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Biomarkers can contribute to clinical cancer therapeutics at multiple points along the
patient’s diagnostic and treatment course. Diagnostic biomarkers can screen or
classify patients, while prognostic biomarkers predict their survival. Biomarkers can
also predict treatment efficacy or toxicity and are increasingly important in
development of novel cancer therapeutics. Strategies for biomarker identification
have involved large-scale genomic and proteomic analyses. Pathway-specific
biomarkers are already in use to assess the potential efficacy of immunotherapy
and targeted cancer therapies. Judicious application of machine learning techniques
can identify disease-relevant features from large data sets and improve predictive
models. The future of biomarkers likely involves increasing utilization of liquid biopsy
and multiple samplings to better understand tumor heterogeneity and identify drug
resistance.
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INTRODUCTION

A biomarker is a measurable indicator that predicts disease presence, severity, or response to
treatment. Levels of biomarkers can be clinically useful by guiding disease diagnosis, or by revealing
the pharmacodynamics of drug treatment. Figure 1 depicts various types of biomarkers and their
potential for clinical utility.

Approved and experimental biomarkers can be classified based on their clinical
uses. These clinical uses parallel the progressive utilization of biomarkers during the
development of cancer therapeutics. Figure 2 gives an overview of biomarker
development strategies and potential uses. Biomarkers are divided into categories
including diagnostic, prognostic, pharmacodynamic, and predictive, with some falling
into several categories. This review briefly summarizes some current clinical uses of
biomarkers and their effect on development and application of cancer therapeutics. It
also addresses promising strategies for biomarker discovery such as genomics,
proteomics and machine learning, and discusses the increased clinical accessibility and
potential applications of liquid biopsies.
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FIGURE 1 | Clinical uses of biomarkers. Diagnostic, prognostic, predictive, and pharmacodynamic biomarkers are shown along with what each predicts, and the
clinical setting in which they can be used.

FIGURE 2 |Biomarker development and clinical utility. (A). Overview of methods of biomarker development, testing and clinical utilization. (B). Types of biomarkers
with a timeline of opportunities for utilization.
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Companion Diagnostics
Companion diagnostics is the development of predictive
biomarkers in conjunction with novel therapeutics. It identifies
patients who are likely to respond to the treatment or to
experience severe toxicity. An early example is estrogen
receptor assays which are implemented in the prescription of
the estrogen receptor modulator tamoxifen. Since then, others
have been developed includingmeasurement of HER2 levels prior
to treatment of breast cancer with the anti-HER2 antibody
pertuzumab, and measurement of PD-L1 levels prior to
treatment with the anti-PD-L1 antibody pembrolizumab
(Jørgensen et al., 2016). Companion diagnostics increasingly
subdivide patients based on molecular biomarkers, which may
be required to direct prescription of targeted therapies. This
codependence is reflected in FDA approvals of companion
biomarkers in conjunction with novel therapeutics, such as the
simultaneous approval of vemurafenib and an assay to detect the
V600E mutation it targets (Scheerens et al., 2017). Companion
diagnostics allow improved patient selection for drug trials and
quicker identification of clinically effective drugs for personalized
treatments.

Diagnostic Biomarkers
While companion diagnostics focuses on predictive biomarkers,
all types are utilized in both patient care and the phases of drug
development. Diagnostic biomarkers suggest the presence of a
disease or can classify patients into subtypes. Elevated levels of
these diagnostic biomarkers may suggest the presence of cancer,
and thus can be used as a screening tool in healthy individuals or
can support other diagnostic measures such as imaging and
biopsy. Several long-used cancer diagnostic biomarkers include
prostate-specific antigen (PSA), used for diagnosis of prostate
cancer (Welch and Albertsen 2009); cancer antigen 19-9 (CA 19-
9), the gold standard serum biomarker for diagnosis of pancreatic
ductal adenocarcinoma (PDAC) (Poruk et al., 2013); and CA 125,
a classical biomarker in ovarian cancer (Felder et al., 2014).
Evidence supporting the utility of cytokines as diagnostic
biomarkers is evolving, including data demonstrating IL-6 and
VEGF as possible diagnostic biomarkers in ovarian and gastric
cancer (Monastero and Srinivas, 2017). Further validation of
these cytokines is needed to uncover their diagnostic utility,
either as independent biomarkers or in conjunction with
classical biomarkers to increase sensitivity and specificity.
While diagnostic biomarkers are often used for subtyping a
known malignancy, such as in leukemia (Jiang et al., 2016),
many lack the specificity needed for cancer diagnosis in the
general population (Califf 2018).

Prognostic Biomarkers
Prognostic biomarkers predict the patient’s overall survival,
independent of therapy. Examples of diagnostic biomarkers
with prognostic value include CA 19-9 and CA 125, which
can predict overall survival in PDAC and ovarian cancer,
respectively (Poruk et al., 2013; Felder et al., 2014).
Carcinoembryonic antigen (CEA) indicates poor overall
survival in colorectal, breast, and lung cancer patients, though
it is only regularly used for prognostication in colorectal cancer

(CRC) (Dixon et al., 2003). Other types of biomarkers can also
have prognostic value, such as miRNA-155 in hepatocellular
carcinoma, which increases Wnt signaling pathway activity
and is suggestive of a poor clinical prognosis (Nalejska et al.,
2014). Even the presence of circulating tumor cells is correlated
with metastasis and can serve as a marker of poor prognosis in
non-metastatic breast cancer (Lucci et al., 2012). The prognostic
information of biomarkers can guide treatment decision-making,
monitor disease progression, and detect recurrence.

Pharmacodynamic Biomarkers
Pharmacodynamic biomarkers suggest whether a drug has
reached its target and exerted a cellular response (Jackson
2012). For example, measurement of Mitogen-Activated
Protein Kinase (MAPK) pathway inhibition (via measurement
of pERK) in non-small-cell lung cancer (NSCLC) patients
receiving BRAF inhibitors can indicate direct drug-target
interaction (Gainor et al., 2014). Such pathway-specific
measurements can be taken simultaneously with markers of
tumor cell proliferation (cyclin D1, Ki67) or tumor growth
[via fludeoxyglucose (18F) measured by PET/CT] to determine
first if the drug is hitting its primary target and second if the drug
is mediating tumor suppression (Kelloff et al., 2005; Gainor et al.,
2014). These measurements can determine the degree of response
to the drug in clinical trials and guide treatment decision making
in real-time. Most pharmacodynamic biomarkers are measured
with tumor biopsies, but recently there has been increasing
interest in less invasive blood-based biomarker development
(Jackson 2012). Further study of pharmacodynamic
biomarkers could personalize treatment doses for patients and
provide a method to both minimize toxicity and avoid
subtherapeutic dosing.

Predictive Biomarkers and An Example of
Biomarker Application
Predictive biomarkers indicate how patients are likely to respond
to treatment, either in terms of efficacy or toxicity (Alves et al.,
2019). They can be measured before first-line treatment or to
choose a salvage therapy. Well-established predictive biomarkers
include HER2 overexpression which predicts breast cancer
response to anti-HER2 therapies like trastuzumab and KRAS,
NRAS and BRAFmutations which predict resistance to Epithelial
Growth Factor Receptor (EGFR) inhibitors in CRC (Jørgensen
et al., 2016). Using EGFR therapy in CRC may lead to shorter
survival in patients with certain mutations in these MAPK
pathway genes, making them biomarkers of resistance to
cetuximab (Boussios et al., 2019). More recent developments
indicate that high circulating levels of IFN-γ predict response to
immunotherapies such as immune checkpoint blockade
(Karachaliou et al., 2018). Other predictive biomarkers forecast
pharmacodynamic resistance or toxicity. Examples include
genetic alterations in dihydropyrimidine dehydrogenase (DPD)
and of UDP glucuronosyltransferase family one member A1
(UGT1A1), the enzymes responsible for inactivation of 5-FU
and irinotecan, respectively. Genetic alterations that reduce the
activity of these enzymes result in severe toxicity after treatment
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with the compound. Additionally, enhanced expression of
excision repair cross-complementation group 1 (ERCC1)
enhances DNA excision repair and leads to resistance to
platinum-based drugs (Chung 2021). These predictive
biomarkers guide initial treatment decisions by identifying
potentially successful drugs and minimizing toxicity.

The clinical application of disease-related biomarkers can
parallel their integration into drug development. For example,
the use of biomarkers in breast cancer evolved to include
diagnostic, prognostic, pharmacodynamic, and predictive
biomarkers as the treatments and understanding of the disease
progressed. Diagnostic biomarkers such as hormone receptor
(HR) status are used to differentiate molecular subtypes of breast
cancer. HR status was found to be associated with survival,
making it also a prognostic biomarker (American Cancer
Society Inc, 2019). Prognostic markers such as hormonal
status, HER2 expression, and the 21-gene expression assay
Oncotype DX have all been integrated into care and treatment
decisions for breast cancer patients. Oncotype DX can predict
chances of recurrence and this prediction is used clinically to
evaluate the risks and benefits of adjuvant chemotherapy in
patients with early stage HR positive breast cancer (Wang
et al., 2019). The American Society of Clinical Oncology
recommends the use of Oncotype Dx to guide the use of
chemotherapy after surgery for patients with HR positive,
HER2 negative early stage breast cancer, showing integration
of multiple gene and protein expression biomarkers into clinical
best practice recommendations for selection of therapeutics
(Andre et al., 2019). As estrogen receptor modulators and
aromatase inhibitors became available, HR status was also
used as a predictive biomarker for endocrine therapy (Duffy
et al., 2017). Ki67 is a marker of cell proliferation, and a
pharmacodynamic response in Ki67 expression after treatment
with endocrine therapy is an indication of on-target drug effects
(Freelander et al., 2021). Mutations in the ESR1 gene encoding
the estrogen receptor serve as a predictive biomarker of resistance
to endocrine therapy (Dustin et al., 2019). This example shows
how the development and clinical application of diagnostic,
prognostic, pharmacodynamic, and predictive biomarkers can
all be important in the development and application of targeted
therapeutics.

GENOMICS, PROTEOMICS, ANDMACHINE
LEARNING

Cancer-specific mutations are an appealing source of potential
biomarkers. Genomic analyses have been applied to biomarker
identification in both inherited and sporadic cancers. Early
applications of gene mutations involved the identification of
germline mutations that serve as prognostic biomarkers of
elevated cancer risk, such as p53 mutations in Li-Fraumeni
syndrome or BRCA mutations in hereditary breast cancer
(Olivier et al., 2019). These tests expanded the role of genetic
counselors and still guide screening and treatment
recommendations (Weil, 2002). Other -omics applications
have sought to further characterize tumor cells.

Transcriptomics, epigenomics, metabolomics, and proteomics
can all contribute information on tumor state. While
integrated multi-omic approaches have not yet been fully
integrated into therapeutic decision-making, new drug trials
may incorporate this information into patient selection. For
example, in PDAC, an immune profile combining whole-
exome sequencing, RNA transcriptomics, and cell-surface
protein expression has been developed to identify patients who
are more likely to respond to immunotherapy (Lenzo et al., 2021).

Genomics
The convoluted mutational profile of most sporadic cancers
increases the complexity of genomic analysis. Advances in
sequencing technologies including single-cell sequencing have
further underscored tumor heterogeneity and provided insight
into the variation in patient responses to therapy. Predictive
biomarkers when combined with targeted therapies have
shifted treatment decisions from a focus on tumor type to
gene-directed individualized treatment plans. For instance,
FDA-approved biomarkers such as activating mutations in
EGFR predict effectiveness of EGFR inhibitors like gefitinib
(Tsimberidou et al., 2020). Patients selected by EGFR
mutation biomarker for gefitinib treatment have a 65%
response rate, compared to 20–30% in unselected patients
(Feng et al., 2021). Improvements in the accuracy and
standardization of sequencing and reporting have increased
the clinical utilization of large multi-gene panels and whole
genome analysis.

Proteomics
Proteomics attempts to directly analyze the main mediators of
cellular function by quantifying protein activity and location
(Olivier et al., 2019). The dynamic nature of the proteome
may allow for better biomarkers of response to treatment and
cancer surveillance. Proteomics can clarify the role of the tumor
microenvironment (TME). Cell surface urokinase plasminogen
activator receptor is an example of a prognostic biomarker that
emerged from proteomic analyses. Mass spectrometry methods
have also been FDA approved for analysis of the human
microbiome, and are being assessed for relevance to colorectal
and lung cancers (Su et al., 2021).

Machine Learning
Many genomic and proteomic datasets are large, nonlinear, and
multidimensional. The high number of variables measured for
each clinical sample can require sophisticated data analysis
strategies to differentiate signal from noise and adjust for
multiple comparisons. Machine learning can be used to make
predictions that incorporate and simplify multivariate
information and can determine which variables (e.g., genetic
mutations) are relevant biomarkers. The methods to select
disease-relevant features while eliminating redundancy and
noise range from linear models to neural networks (Feng
et al., 2021). In selecting relevant features, machine learning
models can work solely from information within the
annotated data set or can incorporate known biologic
relationships such as in gene set variation analysis.
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There are many existing web servers and bioinformatic
analysis tools. Among pan-cancer human—omics datasets,
web servers aggregating patient data are available for DNA
mutation, methylation, mRNA, micro-RNA, long non-coding
RNA, and protein information. DNA mutation servers include
cBioPortal (its 102,589 samples include The Cancer Genome
Atlas data), GSCALite and CaPSSA. DNA methylation is
available at MEXPRESS, GSCALite, and MethSurv. There are
many databases of mRNA data including GENT2, PROGgeneV2,
LOGpc, SurvExpress, PRECOG, and Oncomine which all have
more than 15,000 patient samples. OncoLnc combines mRNA
micro-RNA and long-noncoding RNA data. Proteomics patient
datasets are available through CPTAC, TCPAv3.0, and TRGAted
(Zheng et al., 2020).

Model development typically involves separate training and
testing data. The quality of a model is determined by how much
more effectively it classifies test data than would be expected by
other available means. Validation can be achieved through
independent datasets, but ideally also involves animal
experiments or clinical trials (Deo, 2015). Clinical applications
of machine learning analyses include the Oncotype Dx scoring in
breast cancer (Wang et al., 2019), and clinical trials of
personalized combination therapies chosen based on predicted
response (Boichard et al., 2020). The application of machine
learning can identify novel biomarkers from relationships not
readily apparent within large data sets and will be increasingly
important in new multi-omic approaches.

LIQUID BIOPSY

Biomarkers can be derived from tumor tissue, blood, other
biologic fluids, and even imaging. Blood-based biomarkers, or
liquid biopsies, have become increasingly attractive in patient
care (Michela 2021). Liquid biopsies have advantages over
traditional solid biopsies as they are non-invasive, cost-
effective, and expedite time to diagnosis. The most studied
cancer biomarkers in plasma or serum samples are circulating
tumor cells (CTCs), circulating tumor DNA (ctDNA), and
exosomes.

Circulating Tumor Cells
CTCs are a rare, migratory cell population shed from a tumor and
believed to play a role in metastasis. CTCs have both diagnostic
and prognostic value across several tumor types including PDAC
(Ankeny et al., 2016b), breast cancer (Cristofanilli et al., 2004),
ovarian cancer (Poveda et al., 2011), colon cancer (Romiti et al.,
2014), andmetastatic castration-resistant prostate cancer (CRPC)
(Bono et al., 2008). In PDAC, CTCs can be a biomarker at
diagnosis and a marker of disease progression, though they are
not yet part of general clinical practice (Ankeny et al., 2016a). In
breast cancer, the number of CTCs before treatment and at the
first follow-up visit are independent predictors of progression free
survival (PFS) and overall survival (OS) (Cristofanilli et al., 2004).
Moreover, in ovarian and colorectal cancers, elevated CTC
numbers are correlated with a higher risk of progression and
worse OS (Poveda et al., 2011; Romiti et al., 2014). Finally, in

CRPC, CTC counts were more predictive of OS than the classical
biomarker PSA (Bono et al., 2008).

Circulating Tumor DNA
ctDNA is tumor-released single- or double-stranded DNA that enters
the bloodstream and can be detected for diagnosis, guidance of
treatment, and monitoring of disease progression. Recently, ctDNA
has been used to guide clinical decision-making in several tumor types
including CRC (Chen et al., 2021), NSCLC (Song et al., 2020), and
metastatic breast cancer (MBC) (Darrigues et al., 2021). In CRC,
postoperative serial ctDNA detection identified recurrence before
radiological imaging and was predictive of high relapse risk (Chen
et al., 2021). ctDNA has suggested a novel therapeutic rechallenge
strategy for CRC based on evidence that resistance mechanisms to
anti-EGFR therapy extinguish over time off of that therapy (Misale
et al., 2014; Parseghian et al., 2019; Sartore-Bianchi et al., 2021).
Moreover, in a prospective real-world study of NSCLC, ctDNA
clearance during treatment was correlated with better OS (Song
et al., 2020). The FDA has approved the use of liquid biopsy for
analysis of sensitizing and resistance mutations in NSCLC due to
multiple studies where the application of biomarkers derived from
liquid biopsy successfully guided treatment decisions (Saarenheimo
et al., 2019). In MBC, ctDNA was a prognostic factor of PFS and
efficacy of treatment was effectively monitored by serial ctDNA
analyses before radiological evaluation (Darrigues et al., 2021).
Analysis of ctDNA has been employed to differentiate between the
clinical scenarios of pseudoprogression and hyperprogression
following treatment of patients with immune checkpoint blockade
therapy (Jia et al., 2019;Ma et al., 2019). Pseudoprogression is transient
enlargement of lesions followed by partial response, and
hyperprogression is unexpectedly rapid disease progression during
treatment (Frelaut et al., 2020). Distinguishing between
pseudoprogression and hyperprogression determines whether
patients should remain on therapy or discontinue therapy. The
speed of ctDNA analyses is ideal as tumors accelerate their rate of
growth during hyperprogression.

Exosomes
Exosomes are small cell-derived vesicles that are shed from
myriad cell types into biological fluids under normal and
pathological conditions. They carry molecular constituents of
their host cells, including proteins, lipids, mRNAs, and miRNAS
(Zhou et al., 2020). They have been implicated in tumor
development and metastasis, making them potential diagnostic
biomarkers for several tumor types including gastrointestinal,
breast, and lung cancers. In a gastrointestinal meta-analysis, a
change in exosome expression was significantly correlated with
poor OS (Zhang et al., 2021). Furthermore, circulating exosomal
miRNAs were indicative of breast cancer (Hannafon et al., 2016)
while exosomal proteins were indicative of lung cancer (Sandfeld-
Paulsen et al., 2016).

BIOMARKERS OF IMMUNOTHERAPY

Biomarkers are particularly important in immunotherapy as
immune checkpoint inhibitors have demonstrated impressive
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responses across multiple tumor types. However, most patients
do not benefit from this therapy and there is a growing need for
biomarkers that can predict patient response.

Tumor and Immune Cell Phenotype
Some patients with PD-L1 positive tumors have improved clinical
outcomes. However, the utility of this biomarker is inconsistent
across tumor types (Doroshow et al., 2021). Increased circulating
levels of sPD-L1 have also been correlated with poor response to
immunotherapy, and may be more predictive than tumor cell
expression of PD-L1 in soft tissue sarcomas (Asanuma et al.,
2020). Diversity of immune cell repertoires could also function as
a biomarker of response, as effective T cell responses require a
diversity in T-cell receptor (TCR) clonality. In NSCLC, patients
with increased CD8+ TCR clonality after immunotherapy had
improved PFS compared to those with decreased clonality (Han
et al., 2020).

Tumor Microenvironment
Immune status of the TME, including tumor-infiltrating immune
cells and cytokine profiles, can be predictive biomarkers for
immunotherapy. In melanoma, tumor-infiltrating immune cell
subsets such as CD4+, CD8+, and FOXP3+ T cells correlate with
improved treatment efficacy and disease outcome (Balatoni et al.,
2018). An increased presence of cytotoxic T cells is generally
predictive of clinical benefit from immunotherapy (Wei et al.,
2021). In contrast, immunodepleted or immunodeficient tumors
are less likely to respond. Furthermore, immunostimulatory
TMEs characterized by inflamed IFN-γ profiles are predicted
to respond better to immunotherapy (Gibney et al., 2016).

Tumor Genomic Biomarkers
Genomic biomarkers such as tumor mutational burden (TMB),
neoantigen load, and microsatellite status are all clinically
relevant biomarkers of immunotherapy. Tumors with high
TMB are thought to have increased neoantigen burden
making them immunogenic and more responsive to
immunotherapy. High TMB is correlated with response to
immunotherapy in several cancer types including NSCLC
(Hellmann et al., 2018b), melanoma (Goodman et al., 2017),
and CRC (Schrock et al., 2019). Similarly, microsatellite status is
significantly associated with response to immunotherapy, where
mismatch repair deficient or microsatellite instability high
tumors are associated with durable responses to
immunotherapy and improved prognosis. This correlation has
been shown in cancers like NSCLC (Hellmann et al., 2018a),
melanoma (Kubecek et al., 2016), and CRC (Andr et al., 2020).

DISCUSSION AND CONCLUSION

As the use of biomarkers in clinical cancer therapeutics advances,
more frequent screening to evaluate drug efficacy and the
development of resistance will be desirable. For patients

undergoing these repeated screenings, the noninvasive nature
of liquid biopsy is advantageous. ctDNA has been applied in
detecting resistance to EGFR tyrosine kinase inhibitors and can
replace a tumor biopsy in the decision to transition to third-
generation EGFR tyrosine kinase inhibitors (Kilgour et al., 2020).
While sequential targeting of the predominant mutation can
prolong treatment responses, intratumoral heterogeneity can
be a source of persistent residual disease and eventual drug
resistance and recurrence. Multiregional sequencing, single-cell
methods and sequential liquid biopsies allow more detailed
evaluation of tumor heterogeneity with the potential to
contribute multiple sub-population biomarkers and guide
combinatorial treatment strategies (Lim and Ma 2019).

The complexities of tumor biology, its evolution over time
and heterogeneity both between patients, and within a single
tumor all add challenge to the development of biomarkers that
meaningfully impact clinical cancer therapeutics. Biomarkers
have the most clinical relevance when they are reproducibly
and accurately measurable, clinically feasible, and
prospectively validated in randomized clinical trials.
Biomarkers are increasingly available at all phases of
patient care, from screening and prevention to evaluations
of drug efficacy and tumor response. Some biomarkers, such as
those related to the EGFR pathway have already become
approved decision-making tools for selecting cancer
therapeutics. More are under development and may add
insights to important areas of research such as tumor
immune modulators and the tumor microenvironment.
Blood-based biomarkers promise to reduce the potential for
biopsy complications and make it easier to test repeatedly for
tumor evolution. Many new trials are utilizing companion
diagnostics where biomarker assays guide the use of targeted
cancer drugs (Jørgensen et al., 2016). As the types of
biomarkers expand, the information contained in published
datasets also grows. Cross-validation among the increasing
number of existing datasets will increase the power of machine
learning algorithms and improve their clinical predictions
(Shukla et al., 2015). While there are still many treatment
decisions made without the aid of biomarkers, the future may
yield more tools to guide the development and utilization of
clinical cancer therapeutics.
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