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Introduction
Food allergy is an immune hypersensitivity condition character-
ized by high-affinity allergen-specific IgE antibodies and aller-
gen-specific T helper 2 (Th2) cells (1–3). Specific IgE binds to 
effector cells, such as mast cells and basophils, through FcεRI 
receptors that are cross-linked upon binding of allergen. The 
resulting cellular degranulation causes local and systemic release 

of histamine and other mediators, leading to allergic reactions 
ranging from mild symptoms, such as hives and abdominal pain, 
to potentially life-threatening anaphylaxis (4). Allergen-specif-
ic Th2 cells constitute a critical component in this cascade. Th2 
cells are broadly defined by expression of the transcription factor 
GATA3 and secretion of the cytokines IL-4, IL-5, and IL-13, which 
promote class-switching of B cells to IgE and the recruitment of 
other effector cells, such as eosinophils (5, 6). Recent studies have 
highlighted subtypes of Th2 cells with specialized functions in the 
context of allergy, including effector memory (e.g., Th2A, patho-
genic effector Th2 [peTh2]), and T follicular helper (e.g., Tfh13) 
phenotypes (6–10).

Oral immunotherapy (OIT) is currently the only FDA-ap-
proved treatment for food allergy intended to prevent anaphy-
laxis (11). OIT involves the daily ingestion of escalating doses of 
allergen. Most patients (80%–85%) achieve desensitization (a 
loss in clinical reactivity with regular consumption of the aller-
gen), but only about one-third of patients maintain unrespon-
siveness if treatment is discontinued for even just a few months 
(12–14). Studies of the impact of OIT on circulating T cells have 
consistently found evidence for suppression of Th2 responses, but 
most of these studies have not correlated T cell responses with 
heterogenous clinical outcomes (7, 15–18). Similarly, while Treg 
induction has been observed using in vitro expansion of T cells 
from patients undergoing OIT, it has not been consistently shown 
ex vivo (17–24). Studying allergen-reactive T cell subsets ex vivo is 
challenging because of their low frequencies in peripheral blood 
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ance time point); and treatment failure (failing the challenge at 
the maintenance time point). Samples from 3 patients treated with 
placebo were also included (Figure 1A and see Methods). Consis-
tent with prior studies, peanut-specific IgE levels showed a tran-
sient increase at buildup (20, 26); however, peanut-specific IgE 
concentrations did not correlate with clinical outcomes at any time 
point (Supplemental Figure 1).

To enrich for allergen-specific T cells and capture their 
activated profiles, we cultured the PBMCs with whole peanut 
protein extract for 20 hours to activate CD4+ memory T cells. 
Peanut-reactive cells were then enriched via FACS using CD154 
and CD137 (activation markers for effector and regulatory T cell 
states, respectively) (Figure 1, A and B,  Supplemental Figure 2A, 
and refs. 27–29). This approach allowed us to recover a broad set 
of peanut-specific T cells with limited bias for specific epitopes 
or HLA types (29). The 20-hour stimulation duration was intend-
ed to capture ex vivo cell states and reflect in vivo clonal distri-
butions; it provides sufficient time for the processing of whole 
peanut proteins by antigen-presenting cells and the activation of 
peanut-reactive CD4+ T cells, but it is too short to induce sub-
stantial proliferation of antigen-activated T cells (27, 28, 30, 31). 
CD154-based approaches have been broadly used to identify 
antigen-reactive CD4+ T cells in various contexts (25, 32–34). In 
addition, we have previously shown that the frequency of pea-
nut-reactive CD154+CD4+ T cells in patients with peanut allergy 
is correlated with the patients’ clinical sensitivity, illustrating the 

and technical constraints, which limit the ability to reliably phe-
notype these populations and longitudinally track corresponding 
clonotypes (22, 25). As a result, existing data on T cell responses in 
the context of OIT have been limited to features comprising a nar-
row set of genes and proteins, or T cells specific for a predefined 
subset of allergen epitopes (17, 22). Comprehensive characteriza-
tion of allergen-specific CD4+ T cell subsets and their response 
to immunotherapy over time may not only refine strategies for 
the treatment of food allergy, but may also enhance our broader 
understanding of Th cell phenotypes in atopic disease.

Results
Single-cell RNA-Seq enables deep profiling of peanut-reactive Th cells 
from OIT patients. To measure the impact of OIT on peanut-re-
active T cells, we profiled longitudinal blood samples from 12 
patients participating in a clinical trial of peanut OIT (ClinicalTri-
als.gov identifier, NCT01750879; Supplemental Tables 1 and 2; 
supplemental material available online with this article; https://
doi.org/10.1172/JCI150634DS1). In brief, we isolated PBMCs 
from each patient at 4 time points: baseline (before therapy), 
buildup (13 weeks after the start of therapy), maintenance (12 
weeks after the maximum dose was reached), and avoidance (12 
weeks after the end of therapy). Clinical outcomes were evaluated 
by 2 oral food challenges and were defined as: tolerance (passing 
both food challenges); partial tolerance (passing the challenge at 
the maintenance time point but failing the challenge at the avoid-

Figure 1. Peanut-reactive T cells decrease in frequency over the course of OIT. (A) OIT study design, sample processing, and patient cohorts. CD3+C-
D4+CD45RA– memory T cells were sorted by FACS as CD154+CD137+/– (CD154+), CD154–CD137+ (CD137+), or CD154–CD137–. (For clinical outcomes and patient 
information, see Methods and Supplemental Tables 1 and 2.) (B) Representative flow plots of cells from 1 patient at 1 time point (n = 12 patients total). 
(C) Percentage of CD4+ memory T cells at each time point that were CD154+ (left) or CD137+ (right) in peanut-stimulated PBMC cultures from patients in 
the treatment group. *P < 0.05 (adjusted), by paired Wilcoxon rank sum test. AV, avoidance; BL, baseline; BU, buildup; MN, maintenance; PL, placebo; PT, 
partial tolerance; TF, treatment failure; TO, tolerance.
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cells for single-cell RNA-Seq via Seq-Well and paired single-cell T 
cell receptor α/β (TCRα/β) sequencing (36, 37). We also processed 
CD154–CD137– cells from a subset of patients for use as controls. 
After filtering cell transcriptomes for library quality, we recovered 
high-quality transcriptomes for 134,129 cells (see Methods and 
Supplemental Figure 3A).

Peanut-reactive T cell transcriptomes formed clusters asso-
ciated most closely with their sorted subsets (Figure 2A). We 
observed patient-specific variation within each cluster that was 
not a function of library size or mitochondrial content (Fig-
ure 2B and Supplemental Figure 3), suggesting that it repre-
sented inherent biological rather than technical differences. 

specificity of this assay (10, 35). Using this method, we observed 
that OIT significantly decreased the frequency of peanut-reac-
tive CD154+ and CD137+ T cells in the peripheral blood (Figure 
1C); this trend was not observed in the placebo group (Supple-
mental Figure 2B). The frequency of CD154+ T cells in unstim-
ulated cultures from the same patients was low, indicating that 
CD154 expression was induced by peanut stimulation and not 
associated with activated memory T cells already present in the 
peripheral blood (Supplemental Figure 2C).

To further characterize peanut-reactive memory CD4+ T cells 
and study how their phenotypes and repertoire are altered during 
OIT in relation to treatment outcome, we processed the sorted 

Figure 2. Peanut-reactive T cells from patients undergoing OIT have diverse and distinct transcriptional signatures. (A) 2D UMAP visualization of all 
single-cell transcriptomes (n = 134,129 cells), colored by sorted subset and time point (left) and by patient and clinical group (right). (B) Top differentially 
expressed genes between the sorted subsets. Each column represents the scaled average gene expression of cells from a single patient. Genes were selected 
using a receiver operating characteristic (ROC) test. (C) Selected gene modules discovered using sparse PCA, labeled with module number and a proposed 
descriptor. For each module, the relative weights of each contributing gene and the module score of all cells overlaid on the UMAP coordinates are shown.
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50 gene modules (see Methods and Supplemental Figures 4 and 5). Sev-
eral modules corresponded with phenotypes of known T cell subsets, 
such as Th1, Th2, Th17, and Tregs (Figure 2C). Forty-three of 50 gene 
modules were present across most or all of the patients (Supplemental 
Figure 6 and see Methods), indicating that these represent programs of 
T cell function or activation that are consistent among individuals.

Th-related gene modules are associated with expanded T cells. 
To investigate clonal T cell responses to peanut antigens, we 
recovered paired TCR sequences from a single-cell, whole-tran-
scriptome amplification product. We identified TCRβ sequenc-
es for 60% (±17%), TCRα for 55% (±15%), and both chains for 
36% of cells (±12%) (numbers represent the median ± SD across 
patients). Coverage was uniform across samples, and the major-
ity of expanded TCRβ sequences were paired with a single TCRα 
(Figure 3A and Supplemental Figure 7). Given this relationship, 
we used TCRβ for all subsequent analyses involving clonotypes. 

CD154+ and CD137+ cells were separated by many differentially 
expressed genes, including their associated transcripts CD40LG 
and TNFRSF9, the Treg marker FOXP3, and others consistent 
with effector and regulatory phenotypes, respectively (Figure 
2C). Qualitatively, there was no strong association between tran-
scriptome (as measured by uniform manifold approximation and 
projection [UMAP] embeddings) and time point or treatment 
outcome, suggesting that OIT-induced effects might be subtle 
rather than dominant in the data.

Sparse principal component analysis delineates canonical and new Th 
cell gene modules. To uncover evidence of OIT-driven variation among 
peanut-reactive T cells, we developed an unsupervised approach to 
identify conserved programs of immune-related gene expression. The 
data set was filtered to 937 immune and variable genes (Supplemental 
Table 3). Then, coexpressed genes were aggregated into gene modules 
using sparse principal component analysis (PCA) (38) to derive a set of 

Figure 3. Gene modules for Th function are associated with clonal expansion and expression in activated cells. (A) Clonal size of TCRα sequence 
(left) or TCRβ sequence (right) for all cells with paired TCR recovery, overlaid onto UMAP coordinates. Clonal size is defined as the number of 
cells sharing a TCR sequence. (B) Diversity (normalized Shannon index) of TCRβ repertoires of each sorted subset. Each data point represents the 
repertoire for 1 patient at 1 time point (CD137+: n = 41; CD154+: n = 44; CD154–CD137–: n = 23). (C) Distribution of TCRβ clonal sizes, within each sorted 
subset. Cells within each sorted subset were downsampled to equal numbers before clonal sizes were calculated. (D) Percentage of TCRβ sequenc-
es shared between time points and sorted subsets. The percentage shared is defined as the number of unique TCRβ sequences detected in both 
conditions, divided by the geometric mean of the number of unique TCRβ sequences in each of the 2 conditions. Sequences from all patients with 
samples in all 3 conditions (n = 6 patients) were pooled. (E) Mean clonal size and fold change in mean module scores (compared with module-ex-
pressing CD154–CD137– cells) in CD154+ cells expressing each gene module. Each data point represents a single gene module. Cells were classified as 
“expressing” each module or not, relative to background expression (see Methods). Clonal size was calculated with respect to all cells in the data 
set. ****P < 0.0001 (adjusted), by unpaired Wilcoxon rank-sum test. Data represent combined data from all patients at all time points (A–C and E).
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The diversities of CD154+ and CD137+ repertoires were signifi-
cantly lower than those of the CD154–CD137– cells, indicating that 
these activation markers enriched for a pool of clonally expand-
ed, peanut-reactive clonotypes (Figure 3, B and C). In addition, 
we observed that 55% of expanded clones were detected across 
multiple time points, but only 1.6% of clonotypes were shared 
between CD154+ and CD137+ cells, suggesting that these 2 acti-
vated subsets resulted from fundamental differences in lineage, 
epitope specificity, or both (Figure 3D).

To determine which, if any, gene modules were associated 
with clonal T cell expansion, we classified cells as expressing or 
nonexpressing for each module, on the basis of whether the mod-
ule score was above background expression in CD154–CD137– cells 
(see Methods). We then calculated the average TCRβ clonal size for 
cells expressing each module, as well as the average score of that 
module in CD154+ cells relative to CD154–CD137– cells. We found 
that modules representing Th1, Th2, and Th17 functions exhibited 
strong upregulation in both the CD154+ and CD137+ compartments 
and were associated with expanded T cell clonotypes, suggesting 
that these phenotypes were largely associated with peanut-reactive 
clonotypes rather than with bystander-activated, non-peanut-reac-
tive T cells (Figure 3E and Supplemental Figure 8).

Peanut-reactive Th cells include 6 phenotypically distinct states. 
Given their strong enrichment in the CD154+ and CD137+ com-
partments, we further analyzed the heterogeneity among cells 
expressing the Th1, Th2, and Th17 modules. Separate clustering 
of these cells revealed 3 phenotypically distinct clusters of Th2 
cells and 2 clusters of Th1 cells. We did not observe additional 
clusters within the Th17 cells (Figure 4A). These clusters were 
detected in all patients (Supplemental Figure 9). Within the Th2 
cells, the clusters corresponded to a Tfh2-like cell population (high 
in costimulatory markers, CXCR5, and PDCD1), a Th2 regulato-
ry–like (Th2reg-like) cell population (FOXP3 and TNFRSF9), and 
a Th2A-like cell population (7, 39) (GATA3, IL17RB, and PTGDR2) 
(Figure 4D). The Tfh2-like population resembled a previously 

described pathogenic Tfh13 subset, whereas the Th2A-like pop-
ulation shared markers previously identified in Th2A and peTh2 
populations (refs. 7–9 and Supplemental Figure 10). Likewise, the 
Th2reg-like population shared features with previously described 
deviated Tregs in food allergy (40). Among the Th1 cells, the clus-
ters corresponded to a Tfh1-like population and a conventional 
Th1 (Th1-conv) cell population with canonical Th1 signatures (ref. 
41 and Figure 4, A and D). Both of these clusters expressed high 
levels of IFNG and GZMB, and the Tfh1-like cluster exhibited a 
high overlap of genes with those expressed in the Tfh2-like popu-
lation, including ICOS, PDCD1, and TNFRSF9.

We hypothesized that Tfh2-like cells influence the class-switch-
ing of peanut-specific B cells to IgE. To investigate this hypothesis, 
we determined the correlation between the average expression 
of each gene expressed by Tfh2-like cells and peanut-specific IgE 
titers for each patient at each time point. In total, we detected 66 
genes that were significantly correlated with peanut-specific IgE 
levels in plasma (Supplemental Figure 11). Transcripts positively 
correlated with IgE included the Th2 cytokines IL5 and IL4; this 
correlation was observed in Tfh2-like, but not Th2A-like, cells (Fig-
ure 4B). Other positive correlates with IgE included the costimula-
tory receptor ICOS, the gut-homing integrin ITGA4, and PLA2G16 
and GK, two transcripts implicated in the production of prosta-
glandin-D2 by peTh2 cells in eosinophilic esophagitis (42), where-
as transcripts negatively correlated with IgE production included 
TGFB1, which is associated with class-switching to IgA (43, 44), 
and TNFSF10, which has been demonstrated to dampen Th2 
responses in allergic asthma (ref. 45 and Supplemental Figure 11). 
No genes expressed by Th2A-like cells were significantly correlated 
with peanut-specific IgE. These results demonstrate a relationship 
between gene expression in Tfh2-like cells and peanut-specific IgE 
levels and suggest that cytokine signals from different Th2 subsets 
may contribute differently to class-switching to IgE.

Peanut-reactive Th cell phenotypes are clonally distinct. We next 
sought to determine the clonal relationships present among the dis-
tinct phenotypes of peanut-reactive T cells. Analysis of the TCR rep-
ertoires of the 6 Th subtypes showed that most clones were primarily 
associated with a single subtype, indicating that these populations rep-
resent distinct clonal lineages (Figure 4C). We did, however, observe 
overlapping clones between the Th1-conv and Th17 states as well as 
the Tfh1-like and Tfh2-like states, suggesting that cells may transition 
between these pairs of phenotypic states, or that these states may 
include shared cellular lineages that differentiated relatively late (46).

To determine to what extent this association between clono-
type and phenotype might be influenced by epitope recognition, 
we next assessed whether TCRs showed evidence of convergence 
within Th subtypes using TCRdist, a quantitative metric for simi-
larity between a pair of TCR sequences (ref. 47, and see Methods). 
A pair of cells with very similar TCR sequences may share epi-
tope-binding properties despite having different ancestries, allow-
ing an assessment of the role of epitope recognition in shaping T 
cell phenotypes. We found that pairs of cells with highly similar 
TCRβ sequences (TCRdist <9) had a significantly increased like-
lihood of both cells belonging to the same Th subtype (P < 0.05, 
by χ2 proportion test), with the exception of cells in the Th2A-like 
and Th2reg-like subtypes (Figure 4E). This result indicates a con-
vergence onto common TCR motifs within most subtypes and sug-

Figure 4. Peanut-reactive Th subtypes are clonally distinct and exhibit TCR 
convergence. (A) UMAP visualizations of Th1- (n = 7,609 cells), Th2- (n = 7,877 
cells), and Th17-scoring cells (n = 7111 cells). Clusters are annotated by their 
putative identity. (B) Scatter plots of the average expression of IL5 and IL4 
in Tfh2-like cells or Th2A-like cells (for each patient at each time point) and 
peanut-specific IgE titers. Linear fit, Spearman’s correlation (r s, n = 34), and 
adjusted P values are shown. (C) Fraction of TCRβ clonotypes belonging to 
each subset. The fraction is defined as the number of cells of a TCRβ CDR3 
sequence (column) detected in each Th subset, divided by the total number 
of cells within the clonotype. Clonotypes were randomly downsampled to 
visualize a comparable number from each subset. (D) Differentially expressed 
genes in each Th subset. Genes were selected using an ROC test and manual 
curation. Each row represents the scaled average gene expression in 1 patient. 
(E) TCR distance analysis of TCR sequences. The x axis represents bins of 
increasing pairwise TCR distance, calculated using TCRdist, and the y axis 
represents the likelihood of pairs of cells at a given TCR distance to be of the 
same Th subset, normalized to the prior probability of any 2 cells belonging to 
that subset (see Methods). ****P < 0.0001 (adjusted), ***P < 0.001 (adjust-
ed), and **P < 0.01 (adjusted), by 2-sided χ2 proportion test with 1 degree of 
freedom. The total number of pairs within each TCR distance and subset is 
indicated above each data point. The red asterisk indicates that no pair of 
TCR sequences with the respective TCR distance bin was found in the respec-
tive subset. Error bars represent 85% binomial CIs. Data were combined from 
all patients at all time points (A–E).
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we found that Th1-conv and Th2A-like clonotypes exhibited sup-
pression of Th1 and Th2 genes, respectively, at the maintenance 
time point compared with baseline. This suppression was consis-
tent with an anergic state, characterized by decreased cytokine 
expression in response to stimulation and was not detected in the 
placebo group (Supplemental Figure 13C). In contrast, we did not 
observe statistically significant changes in module expression at 
the clonotype level in the Tfh1-like, Tfh2-like, Th2reg-like, or Th17 
subsets (Figure 5B), suggesting that these cell populations were 
more refractory to modulation by OIT than Th1-conv and Th2A-
like clonotypes. A lack of suppression of Th2A-like clonotypes at 
maintenance was associated with poor outcomes (Spearman’s 
rho = 0.74; P = 0.02), and the degree of suppression was similar 
between patients who achieved partial tolerance and full toler-
ance (Figure 5C). We found no statistically significant association 
between clinical outcome and degree of suppression in Tfh2-like 
clonotypes or Th1-conv clonotypes (Supplemental Figure 13A).

Non-Th2 inflammatory pathways at baseline are associated with 
clinical outcome. While a lack of Th2 suppression during OIT was 
associated with a poor clinical outcome, the baseline expression 
of Th2 signatures was not predictive. To analyze immune sig-
natures present at the beginning of treatment, we performed 
PCA on gene module scores of all CD154+ cells at baseline. This 
approach allowed us to assess major axes of phenotypic variation 
among CD154+ cells at baseline and investigate whether any of 
these axes correlated with clinical outcome. We found a striking 
separation by outcome at all time points in the scores of the first 
principal component (PC1) alone, with high PC1 scores associat-
ed with poor clinical outcome (Figure 5D). The top gene modules 
enriched in PC1 were defined by markers of T cell activation and 
effector response such as OX40, OX40L, Th17 function, STAT1, 
and GPR15 (Figure 5E and Supplemental Figure 14). To investigate 
the cell types associated with this signature, we summarized PC1 
scores and module expression in the 6 previously identified Th 
subtypes. Of these, Th1-conv and Th17 cells expressed the high-
est levels of PC1 (Supplemental Figure 15). Consistent with this 
observation, the frequencies of Th1-conv and Th17, but not Th2, 
cells were also lower in the CD154+ compartment of patients with 
favorable clinical outcome (Supplemental Figure 9A). Interesting-
ly, CD154+ cells not classified within any of the canonical CD4+ T 
cell subtypes also showed outcome-dependent expression of mod-
ules associated with PC1 (Supplemental Figure 16). These results 
indicate that a range of CD4+ T cell phenotypes and inflammatory 
pathways may affect the likelihood of favorable responses to OIT.

Treg phenotypes are not significantly modulated by OIT. Tregs 
have been described in some studies as a correlate of favorable clini-
cal outcome in OIT (19, 20). Although we detected a strong and sus-
tained expression of Treg markers among peanut-reactive CD137+ 
cells, we observed a moderate decrease in the frequency of CD137+ 
cells over the course of OIT (Figure 1C). In addition, although IL10 
in Treg module–expressing clones (gene module 1) was slightly ele-
vated during the buildup phase of treatment, there was not a sus-
tained increase in the expression of the Treg module, FOXP3, or 
IL10 among these cells over OIT (Figure 6A). Moreover, expression 
of either IL10 or FOXP3 did not correlate with clinical outcome. 
Unsupervised analysis of Treg module–expressing cells revealed 
3 distinct subsets of Tregs, including conventional Tregs, Tfh-like 

gests that factors such as TCR affinity or antigen context during 
priming (e.g., local tissue environment) may influence the induc-
tion of specific Th phenotypes within an individual (48–50).

OIT suppresses Th2 and Th1 signatures in conventional effector, 
but not Tfh-like, cells. We next assessed the impact of OIT on the 
TCR repertoire and the identified Th subtypes. The majority of 
expanded CD154+ and CD137+ clonotypes were present at 3 or all 4 
of the time points, and no time point was associated with the deple-
tion or emergence of unique expanded clonotypes or singletons, 
suggesting that OIT did not induce strong changes in the TCR rep-
ertoires of peanut-reactive CD154+ or CD137+ cells from peripher-
al blood (Supplemental Figure 12). Next, we evaluated phenotypic 
changes within peanut-reactive Th1, Th2, and Th17 clones during 
OIT by assessing the mean expression of their respective mod-
ules over time in each patient. Each set of Th clones was defined 
as all clonotypes in which the relevant module (e.g., Th2) was 
expressed in at least 1 cell at any time point; this definition allowed 
us to include peanut-reactive T cells that may gain or lose Th gene 
expression as a result of OIT (see Methods). We found evidence 
of suppression in Th2 and, to a lesser extent, Th1 clones (adjust-
ed P values of 0.036 and 0.117, respectively) between the baseline 
and maintenance time points (Figure 5A). We did not observe this 
trend in patients treated with placebo (Supplemental Figure 13B).

To determine which of the previously defined 6 Th subtypes 
were associated with this Th2 and Th1 suppression, we next 
assigned each Th1, Th2, and Th17 clonotype to the Th subtype in 
which it most frequently appeared. We then quantified changes 
in gene module expression within each individual clonotype, an 
analysis that allowed us to track the phenotypes of hundreds of 
individual clonal lineages over the course of treatment. As a way 
to measure the stability of module expression over time within 
each clonotype, we calculated its fractional clonal expression: the 
proportion of cells that expressed the corresponding module (Th2, 
Th1, or Th17) at each time point (see Methods). From this analysis, 

Figure 5. Th1 and Th2 effector, but not Tfh-like, subsets are suppressed by 
OIT. (A) Mean Th2, Th1 and Th17 gene module expression over time within 
Th2, Th1, and Th17 clones (see Methods), respectively, in each treatment 
group patient at each time point. (B) Fractional expression of Th2, Th1, 
and Th17 modules within clonotypes of Th subtypes over time. Fractional 
clonal expression is defined as the proportion of cells within each clono-
type expressing their respective module (see Methods). Each data point 
represents the cells of an individual expanded clonotype from 1 patient at 
1 time point. Patients in the placebo group were excluded. (C) Degree of 
suppression in Th2A-like clones by clinical group. The ratio of mean Th2 
module expression in Th2A-like clones from each patient was calculated 
between buildup and maintenance. Spearman’s rho = 0.74; *P < 0.05. n = 
9. Spearman’s test was performed to determine the correlation between 
ratio and outcome within the treatment group (assigning 2 for tolerance, 
1 for partial tolerance, and 0 for treatment failure to represent the ordinal 
relationship between treatment groups). (D) PC1 score for CD154+ cells by 
outcome. PCA was performed using the 50 gene modules as features and 
all CD154+ cells at baseline as the input data (see Methods). Each data point 
represents the mean PC1 score for all CD154+ cells from a single patient at 
a single time point. Black-outlined data points represent the baseline time 
point. (E) Top 5 gene module loadings in PC1. Bar heights represent the 
magnitude of each contribution to PC1. (See Supplemental Figures 4 and 5 
for further details on each gene module.) *P < 0.05 (adjusted), **P < 0.005 
(adjusted), and ****P < 0.0005 (adjusted), by paired (A) or unpaired (B and 
D) Wilcoxon rank-sum test.
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Discussion
In this study, we characterized peanut-reactive Th cells from 
allergic patients undergoing OIT using single-cell RNA-Seq with 
paired TCR sequencing. These methods allowed us to identify 
patterns of expansion and TCR convergence among distinct pea-
nut-reactive Th subtypes and to longitudinally profile individual 
clonotypes throughout OIT. We found differential effects of OIT 
on distinct Th subtypes and a significant association at baseline 
between T cell phenotypes and clinical outcome. Our results add 
refinement to the transcriptomic-scale definitions of previously 

Tregs, and CCR7+ Tregs, which differed in their expression of IL10, 
IL2RA, and several costimulatory and memory markers (Figure 6, B 
and C). For example, Tfh-like Tregs were responsible for nearly all 
of the IL10 expression. No Treg cluster showed a sustained increase 
of FOXP3, IL10, or the Treg gene module as a result of OIT (Figure 
6D). Finally, we saw no evidence of the induction of new peanut-re-
active Treg clonotypes during OIT, as TCR repertoires of CD137+ 
cells remained stable over time (Supplemental Figure 12). Our data 
indicate a lack of induction of peanut-reactive Tregs during OIT, 
both by gene expression levels and by clonotype frequencies.

Figure 6. Treg phenotypes are not significantly modulated by OIT. (A) Average expression of Treg module (gene module 1), FOXP3, and IL10 by patient 
and time point within Treg clones. Each data point represents the mean expression of all Treg clones for a given patient at a given time point. (B) UMAP 
visualization of all Tregs (data from all patients at all time points), colored by cluster assignment and labeled by putative cluster identity. (C) Differentially 
expressed genes in each Treg cluster. Genes were selected using an ROC test and manual curation. Each row represents the scaled average gene expres-
sion in 1 patient. (D) Average expression of the Treg module (top), FOXP3 (middle), and IL10 (bottom) by patient and time point within clones of each Treg 
cluster, colored by clinical group. Adjusted P values were calculated by paired Wilcoxon rank sum test (A and D).

https://www.jci.org
https://doi.org/10.1172/JCI150634
https://www.jci.org/articles/view/150634#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2022;132(2):e150634  https://doi.org/10.1172/JCI1506341 0

line T cell activation could limit the effectiveness of OIT because 
of increased inflammation or altered gastrointestinal permeabili-
ty (potentially triggered by Th17 responses; ref. 53). Assessments 
of genomic or immunologic features associated with clinical out-
comes in OIT are scarce, but Th17 cells have been reported to play 
a role in atopic disease, with some preliminary evidence suggest-
ing that these cells are modulated by OIT (25, 54–56). Similarly, 
OX40 and OX40L have also been implicated in atopic dermatitis 
and asthma and represent a possible therapeutic target (57, 58).

Moreover, while some of the top gene modules in the composite 
score were highly enriched among Th1 and Th17 subsets (e.g., the 
OX40L module), many were also expressed in other compartments 
of CD154+ or CD137+ cells (Supplemental Figure 16), including 
CD154+ cells not classified as any of the Th subtypes. This was the 
case for the GPR15 and STAT1 signaling modules (Supplemental 
Figure 16B). GPR15 has been highlighted as an esophagus-hom-
ing and colon-homing receptor in CD4+ T cells (42, 59), and STAT1 
(along with GBP4 and GBP1, also included in the same module) 
is associated with response to IFN (60, 61). Taken together, these 
results suggest that altered gastrointestinal permeability and 
inflammatory responses in diverse populations of peanut-reactive 
T cells may influence the likelihood of a favorable response to OIT.

Although Tregs have been described by others as a correlate 
of a favorable clinical outcome in peanut OIT (19, 20), we did not 
find evidence for sustained peanut-reactive Treg induction during 
treatment. We found a lack of significant Treg induction both by 
clonotype frequency and by Treg gene expression levels, and we 
were able to assess this phenomenon within multiple Treg sub-
types. Discrepancies between our results and those of prior stud-
ies could reflect differences in stimulation conditions and strate-
gies for identifying antigen-specific Tregs (19). These differences 
should motivate further efforts toward elucidating the role of pea-
nut-reactive Tregs in OIT.

Here, we analyzed peanut-reactive CD4+ T cells obtained from 
peripheral blood. A substantial fraction of peanut-reactive T cells 
is likely to establish residency in tissues, including the gastroin-
testinal tract and lymphoid organ tissues, but samples from these 
tissues cannot be as easily obtained. Thus, the impact of OIT on 
the phenotype and repertoire of tissue-resident peanut-reactive T 
cells remains unexplored in this study. Despite this limitation, the 
study of peripheral peanut-reactive T cells during OIT has consid-
erable translational value, as changes in the peripheral blood can 
be easily monitored in a clinical setting. Moreover, we and others 
have successfully identified clinically relevant responses in pea-
nut-reactive T cells from peripheral blood during OIT (17, 22, 62).

The methods we used in this study combined FACS-based 
enrichment of antigen-activated T cells with single-cell RNA-
Seq and TCR sequencing as a framework for profiling antigen-re-
active T cells without the use of tetramer reagents. By enriching 
peanut-reactive T cells on the basis of CD154 and CD137 expres-
sion, it is likely that our data included some fraction of nonspe-
cifically activated T cells. By integrating data on TCR sequences, 
however, we identified T cell states that were associated with 
clonally expanded, peanut-reactive T cells, thereby minimizing 
the effects of nonspecifically activated T cells. We believe this 
framework could be used to identify likely antigen-reactive T 
cells in other disease contexts.

described subsets, reveal how clonotypes from these cell popula-
tions are affected during OIT, and provide additional insight into 
the substantial heterogeneity of patients with peanut allergy.

Among sorted CD154+ and CD137+ Th cells, we identified 6 
subtypes of highly clonal peanut-reactive Th cells with Th1, Th2, 
and Th17 signatures. Of these subtypes, the Th2A-like, Tfh2-like, 
and Th2reg-like cells corresponded well to the previously described 
Th2A, Tfh13, and deviated Treg populations in food allergy (7–9, 
40). We show here for the first time to our knowledge that these 
subsets have distinct TCR repertoires and that some are enriched in 
highly similar TCR sequences. Our results add resolution to a pre-
vious study showing that distinct repertoires exist between CD154+ 
and CD137+ cells (29). This segregation of TCR repertoires strong-
ly suggests that the subsets represent distinct lineages rather than 
transient phenotypes, and the phenomenon of TCR convergence 
hints at a skewing of the T cell state due to epitope interactions or 
epitope-associated factors (50–52). We did not detect significant 
TCR convergence in the Th2A-like or Th2reg-like subsets, which 
could be due to the greater diversities of repertoires in these sub-
sets that would require deeper sampling to detect any convergence.

Globally, we found that OIT induced a reduction of the fre-
quency of CD154+ and CD137+ T cells and the expression of Th2 
signatures in response to peanut antigen stimulation. In addition, 
we found that the TCR repertoires of peanut-reactive cells in 
peripheral blood were stable over time. These observations sug-
gest that OIT acts predominantly via the suppression of functional 
phenotypes rather than by clonal deletion or TCR-biased seques-
tration away from the periphery. This result corroborates those 
of 2 previous studies that reported the emergence of anergic sig-
natures in peanut-specific T cells over time in OIT and provides 
insight into previous reports of decreases in circulating Th2 cell 
frequencies following OIT (7, 17, 18, 21, 22). Nevertheless, future 
studies with comparatively deeper sequencing approaches and 
larger cohorts could further refine these observations of the influ-
ence of OIT on the peanut-reactive TCR repertoire in peripheral 
blood as well as among tissue-resident cell populations.

We also show how the 6 subsets of Th1, Th2, and Th17 cells 
identified in this study responded over the course of OIT. We 
observed OIT-induced suppression of Th2 and Th1 gene mod-
ules among Th2A-like and Th1-conv, but not Tfh-like, clonotypes. 
Strikingly, we found that the expression of select cytokines among 
Tfh2-like cells, but not Th2A-like cells, was correlated with pea-
nut-specific IgE levels, suggesting that this subset may directly 
influence the peanut-specific IgE response. Last, we observed that 
the suppression of Th2 module expression in Th2A-like clonotypes 
was associated with clinical outcome. Our findings indicate that 
OIT modulates only a subset of peanut-reactive T cells and that 
the T cells most responsible for Ig class-switching and B cell help 
may be the least altered by treatment, highlighting the difficulty of 
achieving a sustained beneficial clinical outcome.

With respect to therapeutic outcomes, we found that an unsu-
pervised composite score of all gene modules, derived using only 
data from cells isolated before treatment (baseline), correspond-
ed strongly with treatment failure and was not modulated by OIT. 
This score was driven largely by markers of T cell activation such 
as OX40, OX40L, and STAT1, as well as by Th1 and Th17 genes 
(Supplemental Figure 14C). We surmised that high levels of base-
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of 12 weeks off therapy with strict avoidance of dietary peanut protein 
in order to assess the durability of any desensitization resulting from 
OIT. During each phase of the study, a blood sample was taken (4 sam-
ples per patient) 2 weeks prior to the start of treatment at baseline, 14 
weeks into the buildup phase, 8 weeks into the maintenance phase, and 
8 weeks into the avoidance phase.

Clinical assessments were made by DBPCFC at baseline (DBP-
CFC1), at the end of 12 weeks of maintenance therapy (DBPCFC2), 
and at the end of 12 weeks of avoidance (DBPCFC3) (20). Clini-
cal outcomes were defined as follows: treatment failure (failure to 
achieve the minimum maintenance dose of 600 mg peanut protein 
by 12 months, or an eliciting dose of less than 1443 mg at DBPCFC2, 
or less than 443 mg at DBPCFC3, or less than 10-fold higher than at 
DBPCFC1); partial tolerance (eliciting dose of less than 4430 mg at 
DBPCFC3 but of at least 443 mg and more than 10-fold higher than at 
DBPCFC1); and tolerance (ingestion of 4430 mg of peanut protein at 
DBPCFC3 without symptoms).

Cell purification and sorting. After a blood sample was collect-
ed, PBMCs were isolated by density-gradient centrifugation (Ficoll-
Paque Plus; GE Healthcare) and cryopreserved in FBS with 10% 
DMSO. After the study was completed, for each of the 12 patients, 
PBMCs from all 4 time points (15 × 106 to 30 × 106 PBMCs per time 
point) were simultaneously thawed, washed with PBS, and cul-
tured in AIM-V Medium (Gibco, Thermo Fisher Scientific) with 100 
μg/mL peanut protein extract for 20 hours, at a density of 5 × 106 
PBMCs in 1 mL medium per well in 24-well plates. Peanut protein 
extract was prepared by agitation of defatted peanut flour (Golden 
Peanut and Tree Nuts) with PBS, centrifugation, and sterile filtra-
tion. The endotoxin concentration in the peanut protein extract was 
assessed to be 6 EU/mg, using a LAL Endotoxin Quantitation Kit 
(Thermo Fisher Scientific; catalog 88282). This 6 EU/mg concen-
tration was lower than that found in commercially available endo-
toxin-depleted preparations of the purified peanut proteins Ara h 1 
and Ara h 2 (Indoor Biotechnologies; LTN-AH1-1 and LTN-AH2-1). 
Furthermore, the endotoxin concentration in the PBMC cultures 
with peanut protein extract was 0.6 EU/mL, which is comparable to 
the endotoxin limit for eluates from medical devices (0.5 EU/mL) as 
determined by the FDA (63). Anti–CD154-PE antibody (BD Biosci-
ences; clone TRAP1) was added to the cultures at a 1:50 dilution (20 
μL/well) for the last 3 hours. After harvesting, the cells were labeled 
with anti–CD3-AF700 (BD Biosciences; UCHT1); anti–CD4-APC-
Cy7 (BD Biosciences; RPA-T4); anti–CD45RA-PE-Cy7 (BD Biosci-
ences; HI100); anti–CD154-PE  (BD Biosciences; TRAP1); anti–
CD137-APC (BD Biosciences; clone 4B4-1); and Live/Dead Fixable 
Blue Stain (Thermo Fisher Scientific; catalog L23105). Cells were 
then sorted with a FACSAria Fusion instrument (BD Biosciences). 
Cells were gated as live singlet CD3+CD4+CD45RA– cells and then 
sorted as either CD154+CD137+/– (referred to hereafter as CD154+), 
CD154-CD137+ (referred to hereafter as CD137+), or CD154–CD137–.

Single-cell RNA-Seq. Sorted subsets of CD4+ memory T cells were 
processed for single-cell RNA-Seq using the Seq-Well platform as pre-
viously described (36). A portion of each cDNA library was reserved 
for paired TCRα/β enrichment. The rest was barcoded and amplified 
using the Nextera XT kit and sequenced on the Illumina NovaSeq.

Raw read processing was performed as described in Macosko 
et al. (64). Briefly, sequencing reads were aligned to the hg38 refer-
ence human genome, collapsed by unique molecular identifier (UMI), 

We believe this work has implications for the study of human T 
cell biology as well as mechanistic actions of OIT. First, the meth-
odology implemented here provides a framework for the design 
and analysis of paired TCR and transcriptomic data of antigen-re-
active T cells, and this substantial set of human single-cell data 
provides a useful reference for future studies. Using this frame-
work, we detected significant heterogeneity within the peanut-re-
active CD154+ T cell compartment and highlighted potential roles 
for TCR-epitope interactions in skewing the T cell phenotype. 
Second, our data reveal several features of OIT that merit further 
investigation. Based on our data, OIT did not appear to delete pea-
nut-reactive Th2 clones; these findings point to selective clonal 
suppression, rather than deletion, as a major mechanism of OIT 
and highlight why sustained tolerance may be difficult to achieve. 
Furthermore, we found that failure to respond to OIT was reflect-
ed in a broad baseline activation signature, highly expressed in 
Th17 and other T cells, that was resistant to modulation by OIT. 
Future prospective OIT studies could evaluate this signature as a 
predictor of treatment success.

In summary, we used single-cell RNA-Seq and TCR clono-
typing to reveal a complex set of highly distinct peanut-reactive 
Th cell phenotypes, beyond the effector Th2 phenotype, that are 
relevant to the efficacy of OIT. Future therapeutic modalities that 
either target these diverse phenotypes and inflammatory path-
ways, such as Tfh, Th17, OX40-OX40L, or that appreciably delete 
peanut-specific Th2A and Tfh2-like cells, may be more likely to 
promote sustained tolerance in food allergy than allergen-based 
approaches alone.

Methods
Patients. Individuals with peanut allergy aged 7 years and older 
were enrolled in a peanut OIT trial (ClinicalTrials.gov identifier, 
NCT01750879) at the MGH Food Allergy Center. Study participants 
with a previous diagnosis of peanut allergy, a history of peanut-induced 
reactions consistent with immediate hypersensitivity, and confirmatory 
peanut- and Ara h 2–specific plasma IgE concentrations (peanut-specif-
ic IgE >5 kU/L, Ara h 2–specific IgE >0.35 kU/L; ImmunoCAP; Thermo 
Fisher Scientific) underwent a double-blind, placebo-controlled food 
challenge (DBPCFC). Increasing peanut protein doses were admin-
istered every 20 minutes to a maximum dose of 300 mg according to 
the following doses: 3, 10, 30, 100, and 300 mg, for a cumulative total 
of 443 mg. Patients who had an objective allergic reaction during the 
challenge were eligible for inclusion in the study. Demographic classifi-
cations were self-reported by the study participants.

OIT study. The main objective of this phase I/II, double-blind, pla-
cebo-controlled interventional study was to provide safety and mech-
anistic data on OIT for individuals with IgE-mediated peanut allergy. 
Enrolled patients were randomized to receive either treatment (pea-
nut flour) or placebo (roasted oat flour) at a ratio of 3:1. The treatment 
consisted of a modified rush protocol, followed by a buildup phase that 
lasted 44 weeks or until the patient could tolerate a 4000 mg dose of 
peanut protein, whichever came first. The treatment dose was admin-
istered daily, and dosing escalation was incremental, based on previous 
OIT studies (20, 26), and was done every 2 weeks. After the buildup 
phase, the patients entered a maintenance phase, in which treatment 
was continued for 12 weeks at the highest tolerated dose for each 
patient. Finally, the patients underwent an avoidance phase consisting 
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were removed from the downstream analysis. For analysis with the 
Treg module (module 1), which was more highly expressed among 
CD154–CD137– cells than the other Th modules, we instead identified 
a threshold score (module score = 2.0) that most accurately separated 
the positive and negative cell populations.

Identification of Th subtypes. All CD154+ and CD137+ cell transcrip-
tomes were classified as Th1, Th2, or Th17 using the criteria for mod-
ule expression detailed above (see Gene module discovery) for the Th1, 
Th2, and Th17 gene modules. If a cell expressed more than 1 Th mod-
ule, it was assigned to the module with the highest z score (compared 
with the distribution of all CD154+ and CD137+ cells). Then, each indi-
vidual Th class (Th1, Th2, and Th17 cells) was separately visualized 
by UMAP and clustered by Louvain clustering using the R package 
Seurat. For Treg analysis, all CD154+ and CD137+ cells, including those 
with Th1, Th2, or Th17 signatures, were considered using the criteria 
for module expression in Tregs (see Gene module discovery).

Distance analysis of TCR sequences. Pairwise distance of TCRβ CDR3 
sequences was evaluated using the TCRdist method published by Dash 
et al. (47). Briefly, for 2 TCRβ CDR3 amino acid sequences of the same 
length, each residue position was compared, and a penalty was assessed 
for every mismatch. The penalty for 2 different amino acid residues i 
and j was assessed using the BLOSUM62 matrix and was defined as 
min(4 – BLOSUM62[i, j], 4). Each substitution thus incurred a penalty 
between 1 and 4. The overall distance between 2 CDR3s was calculated 
as the sum of penalties at all positions. In the case of 2 CDR3s of unequal 
length, the sequences were aligned in all possible ways and the mini-
mum overall penalty was taken, with each gap incurring a penalty of 8.

Likelihood-based association between TCR and Th subtype. Likeli-
hood-based analysis was used to determine the tightness of associa-
tion between Th subset and the TCRβ CDR3 sequence. A log-likeli-
hood ratio was defined as log2(P/P0), where P is the probability of 2 
cells belonging to the same Th subset if they were drawn random-
ly from all cells sharing the same TCRβ CDR3 sequence (without 
replacement), and P0 is the probability of 2 cells belonging to the same 
Th subset if they were drawn randomly from all cells. P0 represents the 
prior probability without the constraint of TCR information; thus, the 
ratio P/P0 represents the gain in likelihood due to the knowledge of the 
TCR sequence. This analysis was constrained to consider all pairs of 
cells from the same patient.

Analysis of gene module suppression in Th and Treg clones. To quan-
tify the suppression or induction of relevant Th and Treg gene and 
gene module expression over time, we first identified Th (Th1, Th2, 
or Th17) and Treg clones, defined as clonotypes in which the relevant 
module (e.g., Th2) was expressed in at least 1 cell at any time point. 
This approach allowed us to expand our analysis to peanut-reactive 
cells that may gain or lose Th or Treg phenotypes over the course of 
OIT. Mean expression of genes or gene modules was then calculated 
for each patient at each time point. For analysis of Treg clones, patient 
105 (full tolerance) was omitted, since data from CD137+ T cells were 
not available (see Single-cell RNA-Seq).

Longitudinal analysis of individual clonotypes. Temporal analysis of 
individual clonotypes over the course of OIT involved 2 analyses: (a) 
determination of the distribution of time points at which each clonotype 
was detected, and (b) assessment of module expression of clonotypes 
within Th subtypes. For the former, CD154+ or CD137+ clones were fil-
tered to identify those with at least 4 cells in that sorted subset. Then, 
the time points covered by the cells were tabulated, and the clonotype 

and counted to obtain a digital gene expression matrix of cells versus 
genes. These counts were then filtered to exclude any cells with few-
er than 1000 genes or 2000 UMIs and normalized by library size per 
cell and log transformation. (For the rare Th subset analysis, which 
required more cells, a filter of 500 genes and 1000 UMIs was used.) 
After this filtering step, a total of 74,646 CD154+ cells were recovered 
from 12 patients, 41,186 CD137+ cells from 11 patients, and 18,297 
CD154–CD137– cells from 6 patients.

Paired single-cell TCRαβ sequencing. Paired TCR sequencing was 
performed according to Tu et al. (37). Briefly, following cDNA ampli-
fication, biotinylated capture probes for human TRAC and TRBC 
transcript regions were annealed to cDNA. Magnetic streptavidin 
beads were used to enrich the bound TCR sequences, which were 
then further amplified using human V-region primers and prepared 
for sequencing using Nextera sequencing handles. Libraries were 
sequenced on an Illumina MiSeq using 150 bp length reads.

TCR sequencing reads were preprocessed according to the method 
in Tu et al. (37). In short, reads were mapped to TCRV and TCRJ IMGT 
reference sequences via IgBlast, and V and J calls with “strong plurali-
ty” (wherein the ratios of the most frequent V and J calls to the second 
most frequent calls were at least 0.6) were retained. CDR3 sequences 
were called by identifying the 104-cysteine and the 118-phenylalanine 
according to IMGT references and translating the amino acid sequences 
in between those residues. Processed TCR sequences were then paired 
with the single-cell transcriptomic data via the cell barcodes.

Visualization of single-cell RNA-Seq data. Visualization of sin-
gle-cell transcriptomes was done with UMAP (65) with the Python 
package scanpy. Prior to visualization, the normalized gene expres-
sion data were transformed using a standard “regress-out” approach 
to mitigate batch effects, whereby a multiple linear regression was per-
formed on all genes with 2 covariates that could be batch associated 
(number of transcripts per cell, and percentage of transcripts aligning 
to the mitochondrial chromosome). The residuals from this regression 
were taken as the transformed data. Next, PCA was performed, and 
the top 10 components were used to generate a UMAP visualization.

Gene module discovery. Coexpressed gene modules were generated 
using the sparse PCA approach described by Witten et al. and imple-
mented in the R package PMA (38). This unsupervised method utilizes 
an L1 norm penalty on loadings in each component to introduce spar-
sity. Prior to running the sparse PCA, the gene expression matrix was 
randomly downsampled to have an equal number of cells from all sam-
ples to prevent the results from being skewed by a subset of the sam-
ples. Genes were filtered down to the union of immune genes (defined 
by the set of gene lists available on ImmPort at https://www.immport.
org/shared/genelists) and the variable genes in the data set (defined 
using the R package Seurat). Finally, the gene expression data were 
scaled with respect to genes, and sparse PCA was run using the com-
mand “SPC.” Gene module scores were calculated as the scaled gene 
expression input matrix multiplied by the outputted loadings matrix 
“v.” The first 50 gene modules were retained for downstream analysis.

Cells were classified as “expressing” or “not expressing” a mod-
ule using a simple thresholding strategy. The distribution of module 
scores of CD154–CD137– cells was used as a negative control, and a 
threshold was set at the point where 0.2% of CD154–CD137– cells 
were in the positive population. Cells with a module score above 
the threshold were labeled as “expressing” that module. Modules in 
which at least 60% of the expressing cells were from a single patient 
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the IQR for the whisker lengths. P values of less than 0.05 were con-
sidered statistically significant. All adjusted P values were calculated 
using Bonferroni’s correction unless stated otherwise.

Study approval. All participants were recruited with informed con-
sent, and the study was approved by the IRB of Mass General Brigham 
Healthcare (protocol 2012P002153).

Author contributions
WGS and JCL conceptualized the study. WGS conducted the 
clinical trial (NCT01750879). BM, AAT, BR, and PMP conduct-
ed experiments. BM, AAT, DMM, and NPS analyzed the data. 
TMG and JHG conducted experiments to develop and validate the 
methods. BM, AAT, BR, DMM, WGS, and JCL wrote and edited 
the manuscript. BM and AAT contributed equally to this research 
as co–first authors. The order of appearance of the co–first authors 
was based on the timeline of their contributions to the work.

Acknowledgments
We would like to thank our patients and their families for their 
generous time and participation. We thank Lauren Tracy, Col-
by Rondeau, Christine Elliot, and Leah Hayden, the clinical 
coordinators of this study. We would also like to thank Sarita U. 
Patil and Yamini V. Virkud for fruitful discussions. The clinical 
work was performed at the Harvard Clinical and Translational 
Science Center and supported by grants 1UL1TR001102 and 
8UL1TR000170, from the National Center for Advancing Trans-
lational Sciences (NCATS), NIH, and 1UL1RR025758, from the 
National Center for Research Resources (NCRR). In addition, we 
thank our colleagues at the MGH Department of Pathology Flow 
and Image Cytometry Research Core for their help with cell sort-
ing. The Flow Core obtained funding from the NIH Shared Instru-
mentation program (1S10OD012027-01A1, 1S10OD016372-01, 
1S10RR020936-01, and 1S10RR023440-01A1). This work was 
supported in part by the Koch Institute Support (core) NIH Grant 
P30-CA14051 from the National Cancer Institute (NCI), as well 
as the Koch Institute – Dana-Farber/Harvard Cancer Center 
Bridge Project. This work was also supported by the FASI at the 
Broad Institute and the NIH (5P01AI039671, 5U19AI089992, 
and U19AI095261).

Address correspondence to: Wayne G. Shreffler, Massachusetts 
General Hospital, Charlestown Navy Yard Building 149, Mailstop 
CNY 149-8, 149 13th Street, Boston, Massachusetts 02129, USA. 
Phone: 617.726.6147; Email: wshreffler@mgh.harvard.edu. Or 
to: J Christopher Love, Massachusetts Institute of Technology, 77 
Massachusetts Avenue, Building 76-253, Cambridge, Massachu-
setts 02139, USA. Phone: 617.234.2300; Email: clove@mit.edu.

was classified as having a specific temporal pattern (e.g., baseline, build-
up, avoidance). For the latter, clonotypes were filtered to identify those 
with at least 2 cells in the combined CD154+ and CD137+ compartments 
at each time point. Each clonotype was then assigned to 1 of the 6 Th 
subtypes (or no subtype) on the basis of the most frequent Th subtype 
that its cells mapped to (see Identification of Th subtypes). At each time 
point, the fraction of cells within each clonotype expressing the relevant 
module (Th1, Th2, or Th17) was counted, relative to the total number of 
cells of that clonotype at that time point. Fractional expression was used 
instead of module scores to normalize for clonotype- or patient-driven 
differences in the dynamic range of module expression.

Baseline signature of all modules using PCA. PCA was used to iden-
tify broad immune signatures associated with clinical outcome. Mean 
module scores of the 50 gene modules (minus the 7 modules associ-
ated with a single patient; see Gene module discovery) were computed 
for each patient at each time point. Averages at baseline were used 
to compute the principal components. The first principal component 
(PC1), or the component explaining the largest amount of variance, 
was then applied to module averages of other time points.

Spearman’s correlation of treatment outcome and module expres-
sion. To investigate whether treatment outcome was correlated with 
expression of modules enriched in PC1, we assigned numerical val-
ues to each of the outcomes (tolerance as 2, partial tolerance as 1, and 
treatment failure as 0) to represent an ordinal relationship between 
the outcomes. Spearman’s correlation between mean module expres-
sion (by patient and cell subset) and outcomes was calculated. The 
corresponding unadjusted P values are reported.

Data availability. FASTQ file format data related to human sam-
ples are available through the NCBI’s dbGaP (accession no. phs001897.
v2.p1). Processed gene expression and associated TCR clonotype data 
are available through the NCBI’s Gene Expression Omnibus (GEO) 
database (GEO GSE158667). Processed data files and associated meta-
data tables for Figures 1–6 are available on https://github.com/mitlove-
lab/, under GEO GSE158667.

Code availability. R, python, and MATLAB scripts for processing 
TCR sequencing data and generating all analyses, as well as all updates, 
are available on https://github.com/mitlovelab/PNOIT2_scRNAseq 
and (commit ID: 90ecf6f8a35f7d0fcace61b7b488da87dd9a6562).

Statistics. Paired or unpaired Wilcoxon rank sum tests were per-
formed for comparisons between 2 groups. Spearman’s correlation 
was assessed for association of clinical group rankings with pheno-
types (e.g., module scores) and for association of IL4 and IL5 expres-
sion with peanut-specific IgE titer. A 2-sided, χ2 proportion test with 
1 degree of freedom was used for the TCR distance analysis. All sta-
tistical tests were performed as 2-sided tests unless otherwise speci-
fied. Box plots were plotted with the standard visualization of 25th and 
75th percentiles for the lower and upper hinges and at most 1.5 times 
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