
T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

JEM © The Rockefeller University Press $30.00

Vol. 204, No. 9, September 3, 2007 2015-2021 www.jem.org/cgi/doi/

2015

10.1084/jem.20070841

BRIEF DEFINITIVE REPORT

            When a naive CD8� T cell encounters antigen, 
it undergoes vigorous clonal expansion and dif-
ferentiation into a population comprised primar-
ily of short-lived, cytotoxic eff ectors that undergo 
cell death after pathogen is cleared ( 1 ). The 
elimination of the antigen-experienced progeny 
of a selected T cell clone, however, is generally 
incomplete, ensuring preservation of a portion 
of daughter cells to provide a  “ memory ”  of the 
pathogen encounter. At least two functionally 
distinct classes of memory cells have been de-
scribed, based on their pattern of tissue homing 
in the absence of antigen. Eff ector – memory 
CD8� T cells provide protection against rein-
fection by patrolling peripheral tissues, but have 
a poor capacity for homeostatic renewal and 
secondary proliferation. Central – memory CD8� 
T cells, in contrast, recapitulate the surveil-
lance behavior of their naive predecessor by 
migrating through secondary lymphoid organs; 
they are distinguished by effi  cient homeostatic re-
newal and rapid secondary proliferative responses 
to generate cytotoxic eff ectors upon reencoun-
ter with pathogen ( 2, 3 ). It remains controver-
sial whether commitment to the self-renewing, 

central – memory lineage occurs before or after 
adoption of the eff ector fate ( 3 – 6 ). 

 The intrinsic molecular program that directs 
commitment to the eff ector –  versus central –
 memory CD8� T cell lineage is not fully under-
stood. We found that defi ciency of the transcription 
factor T-bet resulted in defective generation of 
eff ector – memory CD8� T cells and excessive 
generation of central – memory CD8� T cells. 
The enhanced central – memory formation result-
ing from T-bet defi ciency directly contrasted 
with the defective central – memory formation oc-
curring in the absence of CD4� T cell help. Dele-
tion of T-bet prevented the defective phenotypic 
and functional characteristics of unhelped CD8� 
T cells. These results suggest that T-bet may rep-
resent a novel target for manipulating the balance 
between terminal diff erentiation and self-renewal 
of pathogen-specifi c CD8� T cells. 

  RESULTS AND DISCUSSION  

 T-bet represses IL-7R �  in effector 

CD8� T cells 

 During the acute phase of an infection, repres-
sion of IL-7R �  marks pathogen-specifi c CD8� 
T cells destined for elimination, whereas the 
cells that will give rise to self-renewing memory 
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Eomes expression, in contrast, did not vary substantially between 
IL-7R �  hi  and IL-7R �  lo  ( Fig. 1 D ) or central –  and eff ector –
 memory subsets ( Fig. 1, E and F ). 

 T-bet defi ciency results in enhanced generation of central –

 memory CD8� T cells 

 The expression pattern of T-bet and its role in repressing 
IL-7R �  suggested that T-bet might negatively regulate the 
development of central – memory CD8� T cells. We found 
that loss of T-bet, in addition to causing derepression of 
IL-7R � , resulted in eff ector CD8� T cells that acquired several 
characteristics of central – memory cells, including high ex-
pression of CD27, low expression of KLRG1, and robust 
IL-2 production ( Fig. 2, A and C ) ( 16, 20 ).  30 d after infection, 
LCMV-specifi c CD8� T cells from wild-type mice exhibited 
substantial heterogeneity ( Fig. 2 B ), which is consistent with 
the presence of both central –  and eff ector – memory CD8� 
T cells ( 2, 3, 5 ). In contrast, T-bet – defi cient mice exhibited 
a predominance of central – memory CD8� T cells ( Fig. 2, 
B and C ). T-bet – defi cient memory CD8� T cells also exhibited 
a gene expression pattern similar to central – memory cells, 
with increased CCR7, reduced Blimp-1, and elevated Eomes 
mRNA ( Fig. 2, D and E ). 

 It was previously suggested that T-bet functions as a posi-
tive regulator of memory CD8� T cell development because 
T-bet – defi cient mice were found to have decreased numbers 
of LCMV-specifi c memory CD8� T cells in the blood and 
spleen ( 16 ). In the memory phase of the response (30 and 
60 d after infection), we also found that  Tbx21 �/� mice had 
fewer LCMV-specifi c CD8� T cells in the blood and spleen 
( Fig. 2 F  and Fig. S1, available at http://www.jem.org/cgi/
content/full/jem.20070841/DC1). Despite the defi ciency in 
the blood and spleen,  Tbx21 �/� mice were found to have 
increased numbers of memory cells in the lymph nodes. This 
might be partially attributable to the elevated expression of 
CCR7 in  Tbx21  �/�  CD8� T cells ( Fig. 2 D ). To ensure that 
the phenotype of T-bet defi ciency was CD8� T cell – intrinsic, 
we used a transfer system in which the behavior of both wild-
type and  Tbx21  �/�  P14 CD8� T cells could be studied within 
the same wild-type host (Fig. S2). This system recapitulated 
the phenotypic, functional, and anatomic characteristics ob-
served in the endogenous CD8� T cell response of  Tbx21  �/�  
mice. Together, these results suggest that T-bet inhibits the 
formation of lymph node – homing, central – memory CD8� 
T cells and positively regulates the development of eff ector –
 memory CD8� T cells. 

 Two features of central – memory CD8� T cells are their 
robust capacity for secondary proliferation and an ability to 
confer heightened resistance to reinfection. Therefore, we 
assessed these characteristics in  Tbx21  �/�  memory CD8� T 
cells by transferring equal numbers of GP33-specifi c wild-
type or  Tbx21  �/�  memory CD8� T cells into naive wild-
type recipients and challenging with  Listeria monocytogenes  
expressing GP 33-41 . T-bet – defi cient memory CD8� T cells 
exhibited severalfold greater reexpansion than wild-type cells 
upon rechallenge ( Fig. 3 A ) and were found to express IL-2 

CD8� T cells seem to be contained within the IL-7R �  – 
expressing subset ( 7, 8 ). When we examined the lymphocytic 
choriomeningitis virus (LCMV) – specifi c CD8� T cell response 
in T-bet – defi cient mice, we observed defective repression 
of IL-7R �  at day 8 after infection ( Fig. 1 A ).  Because this 
fi nding suggested that T-bet may function as a repressor of 
IL-7R � , we tested whether T-bet was suffi  cient to repress 
IL-7R �  in T cells. Retroviral-mediated expression of T-bet 
in CD8� or CD4� T cells stimulated in vitro resulted in re-
pression of IL-7R �  mRNA ( Fig. 1 B ). In addition, ectopic 
expression of T-bet in developing Th2 cells in which T-bet is 
not normally expressed resulted in repression of IL-7R �  sur-
face expression ( Fig. 1 C ). 

 The identifi cation of T-bet as a repressor of IL-7R �  
prompted us to test whether T-bet expression is associated 
with the IL-7R �  lo  subset of eff ector CD8� T cells. We sorted 
LCMV-specifi c P14 CD8� T cells 8 d after infection on the 
basis of IL-7R �  expression and examined T-bet mRNA. 
T-bet was enriched in the IL-7R �  lo  subset of eff ector CD8� 
T cells, whereas the IL-7R �  hi  subset had reduced expression 
of T-bet mRNA ( Fig. 1 D ) and protein (not depicted). A 
similar pattern of gene expression was observed in IL-7R �  hi  
and IL-7R �  lo  cells from the endogenous LCMV-specifi c CD8� 
T cell response (not depicted). 

 In addition to elevated expression of T-bet, the IL-7R �  lo  
subset of eff ector CD8� T cells exhibited substantial enrichment 
for KLRG1 mRNA ( Fig. 1 D ) and protein (not  depicted). 
KLRG1 is an NK-like inhibitory receptor that marks repli-
cative senescence in CD8� T cells ( 7, 9 ) and whose ex-
pression in NK cells is dependent on T-bet ( 10 ). In contrast, 
IL-7R �  lo  eff ectors had reduced expression of CCR7 mRNA 
( Fig. 1 D ), which is a chemokine receptor that represents a 
defi ning feature of central – memory CD8� T cells ( 2, 3 ). In 
addition, we discovered that the IL-7R �  lo  subset exhibited 
elevated expression of Blimp-1 mRNA ( Fig. 1 D ), a tran-
scriptional repressor that promotes terminal diff erentiation of 
plasma cells ( 11 ) and that may also function in T lymphocytes 
( 12, 13 ). Thus, enhanced expression of T-bet appears to 
selectively mark IL-7R �  lo  eff ector CD8� T cells, which exhibit 
features of terminal diff erentiation and which have previ-
ously been shown to fail to give rise to self-renewing mem-
ory cells ( 7, 8 ). 

 Cell transfer experiments have suggested that the IL-7R �  lo  
subset of eff ector CD8� T cells preferentially gives rise to 
eff ector – memory cells ( 7 ). Consistent with this potential 
lineage relationship, we found that T-bet was enriched in 
eff ector – memory CD8� T cells ( Fig. 1, E and F ). The skewing 
of T-bet expression in eff ector –  versus central – memory cells 
was also recently reported in human memory CD8� T cells 
( 14 ). Given the variety of haploinsuffi  cient phenotypes re-
sulting from hemizygous deletion of T-bet, it is possible that 
the diff erences in the amount of T-bet between IL-7R �  lo  
versus IL-7R �  hi  eff ectors and central –  versus eff ector – memory 
CD8� T cells could be functionally relevant ( 15 – 19 ). Expression 
of Blimp-1 paralleled that of T-bet, with elevated expression 
in the eff ector – memory CD8� T cell subset ( Fig. 1, E and F ). 
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 Figure 1.   T-bet – mediated repression of IL-7R �  in effector CD8� T cells. (A) IL-7R �  expression on CD8� T cells from blood of wild-type or  Tbx21  �/�  

mice 8 d after LCMV infection. Top row shows CD8� T cells; middle and bottom rows show H-2D b GP33� or H-2D b NP396� T cells, respectively; the 

 percentage of events are indicated. (B) Quantitative RT-PCR (Q-PCR) of IL-7R �  mRNA from P14 CD8� (left) or DO11.10 CD4� (right) T cells stimulated with 

peptide plus APCs and transduced with retrovirus. Cells sorted 5 d after transduction based on GFP. (C) IL-7R �  expression on DO11.10 CD4� T cells in T H 2 

conditions stimulated and transduced as in B. Cells stained 5 d after transduction. (D) Q-PCR of P14 CD8� T cells from spleens 8 d after infection sorted 

for IL-7R �  hi  or IL-7R �  lo  expression. Naive (CD44 lo ) CD8� T cells are included in some graphs for reference. (E and F) Q-PCR of T-bet, Eomes, or Blimp-1 

mRNA in LCMV-specifi c CD8� T cells. H-2D b GP33� plus H-2D b NP396� CD8� T cells sorted from spleens of wild-type mice at the indicated day after 

infection. Unfractionated tetramer-positive cells (E) or tetramer-positive cells fractionated by CD62L hi  or CD62L lo  expression (F). Values for Q-PCR represent 

the mean � the SEM of triplicate determinations, normalized to HPRT. All results are representative of at least three experiments. 
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 Dysregulated T-bet expression and impaired central –

 memory CD8� T cell formation in the absence of CD4� 

T cell help 

 A well-characterized model of defective memory CD8� T cell 
development involves CD8� T cell activation in the absence of 
CD4� T cell help ( 21 – 25 ). We examined the properties of 
 “ unhelped ”  CD8� T cells by transfer of P14 CD8� T cells into 
 Cd4  �/�  recipients ( Fig. 4 ) or recipients depleted of CD4� T 
cells using monoclonal antibody injection ( Fig. 5 , Fig. S3 [avail-
able at http://www.jem.org/cgi/content/full/jem.20070841/
DC1], and not depicted).   8 d after infection, there was no 
diff erence in the properties of P14 CD8� T cells in wild-type 
compared with  Cd4  �/�  hosts (not depicted). Several weeks 
after infection, however, P14 CD8� T cells from  Cd4  �/�  hosts 
began to manifest signs of aberrant memory diff erentiation, 
with impaired expression of CD62L, IL-7R � , CD27, and IL-2, 
and elevated expression of KLRG1 ( Fig. 4 A ). 

 The memory cells arising in the absence of CD4� T cell 
help appeared to be more eff ector – memory – like, thus con-
trasting with T-bet – defi cient memory CD8� T cells, which 

at a greater frequency ( Fig. 3, A and B ).  Mice that received 
 Tbx21  �/�  memory CD8� T cells also showed substantially 
reduced bacterial burdens in both spleen and liver compared 
with recipients of wild-type cells ( Fig. 3 C ). Thus, deletion of 
T-bet promotes the development of highly functional mem-
ory CD8� T cells. Presently, we are unsure why the defect in 
eff ector – memory CD8� T cells resulting from defi ciency of 
T-bet appears more permanent in this study compared with 
prior fi ndings ( 16 ), although the operational defi nitions of 
eff ector – memory diff er (phenotypic/functional versus chemo-
kine receptor) in the two studies. 

Figure 2.   Enhanced generation of central – memory CD8� T cells in 

T-bet – defi cient mice. (A – C) Phenotype of GP33-specifi c CD8� T cells 

from spleens of wild-type or  Tbx21  �/�  mice 8 (A), 30 (B), or 140 d (C) after 

LCMV infection. Plots display H-2D b GP33� events; the percentage of 

events are indicated. For bottom row, splenocytes were stimulated with 

GP 33-41  peptide; numbers indicate the percentage producing both IFN- �  

and IL-2. Results are representative of three experiments with multiple 

mice per time point. (D and E) Q-PCR of H-2D b GP33� plus H-2 b NP396� 

CD8� T cells from spleens of wild-type or  Tbx21  �/�  mice. (D) CCR7 and 

Blimp-1 mRNA 60 d after infection. Naive represents CD44 lo CD8� T cells 

from uninfected wild-type mice. (E) Eomes mRNA 60 and 100 d after 

infection. Day 0 represents CD44 lo CD8� T cells from uninfected wild-type 

or  Tbx21  �/�  mice. Results are representative of three similar experiments. 

(F) Quantifi cation of LCMV-specifi c CD8� T cells from wild-type or  Tbx21  �/�  

mice 8, 30, and 60 d after infection. Left graph shows H-2D b GP33� cells 

as the percentage of CD8� in blood. Middle and right graphs show num-

bers of CD8� T cells from spleen or lymph node (pooled axillary, inguinal, 

cervical, paraaortic, and mesenteric), respectively, producing IFN- �  in 

response to GP 33-41 . Results represent the mean � the SEM for at least 

three mice per data point.  

 Figure 3.   Enhanced secondary expansion and protection of T-bet –

 defi cient memory cells. Equal numbers (2 � 10 5 ) of wild-type or  Tbx21  �/�  

GP33-specifi c CD8� T cells (Thy1.2�) isolated 45 d after LCMV infection 

and transferred to naive wild-type recipients (Thy1.1�). 1 d after transfer, 

recipient mice were infected with 2.5 � 10 5  CFU of  L. monocytogenes . 4 d 

after challenge, spleens and livers were harvested to assess CD8� T cell 

expansion and perform quantitative bacterial cultures. (A) Wild-type or 

 Tbx21  �/�  GP33-specifi c CD8� T cell expansion. Graphs display numbers of 

transferred cells (Thy1.2�) from spleens of recipient mice producing IFN- �  

or IL-2 in response to GP 33-41 . (B) Cytokine production by wild-type or 

 Tbx21  �/�  GP33-specifi c CD8� T cells from spleens of recipient mice. Plots 

display CD8� events; numbers indicate the percentage of cells producing 

both IFN- �  and IL-2 in response to GP 33-41 . (C) Bacterial load in mice that 

received wild-type or  Tbx21  �/�  GP33-specifi c CD8� T cells. Spleens and 

livers were homogenized in 1% Triton X-100. Bacteria quantifi ed by limiting 

dilution culture. Data for A and C represent the mean � the SEM of six 

recipients of wild-type and four recipients of  Tbx21  �/�  cells. Results are 

representative of three similar experiments.   
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availability of CD4� T cell help. The rescue was apparent even 
when T-bet defi ciency was confi ned to antigen-specifi c CD8� 
T cells (Fig. S5). Moreover, delayed antagonism of T-bet after 
unhelped memory CD8� T cell development was capable 
of reversing several aspects of their dysfunctional phenotype 
(Fig. S6). Thus, T-bet appears to be required for the aberrant 
diff erentiation of memory CD8� T cells that occurs in the 
absence of CD4� T cell help. 

 How T-bet and CD4� T cells execute their opposing ef-
fects on the balance between central –  versus eff ector – memory 
CD8� T cells remains to be determined. In several diff erent 
systems, transcription factors function as intrinsic modulators 
of self-renewal or terminal diff erentiation. In B lymphocytes, 
the transcriptional repressor Blimp-1 promotes terminal diff er-
entiation (plasma cell) at the expense of self-renewal (memory 
B cell) ( 11 ). In the  Drosophila melanogaster  neural stem cells, the 
homeodomain transcription factor Prospero functions as a 
similar switch by repressing genes required for self-renewal, 
such as stem cell and cell-cycle genes, while activating genes 
involved in terminal diff erentiation ( 26 ). Parallels from other 
biological systems may help elucidate whether T-bet similarly 
functions to promote terminal diff erentiation at the expense 
of self-renewal, which has been proposed to represent an 
 essential distinction between eff ector –  versus central – memory 
CD8� T cells, respectively ( 2 – 7, 27 ). 

 The potential ability of T-bet to switch between two 
polar states of diff erentiation may explain numerous aspects 
of viral pathogenesis. Clonal deletion, for example, could 
be regarded as a  “ self-renewal defi ciency state, ”  associated 

appear to be more central – memory – like. Using intranuclear 
staining of the T-bet protein, unhelped memory CD8� T cells 
exhibited a detectable increase in expression of T-bet ( Fig. 4 B ), 
which specifi cally localized to the expanded eff ector – memory –
 like subset (CD62L lo , IL-7R �  lo , CD27 lo , KLRG1 hi ;  Fig. 4 C  
and Fig. S4, available at http://www.jem.org/cgi/content/
full/jem.20070841/DC1). In addition to exhibiting elevated 
T-bet mRNA ( Fig. 4 D ), unhelped memory CD8� T cells 
were found to express more Blimp-1 mRNA, but less CCR7 
and Eomes mRNA ( Fig. 4, D and E ). Lack of CD4� T cell 
help, thus, appears to impair central – memory and/or promote 
eff ector – memory CD8� T cell development. 

 T-bet deletion prevents dysfunctional programming 

of unhelped memory CD8� T cells 

 To discriminate whether elevated T-bet expression in unhelped 
memory CD8� T cells plays a causal role in, or is simply a 
consequence of, their altered diff erentiation, we performed 
antibody depletion of CD4� T cells from wild-type or  Tbx21  �/�  
mice, followed by infection with LCMV. Again, we found 
that unhelped memory CD8� T cells in wild-type mice ex-
hibited a predominance of eff ector – memory – like cells (CD62L lo , 
IL-7R �  lo , CD27 lo  ,  and KLRG1 hi ), with impaired production 
of IL-2 and CD40L ( Fig. 5, A and B,  and Fig. S3). Deletion 
of T-bet, however, prevented the phenotypic and functional 
defects associated with the lack of CD4� T cell help ( Fig. 5 , 
Fig. S3, and Fig. S5, available at http://www.jem.org/cgi/
content/full/jem.20070841/DC1), resulting in enhanced gen-
eration of central – memory CD8� T cells, regardless of the 

 Figure 4.   Enhanced T-bet expression in unhelped memory CD8� T cells. (A) Phenotype of P14 cells from wild-type or  Cd4  �/�  hosts 60 d after 

infection. For bottom row, splenocytes were stimulated with GP 33-41 . Plots show CD8� events; numbers indicate the percentage of P14 cells (Thy1.1�) 

expressing indicated surface marker or cytokine. (B and C) Intranuclear T-bet staining of P14 cells from wild-type or  Cd4  �/�  hosts 75 d after infection. 

(B) Plots show CD8� events; numbers indicate MFI of T-bet staining in bulk P14 population (Thy1.1�). (C) Plots show P14 cells (Thy1.1�) from  Cd4  �/�  

hosts; numbers represent MFI of T-bet staining in subsets with high or low expression of indicated marker. (D) Q-PCR of T-bet and Eomes mRNA in P14 

cells from wild-type or  Cd4  �/�  hosts 60 d after infection. (E) Q-PCR of CCR7 and Blimp1 mRNA in P14 cells from wild-type or  Cd4  �/�  hosts 31, 46, or 

60 d after infection. Values for Q-PCR represent the mean � the SEM of triplicate determinations, normalized to HPRT. All results are representative of 

at least three experiments.   



2020 T-BET REPRESSES CENTRAL – MEMORY CD8� T CELL DEVELOPMENT | Intlekofer et al.

  MATERIALS AND METHODS  
 Mice and pathogens.   Mice were maintained and used in accordance with 

the University of Pennsylvania Institutional Animal Care and Use Guide-

lines. Wild-type C57BL/6,  Tbx21  �/�  ( 18 ), DO11.10 TCR transgenic, and 

P14 TCR transgenic mice were housed in specifi c pathogen-free conditions 

before use.  Tbx21  �/�  P14 TCR transgenic mice were generated by inter-

breeding  Tbx21  �/�  mice with P14 transgenic mice. For analysis of the 

endogenous CD8� T cell response, C57BL/6 mice or  Tbx21  �/�  were in-

fected with 2 � 10 5  PFU of LCMV Armstrong. H-2D b GP33 or H-

2D b NP396 tetramers were used to identify LCMV-specifi c CD8� T cells. 

For P14 transfer experiments,  � 5 � 10 4  CD8� T cells from naive P14 TCR 

transgenic mice (Thy1.1/1.1) were transferred intravenously into C57BL/6 

or  Cd4  �/�  recipients (Thy1.2/1.2). For P14 cotransfer experiments,  � 5 � 10 4  

wild-type P14 cells (Thy1.1/1.1) were mixed with  � 5 � 10 4   Tbx21  �/�  

P14 cells (Thy1.1/1.2) and transferred to wild-type C57BL/6 recipients 

(Thy1.2/1.2). 1 d after transfer, recipient mice were infected with LCMV. 

For CD4 depletion experiments, wild-type or  Tbx21  �/�  mice received intra-

peritoneal injection of GK1.5 antibody (0.2 mg in PBS) 1 d before and 1 d 

after infection with LCMV. GK1.5 treatment resulted in effi  cient depletion 

of CD4� T cells for �1 wk (not depicted). For  Listeria monocytogenes  experi-

ments, mice were challenged with 2.5 � 10 5  CFU of  L. monocytogenes  with 

transgenic expression of the LCMV-derived peptide GP 33-41 . 4 d after bacte-

rial challenge, spleens and livers were homogenized in 1% Triton X-100 in 

PBS, followed by limiting dilution culture on blood heart infusion agar. 

 Flow cytometry, cell culture, stimulation, and retroviral transduction.  

 Surface staining, intracellular cytokine staining, and fl ow cytometry were 

performed as previously described ( 18 ). For LCMV-derived peptide stim-

ulations, splenocytes or lymph node cells were stimulated for 6 h with 

0.2  	 g/ml GP 33-41  or NP 396-404  peptide in the presence of 1  	 g/ml brefeldin A. 

Antibodies used for fl ow cytometry were purchased from BD Biosciences. 

Intranuclear T-bet staining (Santa Cruz Biotechnology) was performed by 

fi xation with 4% paraformaldehyde in PBS, followed by permeabilization 

and staining in 0.1% Triton X-100 and 1% FBS in PBS. Splenocytes from 

DO11.10 or P14 TCR transgenic mice were stimulated and transduced as 

previously described ( 18 ). 

 Quantitative RT-PCR.   RNA extraction, cDNA synthesis, and quantita-

tive real-time RT-PCR were performed as previously described ( 18 ). Primer 

and probe sets used for HPRT and Eomes detection were previously de-

scribed ( 18 ). Presynthesized Taqman Gene Expression Assays (Applied Bio-

systems) were used to amplify the following sequences (gene symbols and 

Applied Biosystems primer set numbers in parentheses): Blimp-1 ( Prdm1 ; 

Mm00476128_m1), CCR7 ( Ccr7 ; Mm01301785_m1), KLRG1 ( Klrg1 ; 

Mm00516879_m1), and T-bet ( Tbx21 ; Mm00450960_m1).  ‘ Test ’  gene val-

ues are expressed relative to that of HPRT, with the lowest experimental 

value standardized at 1. 

 Online supplemental material.   Fig. S1 shows that T-bet – defi cient antigen-

specifi c memory CD8� T cells preferentially accumulate in lymph nodes. 

Fig. S2 shows that T-bet represses central – memory development in a CD8� 

T cell – intrinsic manner. Fig. S3 shows that deletion of T-bet rescues the phe-

notype and function of unhelped memory CD8� T cells. Fig. S4 shows that 

unhelped memory CD8� T cells have elevated expression of T-bet. Fig. S5 

shows that T-bet defi ciency restricted to antigen-specifi c CD8� T cells is 

capable of correcting abnormalities associated with unhelped memory cells. 

Fig. S6 shows that preexisting dysfunction in unhelped memory CD8� T cells 

can be reversed by antagonism of T-bet. The online version of this article is 

available at http://www.jem.org/cgi/content/full/jem.20070841/DC1. 
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with extreme excess of T-bet expression resulting from pro-
longed antigenic stimulation. Likewise, the association of 
high precursor frequency with enhanced central – memory 
formation might be considered a  “ disorder of excessive self-
renewal, ”  explained by diminished T-bet expression as a 
consequence of excessive competition for antigen ( 5 ). The 
potential role of T-bet in these processes is currently be-
ing investigated. 

 The excessive diff erentiation of eff ector – memory CD8� 
T cells in the absence of CD4� T cell help could involve 
 direct eff ects, such as loss of soluble or membrane-bound 
 signals typically delivered by CD4� T cells to dendritic cells or 
CD8� T cells, including IL-2, chemokines, or CD40L ( 28 – 30 ). 
Alternatively, loss of CD4� T cell help could act more indi-
rectly, for example, by altering kinetics of pathogen clearance 
and necessitating prolonged eff ector function ( 3 ). Although 
the abnormalities arising in the absence of CD4� T cell help 
appear to be at least partially T-bet – dependent, it is antic-
ipated there could be T-bet – independent derangements con-
tributing to the aberrant diff erentiation of unhelped memory 
CD8� T cells. Nonetheless, antagonism of T-bet might rep-
resent a novel therapeutic approach for preventing the dys-
functional programming of CD8� T cells in patients with 
compromised CD4� T cell function. 

 Figure 5.   T-bet – dependent dysfunction of unhelped memory CD8� 

T cells. (A and B) Wild-type or  Tbx21  �/�  mice were left untreated (No Tx) 

or treated with CD4-depleting antibody (0.2 mg GK1.5 i.p.; CD4 depleted) 1 d 

before and 1 d after LCMV infection. (A) Surface phenotype of GP33-specifi c 

CD8� T cells from spleens 90 d after infection. Plots show H-2D b GP33� 

events; numbers represent the percentage of tetramer-positive cells 

 expressing indicated surface marker. (B) Cytokine production of GP33-specifi c 

CD8� T cells. Plots show CD8� events; numbers indicate the percentage 

of cells producing both IFN- �  and IL-2 or CD40L in response to GP 33-41 . 

Results are representative of two independent experiments.   
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