
that these RBPs are influential ‘nodes’ within the
PTGR network but also that they have a crucial
function in maintaining cancer cell survival.

There is much overlap in the target mRNAs
described here. They encode proteins controlling
ATPase efflux pumps, copper uptake proteins, tubu-
lin isoforms, and apoptotic regulators implying they
belong to a core set of mRNAs that are themselves
evolutionarily conserved. As these proteins also con-
trol the uptake and efflux of chemotherapy drugs,
they are correspondingly and coincidentally associ-
ated with treatment resistance. The possibility of the
existence of a core set of PTGR targets indicates that
analysis of the interactomes of more cancer RBPs
(once they are known) may reveal more overlapping
candidates. While fully annotating such a complex
network may seem daunting, the commonalities
between those factors known so far suggests they
exist within a single coordinated stress response. This
implies that a similar post-transcriptional response is
deployed whatever form of stress the cell is exposed
to. If this were proven to be the case, there would be
huge therapeutic advantage in targeting a PTGR
node when genomic heterogeneity so limits the suc-
cess of conventional targeted therapies.

Like transcription factors, the nonenzymatic
nature of RBPs have earned them the reputation of
being ‘undruggable’ and knockdown approaches
using RNAi or antisense have been preferred. An
example is therapeutic RNAi against HuR which
causes enhanced apoptosis and chemosensitivity in
EOC cell lines and xenograft models but has yet to
reach the clinic.134 As it is likely that each RBP is
deployed in many different contexts in the normal
and cancer cell, a preferable approach may prove to
be the blockade of the site of interaction between an
RBP and its core target gene(s) or ncRNAs. Fortu-
nately, improvements in drug design have heralded
the development of molecules capable of disrupting
protein:protein as well as protein:RNA interac-
tions.135 To embark on such a drug discovery pro-
gram for RBPs described here will require a clear
understanding of the direct interactome of each RBP,
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the site of these interactions and their impact on the
wider PTGR network. Currently, although the RBPs
described here have identifiable RRM, it cannot be
assumed that these are the site of interactions with
the core mRNAs regulating survival and chemosensi-
tivity. For example, the DM15 region of LARP1,
now known to bind cell survival transcripts (such as
BCL2 and BIK) is C-terminally placed and somewhat
remote from the N-terminal La-RRM (La motif )
which is the de facto site of mRNA binding in other
LARP family members.104

As with other cancer types, a comprehensive
annotation of the PTGR network in EOC is in its
infancy. Although many cancer RBPs have been iden-
tified from high throughput screens, few have under-
gone functional analysis and their target mRNA

interactomes are undocumented. This prevents their
incorporation into PTGR algorithms and thus limits
our understanding of the roles played by RBPs in
post-transcriptional gene networks. As our knowledge
of these networks unfolds, it is likely that opportu-
nities for developing new inhibitors will be revealed.
Also, the discovery that some RBPs are subject to
PARylation and other post-translational modifica-
tions may provide insights into their contribution to
the clinical responses that are currently observed
with targeted cancer therapies. Here a biased, RBP-
centric review of the published literature surround-
ing PTGR in ovarian cancer gives fascinating
insights into an ancient network that dominates
multiple aspects of cancer behavior including che-
motherapy resistance.
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