
REVIEW

Pathophysiology and treatment of inflammatory anorexia
in chronic disease

Theodore P. Braun & Daniel L. Marks

Received: 30 April 2010 /Accepted: 3 November 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Decreased appetite and involuntary weight loss are
common occurrences in chronic disease and have a negative
impact on both quality of life and eventual mortality. Weight
loss in chronic disease comes from both fat and leanmass, and
is known as cachexia. Both alterations in appetite and body
weight loss occur in a wide variety of diseases, including
cancer, heart failure, renal failure, chronic obstructive pulmo-
nary disease and HIV. An increase in circulating inflammatory
cytokines has been implicated as a uniting pathogenic
mechanism of cachexia and associated anorexia. One of the
targets of inflammatory mediators is the central nervous
system, and in particular feeding centers in the hypothalamus
located in the ventral diencephalon. Current research has
begun to elucidate the mechanisms by which inflammation
reaches the hypothalamus, and the neural substrates underly-
ing inflammatory anorexia. Research into these neural
mechanisms has suggested new therapeutic possibilities,
which have produced promising results in preclinical and
clinical trials. This reviewwill discuss inflammatory signaling
in the hypothalamus that mediates anorexia, and the oppor-
tunities for therapeutic intervention that these mechanisms
present.
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Decreased appetite (anorexia) and catabolism of lean
tissues are common co-morbidities of a multitude of
chronic diseases. In such diseases, the synergistic effects

of decreased energy intake on the one hand, and increased
energy expenditure on the other generate an ongoing loss of
body weight in which muscle mass is not appropriately
preserved [1]. Loss of muscle mass accompanying invol-
untary weight loss in association with chronic disease is
known as cachexia. The consensus definition of cachexia is
“… a complex metabolic syndrome associated with
underlying illness and characterized by the loss of muscle
with or without loss of fat mass” [2]. The presence of
cachexia is a negative prognostic indicator in a multitude of
conditions including cancer [3], chronic renal failure [4],
congestive heart failure (CHF) [5], and HIV [6]. Although
cachexia is not always associated with overt anorexia, they
often occur together [7]. Unlike starvation, where adipose
tissue is predominantly lost, muscle mass and adipose
tissue are both affected in cachexia [8]. In accordance with
this, correction of the nutritional deficit by intravenous
nutrition in cachexia, while beneficial, has been unsuccess-
ful in completely reversing the catabolic features of this
syndrome [9]. Therefore, a therapeutic modality that
corrects both decreased appetite and the catabolism of lean
mass is the most desirable for treating cachexia associated
with anorexia.

1 Cachexia as an inflammatory disease

One of the common features uniting all conditions
associated with cachexia is an increase in the levels of
circulating inflammatory cytokines. In chronic heart failure,
circulating levels of tumor necrosis factor (TNF) [10–12]
and interleukin-6 (IL-6) [11] are increased, and correlate
with the degree of exercise impairment in these patients. In
chronic renal failure, increased levels of circulating cyto-
kines and C-reactive protein are correlated with increased
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mortality [13]. Likewise, in cancer patients suffering from
cachexia, multiple inflammatory cytokines have been found
at increased levels relative to non-cachectic cancer patients
including IL-6 [14, 15] and TNF [16, 17]. Furthermore,
multiple studies have implicated leukemia inhibitory factor
(LIF) as a pathogenic factor in cancer cachexia. LIF is
found at high levels in cancer patients [18], and is released
from human tumor cell lines [19]. While serum LIF levels
are a negative prognostic indicator in sepsis [20], no studies
have been performed to date correlating the circulating LIF
levels with the degree of cancer cachexia. Others have
failed to find elevated levels of the aforementioned
inflammatory mediators [17, 21] in cancer cachexia, likely
reflecting heterogeneity in the type and severity of cancer
studied as well as the intermittent nature of inflammatory
processes. The ability of these inflammatory molecules to
act directly on peripheral tissues to elicit catabolic
processes is well characterized [22, 23]. Increased inflam-
matory signaling in skeletal muscle potentiates myofibrillar
atrophy by suppressing protein synthesis and increasing
protein degradation. While clearly a critical pathway in the
pathogenesis of cachexia, there is at present no evidence for
the direct regulation of skeletal muscle catabolism by the
CNS, and it is therefore beyond the scope of this review.

2 The central nervous system as a target
of inflammatory signaling

It is well established that inflammatory cytokines have
potent effects on feeding in animal models. The peripheral
administration of cytokines such as interleukin-1 beta
(IL-1β) [24–26] and TNF [26] or the inflammatory
bacterial cell wall product lipopolysaccharide (LPS) [24,
25] potently induce anorexia in laboratory animals. Fur-
thermore, intercerebroventricular (ICV) injection of inflam-
matory cytokines such as IL-1β [27], LIF [28, 29], and
TNF [30] also reduce food intake, suggesting that the brain
can respond directly to inflammatory signals. Peripheral or
central cytokine injection leads to a rapid induction of
cFOS immunoreactivity, a marker of neuronal activation
[31], in multiple brain regions, including areas that are
critical for food intake and energy metabolism such as the
arcuate nucleus of the hypothalamus [32]. A negative
correlation has been reported in tumor-bearing animals
between food intake and interleukin 1 alpha concentration,
further implicating inflammatory cytokines in the patho-
genesis of anorexia [33].

Additional studies have suggested that inflammatory
cytokine production in the CNS itself is critical in the
generation of the anorectic response. Animals injected
peripherally with LPS display a rapid increase in the
expression of inflammatory cytokines in the hypothalamus

[24, 25]. IL-1β appears to be particularly critical, as ICV
infusion of IL-1 receptor antagonist (IL-1Ra) significantly
reduces the anorexia resulting from peripheral LPS admin-
istration, and normalizes hypothalamic cytokine expression
[34]. These results suggest that local cytokine production
within the brain may function as a critical signaling
intermediate and a feed forward mechanism for sustaining
the response to inflammation. Additional studies have
further implicated cytokine production within the brain as
a critical mediator of anorexia. Myeloid differentiation
primary response protein 88 (MyD88) is a signaling adaptor
downstream of toll-like receptor-4 (the cellular receptor for
LPS) and the type 1 interleukin-1 receptor (IL-1R1). Mice
lacking functional MyD88 evolve a normal or increased
serum cytokine response to LPS, presumably via MyD88-
independent pathways [24, 25]. However, these mice are
completely resistant to LPS- or IL-1β-induced anorexia and
show attenuated induction of hypothalamic cytokine pro-
duction. These data demonstrate the MyD88 dependence of
LPS-induced anorexia, and suggest that elevated hypotha-
lamic cytokine expression might be a critical intermediary.

The induction of IL-1β [35, 36] and TNF [36]
expression in the hypothalamus has been documented in
tumor-bearing animals. Further support for the critical
nature of hypothalamic cytokines comes from experiments
demonstrating that ICV administration of the TNF neutral-
izing antibody infliximab or IL-1Ra increases food intake
and reduces the febrile response in a cecal ligation and
puncture model of sepsis, and modestly increases survival
[37]. Additionally, ICV infliximab or IL-1Ra improve food
intake and survival in animals implanted with the
Walker-256 tumor [37], in which hypothalamic levels of
TNF and IL-1β are both increased. While promising, the
modest effects seen in these experiments point to likely
redundancies in the inflammatory control of anorexia in
more complex disease models. While many cytokines have
the capability of inducing anorexia when injected centrally,
the mRNA for multiple inflammatory mediators are
simultaneously induced in the hypothalamus after periph-
eral LPS challenge or in tumor-bearing animals. It is
therefore likely that in the true disease state, anorexia is
due to the additive or synergistic effects of multiple
inflammatory cytokines acting on both overlapping and
non-overlapping targets. Infusion of multiple cytokines at
doses that provoke only slight anorexia alone can lead to
dramatic anorexia when given in combination [27]. Fur-
thermore, the chronic administration of IL-1β, TNF, IL-6 or
interleukin-8 results in an initial anorectic period with rapid
desensitization and complete recovery of food intake by the
end of 1 week [38, 39]. In contrast, adenoviral delivery of
LIF to the CNS can generate a chronic anorexia and weight
loss that shows no signs of desensitization [40]. These
findings indicate that the generation of long lived disease-
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associated anorexia likely results from the complex inter-
play of multiple CNS cytokines, which are likely specific to
the patient and condition.

3 Afferent pathways for inflammatory signaling

Visceral sensory afferents have been proposed as a potential
mechanism by which peripheral inflammation might gen-
erate an anorectic response. In particular, the vagus nerve
appears to play a role in mediating behavioral responses to
inflammation. Sub-diaphragmatic vagotomy was shown to
attenuate the induction of IL-1β mRNA expression in the
hypothalamus after intraperitoneal LPS challenge [41] or
IL-1β injection [42]. However, other studies have demon-
strated that vagotomy does not prevent increases in
hypothalamic IL-1β protein content in LPS treated animals
[43]. In agreement with this, vagotomy was reported to
attenuate the anorexia seen with LPS administration [44]
while others have seen no alteration in the anorectic
response to LPS or other inflammatory stimuli in vagotom-
ized animals [45]. An explanation for the discordance of
these studies is not immediately apparent; however, these
data are suggestive of a vagally mediated anorectic pathway
in response to inflammatory stimuli that may be critical
under certain circumstances. It seems clear however, that
the vagus is not necessary for the anorectic response to
intravenous IL-1β [46] suggesting that inflammatory
cytokines in circulation may signal to the CNS via a
pathway independent of the vagus. There is some evidence
to suggest that tumor growth may stimulate anorexia via a
vagal pathway. Anorexia was attenuated in tumor-bearing
rats when a sub-diaphragmatic vagotomy was performed
prior to tumor implantation, or when vagal afferents were
chemically ablated [47].

In contrast multiple lines of evidence suggest that
circulating cytokines act directly on CNS neurons. The
best-studied cytokine with regard to its neuronal action is
leptin, a negative regulator of body mass and appetite.
While implicated as a mediator of uremic cachexia [48] and
elevated levels of leptin have been reported in CHF [49]
studies demonstrating the critical role for leptin in the
pathogenesis of other forms of cachexia have yet to be
performed. However, leptin is closely related to IL-6 and
LIF in structure and signaling [50]. Thus leptin may serve
as an effective prototype for cytokine access to the CNS,
despite extensive evidence for it being an essential mediator
of cachexia. Inflammatory cytokines are generally believed
to be too large to cross the blood brain barrier (BBB) by
simple diffusion [51]. However, CNS structures collectively
referred to as circumventricular organs have specialized
fenestrated capillaries. The median eminence is one such
region, where the permeable capillaries of the portal

vasculature play a critical role in the neuroendocrine
communication between the hypothalamus and the anterior
pituitary. Neurons in the adjacent arcuate nucleus of the
hypothalamus (ARC) are thought to have processes that lie
outside of the BBB [52] and are also responsive to
circulating factors via median eminence capillary fenestra-
tions [51]. Furthermore, the ARC is a critical site for the
integration of physiologic leptin signals. Thus, the ARC
represents a possible location for the detection of circulat-
ing cytokine signals. Additional areas of the brain respond
directly to leptin signals [53, 54], yet lie behind the BBB.
Active transport across the BBB and the blood-CSF barrier
is well characterized for leptin [55, 56]. In addition,
evidence exists for active transport into the CNS of multiple
inflammatory cytokines implicated in cachexia including
IL-1β [57] IL-6 [58], and TNF [59]. These data suggest the
possibility that areas of the brain that are behind the BBB
may be able to respond to circulating cytokines.

Another mode by which inflammatory cytokines may
influence neuronal activity is the synthesis of prostaglan-
dins along the BBB, either in endothelial cells or
perivascular macrophages. Prostaglandins are small lipid
soluble inflammatory mediators, which diffuse across the
BBB [60, 61]. Consistent with the notion that prostaglan-
dins serve as a signaling intermediate, endothelial and
perivascular cells express the receptors for inflammatory
cytokines [62, 63], and are activated under inflammatory
conditions [63, 64]. Furthermore, inflammatory insults
appear to activate endothelial cells more rapidly than
neurons. This suggests that under inflammatory conditions,
endothelial cells may be responsible for conveying the
activating signal to neurons [64]. In accordance with this,
neurons are known to express receptors for prostaglandins
[65]. Under inflammatory conditions, the mRNA for
synthetic enzymes for prostaglandin E2 (PGE2), the most
studied of the centrally acting prostaglandins, are induced
in endothelial cells and perivascular macrophages [66].
When cyclooxygenase (COX), the proximal biosynthetic
enzyme for prostaglandins, is blocked pharmacologically,
animals display attenuated anorexic responses to peripheral
IL-1β [67] and LPS [68, 69]. In some studies, tumor-
bearing animals display attenuated anorexia and weight loss
when treated with COX inhibitors [70, 71].

The precise mechanisms by which COX inhibition is
protective remains somewhat unclear, as certain tumors
show attenuated growth when treated with COX
inhibitors [72], suggesting that tumor regression rather
than inhibition of anorectic pathways may be responsible
for these effects. Furthermore, it appears that some
experimental tumors produce anorexia and weight loss
in a COX-independent manner, as COX inhibition is not
effective in reversing anorexia or weight loss in certain
models [71]. While the non-steroidal anti-inflammatory
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(NSAID) agents used to inhibit COX are generally
regarded as specific, recent evidence demonstrates that
many of the commonly used compounds also have the
ability to inhibit other inflammatory pathways including
nuclear factor-κB (NF-κB) [73]. This complicates the
interpretation of NSAID data, as the effects seen cannot
be solely attributed to decreases in prostaglandin biosyn-
thesis, and instead effects on other more general
inflammatory pathways must be considered. Additional
evidence for the role of prostaglandins in driving
anorexia and weight loss comes from studies in mice
lacking the terminal biosynthetic enzyme for PGE2,
microsomal prostaglandin E synthase. These mice dis-
play complete resistance to anorexia from LPS injection
or tumor implantation [74]. Interestingly, hypothalamic
expression of inflammatory cytokines is normally in-
duced under inflammatory conditions in these animals
suggesting parallel pathways for prostaglandin and
cytokine signaling.

4 Neural targets for inflammatory cytokine action:
the melanocortin system

One important target for inflammatory signaling in the CNS
is the hypothalamic central melanocortin system, which
consists of two neuronal populations expressing peptide
neurotransmitters with opposing actions (Fig. 1). Proopio-
melanocortin (POMC) neurons are located in the ARC, and
the nucleus of the solitary tract of the brain stem [75].
These neurons express the POMC precursor peptide, which
is cleaved into many bioactive products including the
anorectic peptide alpha melanocyte-stimulating hormone
(α-MSH). The anorectic effect of α-MSH is exerted by
binding to its cognate receptor, the type four melanocortin
receptor (MC4R), which is expressed in a broad array of
hypothalamic and extra-hypothalamic areas in the CNS
[76]. The net effect of signaling at the MC4R is decreased
appetite [77] and increased energy expenditure [78]. It
should be noted that the POMC peptide is cleaved into
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tory cytokines from circulation
or produced locally by microglia
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multiple other peptides with diverse CNS and peripheral
functions. However, these other cleavage products are not
well described in cachexia, and have been extensively
reviewed elsewhere [79]. Lying adjacent to the arcuate
POMC neurons, are the Agouti-related peptide/neuropep-
tide Y (AgRP/NPY) neurons, which have orexigenic
activity [75]. While NPY acts on specific NPY receptors,
AgRP is an inverse agonist at the MC4R, increasing food
intake and decreasing energy expenditure [80]. Importantly,
α-MSH and AgRP immunoreactive fibers project to many
of the same locations across the CNS, although AgRP
projections are less dense [81–83]. In addition, AgRP
neurons send inhibitory projections to neighboring POMC
neurons, creating an additional level of control [84]. Both
neuronal populations are cytokine responsive. Furthermore,
both play a critical role in normal energy homeostasis in the
response to leptin, and the maladaptive energetic response
to inflammatory cytokines. In particular, POMC neurons
express the IL-1R1, and increase their spontaneous firing
rate in response to IL-1β administration. The release of
α-MSH from hypothalamic explants after IL-1β treatment
is also increased [85]. The converse is true of AgRP
neurons, which, like POMC neurons express the IL-1R1,
but instead decrease the spontaneous release of AgRP in
response to IL-1β [86]. Presumably, the net result of IL-1β
action on these two neuronal populations is to dramatically
increase signaling at the MC4R, resulting in anorexia. In
addition, recent work has shown that the acute anorectic
effects of exogenous LIF are entirely mediated by LIF
receptor signaling on POMC neurons [28], further demon-
strating the importance of the melanocortin system in
mediating the response to cytokines.

Additional evidence for the critical nature of melano-
cortin signaling in cachexia comes from the finding that
mice lacking functional MC4R resist anorexia associated
with tumor growth [87, 88], chronic renal failure [48], or
LPS administration [87, 88]. In addition, ICV administra-
tion of exogenous AgRP, or synthetic melanocortin antag-
onists also ameliorates anorexia induced by LPS,
inflammatory cytokines [26, 89, 90] chronic renal failure
[48], and tumor growth [88, 91].

As a result of these findings, multiple preclinical studies
have begun to examine the potential therapeutic benefit of
melanocortin antagonism in cachexia. Melanocortin antag-
onists have been developed that improve food intake and
prevent the loss of lean mass when administered peripher-
ally to tumor-bearing mice [90, 92]. Recently, melanocortin
antagonists have been developed with oral bioavailability
that attenuate anorexia and lean mass loss in tumor-bearing
animals [93]. Preclinical studies have also demonstrated the
efficacy of melanocortin antagonism in chronic renal
failure. Peripheral administration of melanocortin antago-
nists improves food intake [48] and prevents the loss of

lean mass in subtotal nephrectomy-induced chronic renal
failure [48, 94, 95]. As the preclinical data demonstrate,
melanocortin antagonism is an exciting treatment possibil-
ity for anorexia associated with chronic disease. Future
clinical studies will likely begin to explore the efficacy of
melanocortin antagonism as a therapeutic modality in
human cachexia.

5 Neural targets for inflammatory cytokine action:
neuropeptide Y

NPY is another well-studied orexigenic neuropeptide,
which increases food intake when administered exogenous-
ly. Co-expressed in the same neurons as AgRP, NPY is also
regulated by inflammatory stimuli. Globally, NPY acts to
increase food intake, and administration of exogenous NPY
leads to hyperphagia and obesity [96]. Unlike starvation,
which induces NPY mRNA in the hypothalamus, inflam-
matory stimuli such as LPS or IL-1β either show no change
[97] or demonstrate a reduction [98] in NPY mRNA levels.
Furthermore, tumor-bearing animals show either no change
[99], a decrease [100] or a slight increase [101] in NPY
mRNA, depending on the report. Irrespective of the
directionality of the change, inflammatory anorexia results
in a marked suppression of NPY mRNA expression relative
to that seen in animals restricted to an equivalent level of
food intake. This suggests that inflammatory signaling
disrupts the normal regulation of NPY in response to
negative energy balance.

A functional antagonism has been demonstrated between
IL-1β and NPY, where IL-β decreases the NPY-induced
feeding response in a dose-dependent manner [102]. A
reduction is seen in the NPY content of hypothalamic
microdialysates from tumor-bearing animals, suggesting
impaired NPY release in cachectic states [103]. However,
several studies have demonstrated a decreased efficacy of
exogenous NPY in tumor-bearing animals as compared
with healthy controls, suggesting functional resistance to
the peptide in cachexia [91, 104]. Furthermore, resistance to
continuous infusion of NPY develops rapidly in tumor-
bearing animals [104], suggesting an NPY deficiency is not
solely responsible for the anorexia in tumor-bearing
animals. In accordance with these studies, radioligand
binding assays performed in anorectic tumor-bearing rats
demonstrated a dramatic decrease in NPY receptor affinity
with a moderate reduction in receptor number [105].
Finally, decreases in NPY immunoreactive projections to
various hypothalamic nuclei have been documented in
anorectic animals [100]. These data collectively demon-
strate that NPY is aberrantly regulated in cachectic states.
There is evidence to suggest both a decrease in NPY
production, and a decreased sensitivity to NPY in cachexia.

J Cachexia Sarcopenia Muscle (2010) 1:135–145 139



However, given the presence of apparent resistance to NPY
in cachexia, a therapeutic strategy involving exogenous
NPY replacement without correction of the underlying
downstream defects may not be viable.

6 Neural targets for inflammatory cytokine action:
the serotonergic system

The serotonergic system is a powerful regulator of food
intake and energy metabolism. Serotonergic neurons are
located in the brainstem raphe nuclei and project to a wide
variety of cortical and subcortical regions. Serotonin or
5-hydroxytrypamine (5-HT) is released from the terminals
of these neurons and binds to 5-HT receptors. There are
seven families of serotonin receptors (5-HT1–7R), each of
which contains multiple members, with overlapping roles in
cognition, memory, and autonomic functions such as
vasomotor tone and GI motility [106]. As a result, serotonin
biology is a complex field that cannot be fully reviewed
here, and references will only be made to aspects that have
been implicated in cachexia.

Global activation of the serotonin system appears to
suppress feeding. Administration of the drug fenfluramine,
which is believed to globally increase serotonin release and
simultaneously block reuptake, suppresses feeding in
animals and humans [107–109]. Furthermore, lesions of
the raphe nuclei [110] or ICV injection of a serotonin
antagonist [111] result in hyperphagia and obesity. The
majority of studies have focused on the 5-HT2CR as the
predominant receptor mediating the effects of serotonin
signaling on appetite. Mice lacking functional 5-HT2CR
resist the effects of fenfluramine or a specific 5-HT2C R
agonist [112, 113] on food intake and develop obesity
secondary to hyperphagia [114]. Interestingly, ARC POMC
neurons express 5-HT2C R and are activated electrophysi-
ologically by fenfluramine [115]. In the context of the 5-
HT2C R deficient mouse, selective restoration of 5-HT2C R
expression in POMC neurons corrects the obese phenotype
[116].

Experimental evidence for the involvement of serotoner-
gic signaling in disease-associated anorexia comes from
work examining the serotonin content of the hypothalamic
ventromedial nucleus (VMH). Microdialysis experiments
revealed an increase in VMH serotonin content in tumor-
bearing animals, which returned to baseline with tumor
excision [117]. Furthermore, injection of a serotonin
antagonist into the VMH of tumor-bearing animals resulted
in improved food intake [53]. Another study, however,
found no effect on the appetite of tumor bearing mice
treated with tricyclic antidepressants, which are generally
believed to inhibit serotonin reuptake and potentiate its
signaling [118]. While serotonin signaling seems a likely

candidate for therapy, future studies will have to be
performed to examine receptor subtypes involved in
inflammatory anorexia.

7 Neural targets for inflammatory cytokine action:
ghrelin

Ghrelin is a growth hormone releasing peptide, which is
produced in the stomach in response to hunger or starvation
[119]. Ghrelin is present in two forms: acylated ghrelin
which is active, and desacyl ghrelin which is inactive. Acyl
ghrelin binds to the growth hormone secretogogue receptor-
1a (GHSR-1a) which is found on ARC AgRP/NPY
neurons, increasing their activity and peptide release
[120]. There is some experimental evidence for the
involvement of ghrelin the in the pathophysiology of
cachexia. Ghrelin exerts anti-inflammatory effects on
immune cells and endothelium [121, 122], decreasing
proinflammatory cytokine production. In animals and
humans experiencing anorexia due to inflammatory arthri-
tis, serum ghrelin levels are decreased compared with
controls [123]. Furthermore, ghrelin levels are acutely
decreased by LPS administration [124], which results in
an IL-1R1 and prostacyclin-dependent signaling mecha-
nism decreasing ghrelin secretion by the stomach [125]. In
contrast to the acute inflammatory state however, ghrelin is
found at increased levels in chronic inflammation. Further-
more, exogenous ghrelin administration attenuates the
anorectic response to LPS [122], most likely due to an
attenuation of the inflammatory response and activation of
hypothalamic AgRP/NPY neurons.

However, plasma levels of ghrelin are increased in
patients with cachexia from multiple etiologies as compared
with non-cachectic patients suffering from the same
underlying conditions [126–129] although some do report
that levels fall in advanced cancer patients [130]. This
suggests that in cachexia, ghrelin may be elevated as a
compensatory mechanism for negative energy balance.
Based on these human data, an overt ghrelin deficiency
does not appear to be involved in the pathogenesis of
anorexia associated with chronic disease, although the
possibility remains that the ghrelin response is inappropri-
ately low given the level of negative energy balance.

Despite the lack of conclusive evidence for a clear role for
ghrelin in chronic anorexia, multiple preclinical studies have
demonstrated promising results in experimental models of
cachexia. When administered to tumor-bearing animals [99,
131, 132] or rats with chronic renal failure [133], ghrelin
ameliorates anorexia and improves lean mass. Interestingly,
ghrelin administration appears to improve skeletal muscle
mitochondrial oxidative capacity independent of food intake
[134], suggesting that ghrelin may have peripheral anti-
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catabolic effects, or engage a presently unknown hypotha-
lamic anti-catabolic pathway. When utilized in an experimen-
tal model of CHF, ghrelin treatment improves muscle mass
[135] and overall lean mass [136]. These promising data have
resulted in multiple clinical trials examining the efficacy of
ghrelin in cachexia of multiple etiologies.

8 Current and future therapy for decreased appetite
in chronic disease

Few theraputic options exist currently for the treatment of
anorexia in chronic disease. Progestational agents such as
megesterol acetate have been effective in improving food
intake, and produce significant weight gain. However, the
weight gain associated with its use is mostly due to
increased fat and water mass [137, 138]. Treatment with
exogenous ghrelin and ghrelin analogs however, has been
very successful in early clinical trials in patients suffering
from cachexia resulting from several underlying disorders.
In patients with CHF, ghrelin administration improved
exercise capacity, and increased lean body mass and muscle
strength [139]. Ghrelin also improves food intake, perfor-
mance status, muscle strength, and lean mass in chronic
obstructive pulmonary disease [140]. Early studies in
cancer cachexia have been less compelling. A phase I
study showed that ghrelin was well tolerated by cancer
patients, but no differences were observed in nutritional
intake or body weight [141], although food intake did trend
toward improvement. Single injection of ghrelin into
cachechtic cancer [142] and renal failure [143] patients
improved immediate post-injection food intake in both
groups. Further studies are currently underway to study the
efficacy of ghrelin treatment in larger groups of cachectic
patients, with the hope of introducing ghrelin as a standard
treatment option in cachexia.

9 Conclusions

The anorexia associated with chronic disease is a multifac-
torial process that is variable and likely dependent on the
etiology of the underlying disease. Many inflammatory
molecules appear to be sufficient to cause reduced food
intake in animal models acutely, but sustained decreases in
food intake as occur in cachectic patients may be driven by
a specific subset of inflammatory mediators, or the
combined action of multiple mediators acting simultaneous-
ly. While numerous brain regions are activated by inflam-
mation, only a few neuronal subtypes have been identified
that respond directly to inflammatory cytokines. Whether
ARC POMC and AgRP neurons represent an integrator of
inflammatory cytokine signaling, or other as yet unidenti-

fied neurons are also directly responsive to these cytokines
remains to be elucidated. Regardless, agents targeting these
neurons or their downstream receptor the MC4R have been
remarkably effective in preclinical studies and early clinical
trials. It is likely that the best outcomes for anorectic
patients will be obtained by combination therapy targeting
both inflammatory mediators and their neural targets.
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