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Background: To determine effective biomarkers for the diagnosis of acute liver

failure (ALF) and explore the characteristics of the immune cell infiltration

of ALF.

Methods: We analyzed the differentially expressed genes (DEGs) between ALF

and control samples in GSE38941, GSE62029, GSE96851, GSE120652, and

merged datasets. Co-expressed DEGs (co-DEGs) identified from the five

datasets were analyzed for enrichment analysis. We further constructed a

PPI network of co-DEGs using the STRING database. Then, we integrated

the two kinds of machine-learning strategies to identify diagnostic

biomarkers of top hub genes screened based on MCC and Degree methods.

And the potential diagnostic performance of the biomarkers for ALF was

estimated using the AUC values. Data from GSE14668, GSE74000, and

GSE96851 databases was performed as external verification sets to validate

the expression level of potential diagnostic biomarkers. Furthermore, we

analyzed the difference in the protein level of diagnostic biomarkers

between normal and ALF mice models. Finally, we used CIBERSORT to

estimate relative infiltration levels of 22 immune cell subsets in ALF samples

and further analyzed the relationships between the diagnostic biomarkers and

infiltrated immune cells.

Results: A total of 200 co-DEGs were screened. Enrichment analyses depicted

that they are highly enriched in metabolism and matrix collagen production-

associated processes. The top 28 hub genes were obtained by integrating MCC

and Degree methods. Then, the collagen type IV alpha 2 chain (COL4A2) was

regarded as the diagnostic biomarker and showed excellent specificity and

sensitivity. COL4A2 also showed a statistically significant difference and

excellent diagnostic effectiveness in the verification set. In addition, there
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was a significant upregulation in the COL4A2 protein level in ALF mice models

compared with the normal group. CIBERSORT analysis showed that activated

CD4 T cells, plasma cells, macrophages, and monocytes may be implicated in

the progress of ALF. In addition, COL4A2 showed different degrees of

correlation with immune cells.

Conclusion: In conclusion, COL4A2may be a diagnostic biomarker for ALF, and

immune cell infiltration may have important implications for the occurrence

and progression of ALF.

KEYWORDS

acute liver failure, lasso logistic regression, SVM-RFE, diagnostic biomarker, immune
cell infiltration

Introduction

Acute liver failure (ALF) is a lethal systemic disorder marked

by the massive necrosis of hepatocytes, leading to the rapid loss of

hepatic function (Wang et al., 2014). The pathogenesis of ALF is

complicated and not fully clarified yet. Studies have found that

different etiologies such as virus, drug toxicity, autoimmunity,

and ischemia can cause acute liver injury, which can progress

rapidly to ALF or even death (Seto et al., 2012; Xiao et al., 2021).

Typically, the management of patients with ALF is

challenging, because of its rapid progression, poor prognosis,

and high in-hospital mortality rates (Bernal et al., 2013). So far,

orthotopic liver transplantation and subsequent lifelong

immunosuppressive therapy are the most effective methods

for treating ALF (Yu et al., 2019; Li, 2021). However, the

severe shortage of donor organs, high cost, and

immunosuppression-related complications limited its practical

applications (Karvellas et al., 2021; Yu et al., 2022). Therefore,

identifying potential biomarkers before the deterioration of ALF

is of great significance for survival rate improvement.

With the rapid advancement in high-throughput sequencing

technology, bioinformatics analysis, and machine-learning

strategy can be performed to identify novel diagnostic

biomarkers for different clinical diseases (Picard et al., 2021).

Tang et al. adopted novel feature selection strategies combined

with a random forest (RF) algorithm to construct the classifiers

that can identify the site of tumor origin with high specificity

based on the DNA methylation profiles (Tang et al., 2018).

Moreover, Yu et al. identified LSP1, GNLY, and MEOX2 may

be diagnosis-related biomarkers of rheumatoid arthritis by

integrating RF, least absolute shrinkage and selection operator

(LASSO) logistic regression, weighted correlation network

analysis (WGCNA), and support vector machine recursive

feature elimination (SVM-RFE) algorithm (Yu et al., 2021).

However, such studies that integrated bioinformatics analysis

and machine-learning strategies to analyze the gene expression

profile of ALF remain very rare. Furthermore, increasing

research revealed that immune cells crucially participated in

the incidence and development of ALF (Casulleras et al.,

2020). Compared with acutely decompensated AF, patients

with ACLF display increased leukocyte, neutrophil, and

monocyte counts but accompanied by lymphopenia, which

may contribute to immunosuppression in ACLF (Weiss et al.,

2020). However, previous studies predominantly focused on the

effect of individual immune cell types on the progression and

prognosis of ALF. For example, CXCR1/CXCR2-expressing

neutrophils in patients with ACLF may participate in

hepatocyte death by direct contact and by the release of

inflammatory mediators (Khanam et al., 2017). Therefore, a

systematic method is urgently needed for clarifying the effect

of different immune cells on the occurrence and progression

of ALF.

In the present research, microarray datasets of healthy and

ALF samples downloaded from the Gene Expression Omnibus

(GEO) database were analyzed. For identifying the diagnostic

biomarkers of ALF patients, we combined LASSO logistic

regression and the SVM-RFE algorithm. The diagnostic

efficacy of the potential diagnostic biomarkers was assessed

according to the receiver operating characteristic (ROC) curve

analysis. Moreover, we further assessed the association between

the diagnostic biomarkers expression and infiltration of various

immune cells.

Materials and methods

Overall study design

The overall design and flow diagram of this study are shown

in Figure 1. We first screened differentially expressed genes

(DEGs) from five datasets. Based on the co-expressed DEGs

(co-DEGs) of the five datasets, we carried out enrichment

analysis and identified the top 30 hub genes using the MCC

and Degree methods. Subsequently, LASSO logistic regression

and SVM-RFE algorithm were used to identify diagnostic

biomarkers for ALF. Furthermore, ROC curve analyses were

carried out to verify the potential diagnostic performance of the

biomarkers for ALF in both the merged dataset and external
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validation dataset. We further verified the differential expression

of diagnostic biomarkers between normal mice and ALF mice by

performing Western blotting. Moreover, we adopted

CIBERSORT to estimate relative infiltration levels of

22 immune cell subsets in ALF samples and further analyzed

the relationship between immune cells and diagnostic

biomarkers. Finally, to clarify the potential molecular

mechanism of diagnostic biomarkers, we conducted a

miRNA-genes interaction network analysis.

Data collection

We collected gene expression profiling data (GSE38941,

GSE62029, GSE96851, and GSE120652) from the GEO database

(http://www.ncbi.nlm.nih.gov/geo/). GSE38941 data set includes

liver samples of 17 ALF and 10 healthy controls. The

GSE62029 data set includes liver samples of 13 ALF and

17 healthy controls. The GSE96851 data set includes liver

samples of 17 ALF and 17 healthy controls. The GSE120652 data

set includes liver samples of 3 ALF and 3 healthy controls. And the

merged dataset consists of 50 ALF and 47 healthy controls from the

four datasets mentioned above. Furthermore, 8 liver samples from

ALF and 20 from healthy controls from GSE14668 combined with

3 liver samples from ALF and 2 from healthy controls from

GSE74000 and 17 ALF and 17 healthy controls from

GSE96851 were acted as validation set (Table 1).

Analysis of differential gene expression

DEGs between ALF and healthy groups in the five datasets

were identified using the R package “Limma” (Ritchie et al.,

2015). Those DEGs were defined as genes with expression

differences of |log fold change (FC)| ≥ 1 and adjusted p

value <0.05. R packages “pheatmap” and “ggplot2” were used

FIGURE 1
Flowchart of data collection and analysis.

TABLE 1 The samples from 7 datasets included in the study.

GEO_ID Normal ALF Platform

Training set GSE38941 10 17 GPL570

GSE62029 17 13 GPL570

GSE96851 17 17 GPL570

GSE120652 3 3 GPL6244

Validation set GSE14668 20 8 GPL570

GSE74000 2 3 GPL570

GSE96851 17 17 GPL570
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to show the difference in the expression of DEGs. R package

“VennDiagram” was used for screening co-DEGs of the five

datasets (Chen and Boutros, 2011).

Differential gene enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses based on these co-

DEGs were performed using R package “clusterProfiler” (Yu

et al., 2012). The significantly different GO terms and signal

pathways were screened according to the threshold p value <
0.05 and q value < 0.05. Furthermore, Gene Set Enrichment

Analysis (GSEA) software (version 4.1.0) was used to

conduct GSEA. Enrichment analysis was considered to be

statistically significant when FDR <0.25 and Nominal

p-value < 0.05. Finally, the enrichment results of GSEA

were displayed using R packages “ggplot2” and “grid” (Ito

and Murphy, 2013).

Protein-protein interaction (PPI) network
construction

A PPI network of co-DEGs was constructed using the

Search Tool for the Retrieval of Interacting Genes (STRING)

database (https://string-db.org/) (Franceschini et al., 2013). The

minimum interactive score was set to 0.70 of high confidence to

ensure accuracy, and the strength of data support was indicated

by line thickness. The top 30 hub genes were then identified

using the MCC and Degree methods based on the CytoHubba

plug-in of Cytoscape software (version 3.8.2) (Smoot et al.,

2011). Then, the intersection of these hub genes was used for

further research.

Identification and verification of
diagnostic biomarkers

We further identified diagnostic biomarkers by using

LASSO logistic regression and SVM-RFE algorithm based on

the hub genes screened from the five datasets. LASSO logistic

regression was performed by the R package “glmnet” and

minimal lambda was considered optimal. SVM-RFE

algorithm was carried out using R package “e1071” with five-

fold cross-validation (Engebretsen and Bohlin, 2019).

Subsequently, we selected the overlapping genes for further

analysis. To assess the diagnostic effectiveness of these genes,

the R package “pROC” was used to calculate the area under the

curve (AUC) values (Robin et al., 2011). We also compared the

expression levels of the biomarkers between ALF and healthy

groups and calculated the AUC value in the validation set.

ALF mice model preparation

Six male C57BL/6 mice (5–6 weeks) were randomized to the

ALF group and six to the control group. The mice were

intraperitoneally injected with LPS (100 μg/kg) and d-GalN

(400 mg/kg) to construct the ALF mice model. The normal

control group was treated with the same volume of normal

saline. The mice were sacrificed 24 h after inducing ALF, and

liver samples were harvested for subsequent experimental

analysis.

Western blotting

The RIPA Lysis Buffer was performed to extract the total

protein of liver tissues. The protein concentration was

quantified using a BCA protein assay kit (Beyotime,

China). Total protein of 20 μg per sample was resolved via

SDS-polyacrylamide gel electrophoresis for 2 h and

transferred onto PVDF membranes. The membrane was

then blocked with 5% nonfat dried milk in Tris-buffered

saline containing Tween-20 for 1 h. After that, the

membrane was incubated overnight with primary

antibodies at 4°C: collagen type IV alpha 2 chain (COL4A2)

(A7657, 1:1000, ABclonal), GAPDH (ab9485, 1:1000, Abcam).

Subsequently, membranes were incubated with HRP-

conjugated goat anti-rabbit secondary antibodies at room

temperature for 1 h. The protein bands were visualized by

ECL reagent and then quantified by Image Lab software

(version 4.1, Bio-Rad Laboratories, Inc.).

Analysis of immune cell infiltration

Based on standardized gene expression profiles of 50 ALF

liver samples and 47 healthy control liver samples from the

merged dataset, the CIBERSORT algorithm was applied to

speculate the relative fractions of 22 subtypes of infiltrated

immune cells. CIBERSORT algorithm can transform the

normalized gene expression matrix into the relative

composition of 22 subtypes of infiltrated immune cells. We

used the Wilcoxon test at p < 0.05 to identify the significant

differences of significant infiltrating immune cells between

ALF and control liver specimens. R packages “ggplot2”,

“pheatmap” and “vioplot” were applied to visualize the

differences in immune cell infiltration between ALF and

healthy control liver samples. R package “corrplot” were

used to visualize the correlation between individual

immune cell subsets. Moreover, the correlation was

analyzed to verify the association between the biomarkers

and immune infiltration by using Spearman correlation

analysis.
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Construction of miRNA-genes interaction
network

We further used miRWalk (http://mirwalk.umm.uni-

heidelberg.de/) database to predict miRNAs targeting these

potential diagnostic biomarkers. And TargetScan (http://www.

targetscan.org/vert_72/) and miRDB (http://www.mirdb.org/)

databases were utilized for intersection operation. The criterion

for selection was set at p < 0.05 and the length of the minimum

seed sequence was 7 mer, and the binding region of the target gene

was 3′UTR. Then, we used Cytoscape software to visualize the final
result of the miRNA-genes interaction network.

Results

Identification of DEGs between ALF and
control samples

To identify ALF-related genes, we screened the DEGs

between ALF and normal controls in the five datasets. A total

of 2191 DEGs were screened in the GSE38941 dataset, which

consisted of 1179 genes up-regulated and 1012 genes down-

regulated (Figures 2A,B, Supplementary Table S1). In the

GSE62029 dataset, 1220 genes up-regulated and 976 genes

down-regulated were identified (Figures 2C,D). In the

GSE96851 dataset, 1264 up-regulated and 1015 down-

regulated genes were screened (Figures 2E,F). In the

GSE120652 dataset, 162 up-regulated and 166 down-regulated

genes were identified (Figures 2G,H). And in the merged dataset,

we screened 1007 up-regulated and 861 down-regulated genes

(Figures 2I,J). After removing these duplicate genes and genes

with missing values, Venn maps were created by using co-

downregulated and co-upregulated DEGs in GSE38941,

GSE62029, GSE96851, GSE120652, and the merged dataset

(Figures 3A,B). Finally, we identified 121 co-down-regulated

and 79 co-up-regulated DEGs (Supplementary Table S2).

Enrichment analyses of Co-DEGs

We applied enrichment analyses, including GO, KEGG, and

GSEA, to study the biological functions of co-DEGs. Figure 3C

showed the top 12 GO terms according to the p-value. Co-DEGs are

mainly involved in metabolism and matrix collagen production-

related processes, including carboxylic acid catabolic process, small

molecule catabolic process, lipid catabolic process, organic acid

catabolic process, fatty acid metabolic process, collagen-

containing extracellular matrix, extracellular matrix structural

constituent, complex of collagen trimers, and extracellular matrix

structural constituent conferring tensile strength. The top 16 KEGG

terms of the co-DEGs are shown in Figure 3D. These co-DEGs

mainly participated in complement and coagulation cascades,

steroid biosynthesis, tryptophan metabolism, primary bile acid

biosynthesis, histidine metabolism, ECM-receptor interaction, and

focal adhesion. To further reveal the molecular mechanism

associated with ALF, GSEA was executed based on the

combining expression profiles of the training set. Figures 3E,F

showed the significant enrichment of KEGG pathway in control

group and ALF group. These KEGG pathways include

monocarboxylic acid metabolic process, organic acid metabolic

FIGURE 2
Identification of DEGs from GEO datasets. (A,B) GSE38941,
(C,D) GSE62029, (E,F) GSE96851, (G,H) GSE120652 and (I,J)
merged dataset.
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process, regulation of immune effector process, small molecule

metabolic process, transporter activity, cell migration, external

encapsulating structure organization, locomotion, regulation of

cellular component movement, and supramolecular polymer.

Identification of the top hub genes based
on PPI network

A PPI network of co-DEGs was built by using the STRING

database. There are 197 nodes (genes) and 247 edges (the

connection between nodes) contained in the PPI network

(Figure 4A). The statistics of PPI network nodes of the top

30 genes are depicted in Figure 4B. Next, we used the

Cytoscape plug-in “Cytohubba” to filter the top 30 hub

genes of ALF based on the PPI network (Table 2). By

taking the intersection of the 60 hub genes screened by the

MCC and Degree methods respectively, 28 hub genes were

identified (Figure 4C). The result of Pearson’s correlation

analysis was depicted in Figure 4D. The result showed that

CYP1A2 and CYP2B6 were negatively related to the other

26 hub genes.

FIGURE 3
Function and pathway enrichment analysis of co-DEGs. (A) Venn diagram to identify co-downregulated DEGs between normal and ALF. (B)
Venn diagram to identify co-upregulated DEGs between normal and ALF. (C) GO analysis of Co-DEGs. (D) KEGG analysis of Co-DEGs. (E,F) GSEA
analysis of all genes.
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FIGURE 4
Identification and analysis of the PPI network of DEGs and hub genes. (A) PPI network was constructed using STRING database. (B) Top thirty
gene in the PPI network. (C) Venn diagram to identify intersected hub genes screened by the MCC and Degree methods. (D) Pearson’s correlation
analysis of 28 hub genes.

TABLE 2 Top 30 hub genes screened by MCC and Degree methods.

Catelogy MCC method Degree method

Geen symbol of top 30 SPARC PTTG1 COL1A2 SPARC MKI67 COL1A2

CKS2 MKI67 COL5A2 CKS2 NUSAP1 COL5A2

ANLN NUSAP1 UBE2T ANLN PRC1 IGF1

RAD51AP1 PRC1 FANCI RAD51AP1 KIF4A UBE2T

CYP1A2 KIF4A COL4A2 CYP1A2 CENPF FANCI

NCAPG CENPF KIAA0101 NCAPG TOP2A COL4A2

CYP2A6 TOP2A COL4A1 CCNB1 RACGAP1 KIAA0101

CCNB1 RACGAP1 COL6A3 CYP2B6 COL1A1 COL4A1

CYP2B6 COL1A1 ITGAV CENPE LAMB1 COL6A3

CENPE COL3A1 LUM PTTG1 COL3A1 ITGAV
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Exploring candidate diagnostic
biomarkers associated with ALF by LASSO
regression and SVM-RFE

To identify which of these hub genes could be biomarkers

for ALF diagnosis, we further analyzed the top 28 hub genes

using the LASSO regression and SVM-RFE algorithm. A total

of seven genes (CYP1A2, CYP2B6, PTTG1, COL3A1, UBE2T,

COL4A2, and COL6A3) were identified by LASSO logistic

regression algorithm, and two genes (SPARC, COL4A2) were

identified as potential biomarkers by the SVM-RFE algorithm

(Figures 5A,B). Finally, COL4A2 was an overlapping gene that

was identified as a diagnostic biomarker (Figure 5C). The

expression of COL4A2 in ALF was also significantly

upregulated compared to control samples in the validation

set (Figure 5D). Furthermore, we also verified the differential

expression of diagnostic biomarkers between normal mice and

ALF mice using Western blotting. The protein level of

COL4A2 in the ALF model group was also obviously

increased compared to the normal group (Figure 5E). ROC

FIGURE 5
Identification of diagnostic biomarker of ALF via the comprehensive strategy. (A) LASSO logistic regression algorithm to screen diagnostic
markers. (B) SVM-RFE algorithm to screen biomarkers. (C) Venn diagram to identify intersected DIAGNOSTIC biomarkers screened by the LASSO and
SVM-RFE. (D) The expression level of COL4A2 in the validation set. (E) The protein levels of COL4A2 in normal and ALF mice models. The ROC curve
of the gene signature in the testing set (F) and validation set (G).
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FIGURE 6
Characteristics of infiltrating immune cells. (A) Proportions of 22 immune cell subpopulations in normal and tissues. (B) PCA showed that
22 types of immune cells could roughly distinguish between and normal tissues. (C) Correlation coefficient heat map visualizing the interactions
among immune cells. (D) Violin plot showing the immune cells with differential infiltration (p < 0.05).
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curve analysis was employed to assess the diagnostic

effectiveness of COL4A2 for ALF in the merged dataset and

validation set. The AUC values were respectively 1.00 and

0.997, indicating that COL4A2 had an excellent diagnostic

capability to distinguish ALF from normal controls

(Figures 5F,G).

Analysis of immune cell infiltration

The relevant proportions of 22 immune cells on the

50 ALF and 47 control samples of the training set were

further studied using the CIBERSORT algorithm

(Figure 6A). According to principal component analysis

FIGURE 7
Pearson correlation of immune infiltrating cells with the signature genes. (A) Correlation between COL4A2 and infiltrating immune cells. (B)
Plasma cells. (C) Activated CD4 memory T cells. (D) Monocytes. (E) CD8 T cells. (F) Follicular T helper cells. (G) Activated Mast cells. (H) Resting
CD4 memory T cells.
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(PCA), there was a difference in patterns between the ALF and

control groups. The result of PCA analysis revealed that there

was a difference in immune infiltration status between ALF

and control samples (Figure 6B). The heatmap of Pearson’s

correlation showed the landscape of 22 infiltrating immune

cells. M0 macrophages, plasma cells, resting NK cells,

CD8 T cells, eosinophils, and monocytes had a positive

correlation with activated CD4 memory T cells. While

monocytes, CD8 T cells, plasma cells, activated

CD4 memory T cells, and resting NK cells had a

significantly inversely correlated with resting CD4 memory

T cells (Figure 6C). The violin plot showed that CD8 T cells,

plasma cells, gamma delta T cells, activated CD4 memory

T cells, naive CD4 T cells, monocytes, resting NK cells,

macrophages M0, and eosinophils infiltrated more in the

ALF than the normal sample, while naive B cells, follicular

T helper cells, resting CD4 memory T cells, activated NK cells,

activated Dendritic cells, activated Mast cells, and neutrophils

denoted the opposite (Figure 6D).

Correlation analysis of COL4A2 and the
immune cell infiltration

Furthermore, correlation analysis (Figure 7) revealed that

positively correlation between COL4A2 and plasma cells (R =

0.72, p < 2.2e−16), activated CD4 memory T cells (R = 0.67, P =

1e−13), monocytes (R = 0.59, p = 2.3e−10) and CD8 T cells (R =

0.52, p = 5.4e−08), while negatively correlation between

COL4A2 and follicular T helper cells (R = −0.61, p =

4.5e−11), activated mast cells (R = - 0.57, p = 8.3e−10) and

resting CD4 memory T cells (R = - 0.51, p = 1.3e−07).

Further miRNA mining and interaction
network analysis

MiRWalk, TargetScan, and miRDB databases were used to

screen the potential miRNA that targeting COL4A2 (Fan et al.,

2016). Select the intersection of miRNA results predicted by both

FIGURE 8
Construction of the COL4A2–miRNA Regulatory Network (A) Venn diagram of the intersection of targeted miRNAs screened by miRWalk,
miRDB and TargetScan databases. (B)COL4A2–miRNA regulatory network. The square represents gene, and the circle represents miRNA. The green
frame represents down-regulated miRNA, and pink frame means up-regulated gene.
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miRWalk, TargetScan, and miRDB database as the final result.

Finally, a total of 37 miRNAs were identified (Figure 8A). The

miRNA-genes interaction network was shown in Figure 8B.

Discussion

ALF is a life-threatening end-stage liver disease and is a

medical emergency with considerable morbidity and mortality

(Arroyo et al., 2020). In the absence of reliable and predictive

biomarkers for the early diagnosis of ALF, patients often lose the

best treatment opportunities and eventually leading to a poor

prognosis. In this present research, we tend to identify diagnostic

biomarkers for ALF and assess the effects exerted by the

infiltrating immune cells in ALF.

We collected and analyzed ALF and healthy control samples

from five mRNA microarray data sets (GSE38941, GSE62029,

GSE96851, GSE120652, and the merged dataset). A total of

200 co-DEGs were identified from the training set, which

consisted of 121 co-down-regulated and 79 co-up-regulated

DEGs. Enrichment analysis indicated that these co-DEGs were

highly involved in metabolism and matrix collagen production-

related processes. Then, we selected 28 genes as hub genes of ALF

from 200 co-DEGs and further identified COL4A2 as a potential

diagnostic biomarker based on the LASSO logistic regression and

SVM-RFE. COL4A2 is an important component in the

extracellular matrix (Chuang et al., 2014). Previous studies

have found that COL4A2 may be a tumor biomarker that

promotes tumor metastasis and proliferation, which is highly

expressed in liver preneoplastic lesions, such as fibrosis and

cirrhosis (Chen et al., 2014; Dang et al., 2019). However, the

significance of COL4A2 in the progression and prognosis of ALF

has not been investigated yet. In our study, the AUC values were

validated in the merged dataset and validation set, suggesting that

COL4A2 had a high accuracy of predictive value for ALF. These

results depicted that COL4A2 might be correlated with ALF

development. However, further functional experiments are

required to clarify the role of COL4A2 in ALF.

To further investigate the effect of immune cell infiltration,

we applied CIBERSORT to reveal the relative proportions of

22 infiltrating immune cells of ALF. Our results depicted that

there was low infiltration of naive B cells, while there were high

infiltrations of CD8 T cells, plasma cells, activated CD4 memory

T cells, naive CD4 T cells, gamma delta T cells, and monocytes,

which was concordant with those in previous findings

(Antoniades et al., 2008; Chen et al., 2019; Khanam and

Kottilil, 2020). Previous work showed that B cell immunity is

important in the progression of ALF, which was mainly mediated

by a large number of intrahepatic IgG and IgM produced by

plasma cells against the HBcAg (Farci et al., 2010). Consensus is

growing that the unbalance of T cell subsets has been implicated

in the occurrence and course development of ALF (Shen et al.,

2020). Studies have indicated that activated CD4 T cells (such as

Th17 cells and Treg cells) secrete a large number of

proinflammatory cytokines, which leads to the amplification

of systemic inflammatory response, while excessive systemic

inflammatory response will lead to the further development of

ALF (Dong et al., 2013). During the early stage of ALF, ligation of

damage-associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs) to pattern-recognition

receptors (PRRs) results in the activation of monocytes, and then

monocytes initiate a systemic inflammatory response by

releasing cytokines and chemokines (Triantafyllou et al., 2018;

Casulleras et al., 2020). Furthermore, activated monocytes can

also differentiate into macrophages. The chemokines, pro-

inflammatory cytokines, and ROS released by the activated

macrophages can further amplify the pro-inflammatory signal

and promote the accumulation of other inflammatory cells in the

liver to accelerate the development of a systemic inflammatory

response (Possamai et al., 2014). The results of correlation

analysis revealed that plasma cells and CD8 T cells are closely

associated with the infiltration of activated CD4 memory T cells.

Moreover, the Spearman correlation test indicated that the

COL4A2 was significantly associated with plasma cells,

activated CD4 T cells, CD8 T cells, and monocytes.

This study has a few limitations that need to be considered

during interpreting our findings. The findings of our research

were based on the public database and the small size of clinical

samples, we do need to verify the robustness of the results of the

study in basic research and clinical studies with larger sample

sizes in the future. As the lack of clinical information, we did not

explore the impact of COL4A2 on the outcomes of ALF patients.

Furthermore, we only discussed the role of coding genes

biomarkers in the diagnosis of ALF. Considering the recent

trend of developing computational models for identifying

non-coding RNA-related biomarkers of human complex

diseases, non-coding RNA may have certain potential in the

diagnosis of ALF, which is our future research direction (Zeng

et al., 2018; Zeng et al., 2020).

Conclusion

In conclusion, through the comprehensive analysis of GEO

datasets by combining bioinformatics analysis and machine

learning strategies, we found that COL4A2 may be a potential

diagnostic biomarker for ALF. Further research is necessary to

fully explore the precise role of COL4A2 in the pathogenesis of

ALF. Besides, immune cell infiltration may play a critical

function in the occurrence and development of ALF.
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