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Radiopharmaceuticals are an integral component of nuclear medicine and are widely 
applied in diagnostics and therapy. Though widely applied, the development of an “ideal” 
radiopharmaceutical can be challenging. Issues such as specificity, selectivity, sensitivity, 
and feasible chemistry challenge the design and synthesis of radiopharmaceuticals. Over 
time, strategies to address the issues have evolved by making use of new technological 
advances in the fields of biology and chemistry. This review presents the application of 
few advances in design and synthesis of radiopharmaceuticals. The topics covered are 
bivalent ligand approach and lipidization as part of design modifications for enhanced 
selectivity and sensitivity and novel synthetic strategies for optimized chemistry and 
radiolabeling of radiopharmaceuticals.

Keywords: radiopharmaceuticals, multivalent ligands, bioorthogonal approaches, surface modification, cross-
coupling reaction

iNTRODUCTiON

Radiopharmaceuticals are being used in diagnostics and therapeutics for more than half a century. 
They are widely used in the delineation of neurodegenerative diseases, myocardial imaging and 
diagnosis, and treatment of cancer. Due to their wide application, the development of an “ideal” 
radiopharmaceutical continues to be the foremost challenge of the research frontier in nuclear 
medicine. The key issues confronting the research community in radiopharmaceutical chemistry is 
to develop highly specific and selective ligands with high specific activity capable of targeting and 
overcoming biological barriers.

The challenges emanate at the different stages of developing radiopharmaceutical, viz., design, 
modification, and radiolabeling. Selection of the type of molecule (antibody and their fragments, 
peptides, nucleosides, aptamers, small molecules), surface modifications, multivalency, and labeling 
reactions optimization are few variations that have been used to address the challenges. Based on 
these variations, the review presents three emerging approaches that address the challenges: high 
selectivity and sensitivity through design optimization using bivalent ligands (BLs), targeting against 
natural barriers through modification using lipidization, and high specific activity while radiolabeling 
using sophisticated chemistries, viz., bioorthogonal and cross-coupling reactions. These approaches 
have the potential to be integrated into radiopharmaceutical development. We describe each of these 
approaches seriatim in along with avenues for future research in Sections 1–3.
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TABLe 1 | Few reports on successful targeting using multimeric peptides.

Multimeric RGD as integrin αvβ3 targeting unit conjugated to acyclic 
and cyclic chelators with dimeric, tetrameric, and octameric units

(3–5)

Heterobivalent peptides SPECT imaging agent for neutrophilic 
inflammation

(6)

Melanocortin receptors peptide-based ligands (7)

Bombesin peptide (8)

FiGURe 1 | Binding modes for a ligand (A) monovalent ligand with one 
receptor unit (B) bivalent ligand with one receptor unit (C) bivalent 
ligand with receptor dimer.
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1. HiGH SeLeCTiviTY THROUGH 
BivALeNT LiGAND APPROACH

Bivalent Ligand Approach
In simplest terms, a BL consists of two pharmacophores linked 
through a spacer. The two pharmacophores can be identical 
resulting in a homobivalent ligand or different resulting in a 
heterobivalent ligand. The BL benefits from the collaborative 
binding of the two pharmacophores, resulting in favorable 
thermodynamics as compared to that of a monovalent ligand (1). 
Figure 1 presents binding modes a BL can exhibit.

Selectivity through BLA
Bivalent ligands are examples of multimeric interactions. 
Multimeric interactions are known to enhance the binding affin-
ity of the ligands through multiple mechanisms, e.g., receptor 
clustering, chelating effect on receptors, ligand–receptor steric 
stabilization, and ligand accumulation near the receptor (2). 
Overall, the effect is enhanced selectivity and enhanced binding 
affinity (1). The multivalent concept has been extensively vali-
dated for peptides. Successful reports for multimeric peptides as 
diagnostics agent are included in Table 1.

Reviews regarding the development of homo-multimeric and 
hetero-multimeric peptidic ligands are many, and hence, for 
peptidic multimeric ligands readers may refer reviews (4, 9). The 
multimeric concept is now being extended to small molecules 
as well. Small molecule-based BLs are capable of multimeric 
interactions, thereby having higher sensitivity and selectivity.

Applications of BLA
A BL functions best when multiple binding pockets are present 
in the target. Depending on the pharmacophores, a BL can target 
one or multiple biomarkers. Tumor targeting can benefit from 
the high binding avidity and selectivity of BL. Furthermore, 

hetero-BL can result in more specificity as it targets different 
receptors simultaneously.

Receptor-based imaging, especially for neuroreceptors, 
can also benefit from the bivalent approach. Many receptors/
neuroreceptors belong to G-protein coupled receptor (GPCR) 
family (10). After the reports about the existence of GPCRs as 
oligomers and higher-orders started pouring (11), BLs were 
successfully developed and validated against them. The approach 
has been of high relevance in the design and development of 
second generation antipsychotics (12, 13). A BL can target both 
homo- and hetero-dimeric receptor systems depending on the 
pharmacophores.

Another target for BLs is β-amyloid plaques because of the 
presence of multiple binding sites (14).

Development Considerations for BLA
The key factors for BL design are (a) selection of pharmacophores, 
(b) optimization of linker length and its biocompatibility, and (c) 
spatial parameters of the final compound (2). As a radiophar-
maceutical, a BL has to be evaluated for its in vitro and in vivo 
properties.

A series of small molecule-based dimeric and multimeric 
ligands have been developed and reported in recent past for 
targeted imaging of tumors, receptors, and β-amyloid plaques. 
Figure 2 summarizes radiolabeled small molecule-based BLs.

Bivalent Ligands Demonstrated for SPeCT
Receptor Imaging
Singh et  al. (15) demonstrated the proof-of-concept for 5HT1A 
receptors using homodimeric ligand and validated the ligand as 
a SPECT imaging agent. Two identical pharmacophores based 
on 1-(2-methoxyphenyl)piperazine (MPP) were linked using 
an aliphatic linker of four carbon atoms to the acyclic chelating 
agent DTPA and validated as SPECT agent after technetium 
labeling [99mTc-DTPA-bis(MPBA) Figure 2A]. The authors were 
able to demonstrate (a) 1000 times high selectivity toward 5HT1A 
receptors than 5HT2A receptors, (b) involvement of both the 
pharmacophores for bivalent binding using hill slope analysis, 
and (c) high labeling efficiency.

On similar lines, using DTPA as an acyclic chelator for tech-
netium (16), reported the synthesis of bis-triazaspirodecanone 
(Figure  2B). The ligand showed enhanced binding affinity 
theoretically using docking and MM-GBSA calculations. 
Furthermore, the compound showed selective striatum uptake in 
the brain and selective dopamine D2 targeting.

Similarly, the divalent ligand with two units of galactose 
derivatives (99mTc-MAMA-DGal, Figure  2C) showed higher 
specific binding to asialoglycoprotein receptors (ASGPR) in 
dynamic microSPECT imaging and biodistribution studies of 
liver fibrosis (17). The monovalent ligand 99mTc-MAMA-MGal 
was also validated for comparison. The divalent ligand showed 
better binding affinity in vitro and fast pharmacokinetics.

β-Amyloid Imaging
To assess the amyloid aggregation (18), synthesized bivalent 
amyloid ligand and labeled with 99mTc leading to the formation 
of 99mTc-Ham (Figure 2D). Stilbene (SB) and benzothiazole (BT) 
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Bivalent ligands for SPECT 
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(G: [18F]- styrylpyridine derivatives) 

[11C]- labeled bivalent ligands Bivalent Ligands for metal labeling Bivalent ligand for multimeric NPs 

  
(H: [11C]bivalent β-carbolines) 
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(I: [67Ga] DOTA-MN2) 

 
(J: 99mTc-QDDTC– bisbiotin) 

Bivalent ligands validated for other imaging techniques 

 
(K:BMAOI) 

(L:bivalent-IA-Cy5.5) 

FiGURe 2 | Comprehensive list of small molecule-based bivalent ligands for diagnostics. (A) 99mTc-DTPA-bis(MPBA), (B) 99mTc-DTPA  
bis-triazaspirodecanone, (C) 99mTc-MAMA-DGal, (D) 99mTc-Ham, (e) [18F]-MPPSiF, (F) [18F]-bivalent-IA, (G) [18F]-styrylpyridine derivatives, (H) [11C]bivalent  
β-carbolines, (i) [67Ga]DOTA-MN2, (J) 99mTc-QDDTC-bisbiotin, (K) BMAOI, and (L) bivalent-IA-Cy5.5.
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derivatives were selected as amyloid binding units. These were 
conjugated to a hydroxamamide (Ham) and labeled for SPECT 
imaging using 99mTc. Five analogs were synthesized and evaluated 
for binding affinity and brain uptake.

[18F]-Fluorine-Labeled Bivalent Ligands
Receptor Imaging
In another study of Hazari et  al. (19), bis-MPP (Figure  2E) 
derivative has been synthesized to image serotonin receptors. 
The duplication of the pharmacophores leads to a supra-additive 
increase in binding and potency as compared to monovalent 
analog. Thus, the bis-compound had sub-nanomolar affinity for 
the receptor, 1000 times more selectivity for 5HT1A as compared 
to D2, 5-HTT, or 5HT2A. The compound was validated as PET 
imaging agent.

For the imaging of αvβ3, a non-peptidic BL was reported by 
Wang et al. (20) (Figure 2F). This molecule consisted of two units 
of antagonist 4-[2-(3,4,5,6-tetrahydropyrimidine-2-lamino)-
ethyloxy]benzoyl-2-(S)-aminoethylsulfonyl-amino-h-alanine 
(IA) and radiolabeled using 18F-AlF/NODA chelation reaction.

β-Amyloid Imaging
A series of bivalent (Figure 2G) and trivalent 18F-styrylpyridine 
derivatives were developed for imaging β-amyloid plaques in the 
brain. The BL displayed high binding affinity. The study demon-
strated the effect of linkers and the geometry of the molecule on 
the binding affinity. An ether linkage was found to have higher 
binding affinity vis-à-vis an amide linkage. The trivalent molecule 
had a reduced binding affinity as compared to the BL (14).

[11C]-Labeled Bivalent Ligands
Enzyme Imaging
β-Carboline bivalent derivatives that are known inhibitors for 
acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) 
were developed for imaging of cholinesterase in Alzheimer’s 
disease. The derivatives were radiolabeled at the nitrogen position 
of the amine precursor through N-[11C]methylation using [11C]
CH3I (Figure 2H). Radiolabeling parameters of three derivatives 
of variable linker length were reported (21).

Bivalent Ligands for Metal Labeling
Tumor Imaging
Bivalent ligand concept has also been validated for metal-based 
radiopharmaceuticals. Metronidazole was conjugated to DOTA 
(DOTA-MN2, Figure 2I) and developed as radiogallium–DOTA 
complex without reducing the radiogallium complex stability 
for the imaging of hypoxic lesions using PET/SPECT (22). The 
complex showed significant tumor uptake and low non-target 
accumulation.

Bivalent Ligand for Multimeric 
Nanoparticles
Tumor Imaging
The concept of enhanced binding via multivalency using small 
molecules and nanoparticles (NPs) has also been reported. 
Nanoparticles (Quantum dots), as reported in the work of Bag 

et al. (23), were conjugated with multiple biotin units (bisbiotin) 
to have enhanced selectivity.99mTc-QDDTC-bisbiotin showed 
significantly higher tumor uptake, better tumor retention, and 
enhanced pharmacokinetics as compared to DTC–bisbiotin 
ligand. The work illustrates the bivalent effect of bisbiotin 
ligand for high tumor uptake. Other effects, viz., better tumor 
retention and enhanced pharmacokinetics were the results of 
the enhanced permeable and retention (EPR) effect due to the 
QD (Figure 2J).

Potential Bivalent Ligands validated for 
Other imaging Techniques
β-Amyloid Imaging
Though not as a radiopharmaceutical, amyloid-β plaque imaging 
was accomplished using curcumin and cholesterol BL (BMAOI, 
Figure  2K), which could bind to various Aβ42 species with 
micromolar binding affinity and has appropriate fluorescence 
properties for labeling and imaging Aβ plaques in situ (24).

Receptor Imaging
NIR imaging probe for αvβ3 (25): Figure  2L was reported for 
cancer imaging. The non-peptidic small molecule bivalent 
antagonist demonstrated improved binding avidity relative to the 
monovalent ligand.

Bivalent Ligands for Radiotherapy
As above-mentioned BLs alone are being used for the develop-
ment of atypical antipsychotics. Bivalent peptide-based ligands 
are reported for radiotherapy applications (9). However, to the 
best of our knowledge, examples of small molecule-based BLs for 
radiotherapy have not been reported.

Future Directions
The advantages of high sensitivity, selectivity, and favorable 
pharmacodynamics make radiolabeled BLs promising candi-
dates for diagnostics and possibly therapy. However, knowledge 
gaps in receptor expression patterns, receptor’s higher order 
structures, and binding pattern on receptors need to be filled 
for full utilization of the approach. In terms of ligands itself, 
an exact mechanistic aspect of the binding of ligand need to 
be understood. The structural features, pharmacophore, the 
cooperative effect on the binding of pharmacophore, linker 
length, and geometry effect all have to be considered in the 
design of the ligand. Such studies can take lead from theoreti-
cal screening-like docking and high-throughput screening or 
through control experiments, which include comparative stud-
ies with a monovalent ligand. The approach still needs to be 
extended to radiotherapy.

The radiolabeled BLs are promising candidates in diagnostics 
and can enhance the binding affinity and enable multi-targeting. 
However, the penetration ability across the cellular membrane 
and the circulation time that determines the serum availability of 
the radiopharmaceutical are also important for the efficacy. The 
following section discusses the efforts in delivering the radiop-
harmaceutical to the target site through lipidization and surface 
modification.
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FiGURe 3 | Lipidic modification of the nucleosides for prodrug strategy. (A) [76Br]FBAU 3′,5′-dibenzoate, (B) [18F]-Capecitabine, and (C) pegylated and 
modified ICF01012.
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2. eNHANCeD TARGeTiNG THROUGH 
LiPiDiZATiON AND SURFACe 
MODiFiCATiON

Lipidization
Lipidization is a chemical approach to alter the solubility and 
pharmacokinetic behavior of a molecule. It involves attachment 
of lipid at the polar end of a molecule, thereby conferring lipo-
philic nature to the molecule.

enhanced Targeting through Lipidization
Lipidization of drugs in the form of (a) Prodrug Strategy and 
(b) lipid-based carriers’ viz. Liposomes and lipidized NPs can 
enhance the drug targeting. This is because of (a) enhanced per-
meability across biological barriers, namely, the membranes, (b) 
improved pharmacokinetics that includes enhanced circulation 
time, (c) slow release, thereby prolonging drug action, and (d) 
enhanced bioactivity through passive targeting. This approach 
has been used for developing anticancer drugs, drugs for liver 
diseases, and the lymphatic system. The strategy can also provide 
a solution for CNS targeting due to BBB penetration (26).

Lipidic Prodrugs for imaging/
Radiopharmaceuticals
The lipidic modification can lead to enhanced permeability in 
the brain, and hence, has potential for brain imaging. However, 
in literature, examples highlighting the utility of lipidic prodrug 
for imaging are rare. In 2002, Kao et al. (27) demonstrated that 

an additional lipophilic character by benzoylation at 3′ and 5′ of 
FBAU enhanced the uptake in brain having normal blood–brain 
barrier. The prodrug FBAU 3′,5′-dibenzoate was radiolabeled 
with 76Br. Biodistribution studies indicated a higher brain accu-
mulation of radioactivity (up to two times) at all time points in 
rats injected with [76Br]FBAU 3′,5′-dibenzoate (Figure 3A) than 
with [76Br]FBAU.

In 2005 (28), in order to reduce the toxicity and enhance 
the tumor penetration capability of 5-FU, prodrug strategy was 
validated. Capecitabine (N4-n-pentyloxycarbonyl-5′-deoxy-
5-fluorocytidine), which happened to be the first and the only 
orally administered fluoropyrimidine approved for the use as 
a second-line cancer therapy was labeled with 18F (Figure 3B). 
However, the study only included radiolabeling optimization, 
and no data for the capability of enhanced penetration/reduced 
was presented. In a present study of André et al. (29), N,N-diethyl 
N,N-diethylaminoethyleneheteroarylamide derivatives (e.g., 
ICF01012) was pegylated and conjugated with anti-metabolite 
5-iodo-2′-deoxyuridine (IUdR). Enhanced and prolonged tumor 
uptake (melanoma) was observed after radiolabeling with 125I 
(Figure 3C).

Lipidic Nanoparticles for imaging/
Radiopharmaceuticals with Surface 
Modification
Lipidization can lead to enhanced efficiency of drug delivery 
systems. Lipid-based NPs consist of two types (a) liposomes and 
(b) solid lipid NPs (30). Encapsulation of drugs in these NPs 
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TABLe 2 | Reviews regarding lipid-based nanoparticles.

Nanoparticles for brain drug delivery
•  Liposomes (lipid-based nanoparticles)
•   Polymer-based nanoparticles (polymeric nanoparticles, polymeric 

micelles, dendrimers)

(31)

New developments in liposomal drug delivery
•  Synthesis
•  Targeting strategies
•  Variations of nanoparticles
•  Applications

(32)

Emerging role of radiolabeled nanoparticles as an effective diagnostic 
technique
•  All major classes of nanoparticles and their utilization in imaging

(30)

Lipid- and polymer-based nanostructures for cancer theranostics
•  Application of nanoparticles for cancer theranostics and imaging

(33)

Nanoparticle PEGylation for imaging and therapy (34)
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protect from hydrolysis and aid in sustained controlled release at 
the site of interest. Reviews regarding lipid-based NPs are listed 
in Table 2. When radiolabeled the liposomes and NPs can prove 
to be effective theranostic agents.

Liposomes are further surface modified for both enhanced 
pharmacokinetics and enhanced penetration. The modifications 
can include pegylation, squalenolation, and peptidization.

Pegylation
For surface modification of NPs (liposomes), pegylation is one of 
the most successful strategies. Pegylation is known to enhance the 
circulation time for NPs. Few examples of pegylation, especially 
in context with radio imaging are being discussed covering the 
following aspects:

 (a) Pegylated liposomes with enhanced pharmacokinetics for 
imaging

 (b) Pegylated liposomes with enhanced BBB permeation and 
with enhanced pharmacokinetics for imaging.

Pegylated Liposomes with Enhanced Pharmacokinetics for 
Imaging
Pegylated Nucleolipids for Imaging with Improved Pharma
cokinetics. Nucleolipids are an emerging class of drug deliv-
ery systems. Recently, liposomes using the hybrid nucleoside 
lipids (NLs) were developed in which nucleosides were 
pegylated and targeted against folic acid. These liposomes 
(Figure  4A) were developed as the theranostic agent by 
encapsulating cisplatin as the therapeutic agent and 99mTc 
radiolabeled using the uridine rings at the outer surface of the 
liposomes. Enhanced uptake at the tumor site was observed 
along with the favorable pharmacokinetics, which included 
enhanced circulation time (35).

Pegylated Liposomes with Enhanced BBB Permeation with 
Enhanced Pharmacokinetics
Pegylated Phospholipidic. Lactoferrin targeted pegylated phos pho-
lipdic liposomes (Lf-PL-99mTc) based on distearoylphos phatidyl cho-
line (DSPC), cholesterol, and distearoylphosphatidyle thanolamine 

were radiolabeled and evaluated for BBB penetration and effect on 
pharmacokinetics [(36), Figure 4B].

 1. BBB penetration: bEnd.3 cells, which is an immortalized mouse 
brain endothelial cell line was used as a mimic for BBB. The 
cellular uptake was significantly higher for the targeted lipo-
some. Biodistribution studies indicated an enhanced uptake 
of the lipidic liposomes, which were targeted with lactoferrin, 
and approximately 1.47 times more uptake was reported than 
the non-targeted pegylated liposomes. However, the study did 
not comment on the penetration ability due to pegylation.

 2. Pharmacokinetics: the area under the curve (AUC0  →  24  h) 
and the clearance rate (Cl) from Lf-PL-99mTc was found to be 
similar to PL-99mTc with p-values of 0.89 and 0.31, respectively. 
Thus, the Lf-conjugated liposomes could provide the similar 
long-circulation property in  vivo. For designing a better 
Lf-PL-99mTc, the number of Lf ligand on the liposomes should 
have a suitable level.

Several other targeted pegylated liposomal preparations have 
also been reported (34).

Pegylated liposomes consisting of 1,2-distearoyl-sn-glycero-
3-phosphocholine (DSPC), cholesterol (Chol), and 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene 
glycol)-2000] (DSPE-PEG2000) were used for remote loading of 
radionuclide. In the work of Petersen et al. (37) (Figure 4C), [64]
Cu was crossed across the membrane of preformed liposomes into 
the aqueous cavity using a new ionophore, 2-hydroxyquinoline, 
in order to achieve high and stable loading of radionuclides.

Squalenolation
Though not with liposomes, squalene adenosine nano-assemblies 
(SqAdNA) were studied for their interaction with endothelial cells 
of the human brain to assess the mechanism of penetration (38). 
The internalization was mainly mediated by the LDL receptors-
mediated endocytosis, after which the NA disassembled inside 
the cells and exocytosed as single molecules. Such assemblies were 
also prepared with an array of nucleosides (deoxycytidine-Sq, 
thymidine-Sq, gemcitabine MP-Sq, ddI-Sq, and deoxycytidine-
5′-Sq) and studied to assess the influence of the nucleoside nature 
and position with respect to squalene on the structure of the NAs 
(39), Figure 4D. However, the utilization of the assemblies for 
imaging and brain penetration in vivo is yet to be validated.

Peptidization
Liposomal vector was modified as a novel bi-ligand having trans-
ferrin for targeting and poly-l-arginine for enhanced uptake in 
the brain (40). The bi-ligand liposomes accumulated in the rat 
brain at significantly (p <  0.05) higher concentrations as com-
pared to the single-ligand (transferrin) or plain liposomes.

Future Directions
The prodrug approach needs to be exploited for design of lipidic-
based radiopharmaceutical. From design perspective choice of 
lipids can be important for effectiveness. Literature available till 
date does highlight features of fatty acids (FA) required for effec-
tiveness. For example, the importance of carboxylate in cellular 
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FiGURe 4 | Lipidic nanoparticles for imaging and enhanced pharmacokinetics. (A) FA targeted pegylated nucleolipids, (B) phospholipid liposomes 
pegylated targeted against lactoferrin, (C) concept of remote labeling, and (D) squalene-based nanoparticles.
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internalization, an effect of chain length (longer chain fatty acid 
are more stable than shorter chain FA and better suited for lym-
phatic targeting) and pros and cons when exploiting carboxylate 
or ω-position for drug conjugation. Further studies on the effect 
of chain length of FA on targeting the type of membrane will be 
helpful. Prodrugs whether radiolabeled or not, also suffer from 
one challenge, guarantee of conversion from inactive to active 
form in the living system.

The drug delivery systems, liposomes and solid lipid NPs are 
expensive options with limited shelf life. Second, their toxicity, 
especially for cationic liposomes, and cellular interaction need to 
be addressed. Future work needs to address the issues for success-
ful utilization of liposomes and solid lipid NPs as drug delivery 
systems and radiopharmaceuticals.

The concluding step in the synthesis of any radiopharmaceu-
tical is the radiolabeling. A molecule with good selectivity and 
sensitivity and also with good penetration ability may not prove 
to be an ideal radiopharmaceutical because of the poor specific 

activity after radiolabeling. Hence, novel and optimized radiola-
beling conditions play an important role in the development of a 
radiopharmaceutical. A lot of work has been done in this regard. 
The following section gives an overview of the development in 
radiolabeling chemistry.

3. SYNTHeSiS AND RADiOLABeLiNG 
OPTiMiZATiON

Radiolabeling
Radiolabeling is the incorporation of the radioactive moiety in 
a compound in order to track the compound. With the growing 
utilization of diverse molecules as radiotracers, there is a growing 
need for new or modified radiolabeling methods that require low 
quantities of bioactive compounds, employ mild conditions to 
avoid loss of bioactivity, have short reaction times for short-lived 
radionuclides, and result in high specific activity. At the same 
time, for human application, the new or modified radiolabeling 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://www.frontiersin.org


February 2016 | Volume 3 | Article 58

Chaturvedi and Mishra Approaches for Small Molecule Radiopharmaceuticals

Frontiers in Medicine | www.frontiersin.org

methods need to focus on toxic free reagents or supplemented 
with better purification procedures. Bioorthogonal and cross-
coupling are upcoming approaches in order to meet the above 
requirements.

Radiolabeling can proceed in two ways: (a) using radiolabeled 
prosthetic groups that are coupled to bioactive molecules using 
bioorthogonal reactions and (b) direct labeling of bioactive 
molecules using cross-coupling reactions.

Bioorthogonal Approaches
Bioorthogonal reactions can proceed in the living systems with-
out influencing or getting influenced by the biological processes, 
the efficacy of the ligands is retained and can demonstrate fast 
kinetics especially when used for monitoring.

It may be noted that a large number of reviews have already 
been published, which cover the detailed aspects (41, 42). Hence, 
here a summarization along with few additions is being given for 
different types of bioorthogonal approaches.

Copper-Based Click Ligation
Click chemistry as described by K. Barry Sharpless is “a set of 
powerful, virtually 100% reliable, selective reactions for the rapid 
synthesis of new compounds” (29, 43). Click chemistry reports in 
radiopharmaceutical sciences were first published in 2006 (44). It 
has been extensively studied and published. Many comprehensive 
reviews are available. Some examples are (a) click chemistry 
mechanism (45), (b) application in radiopharmaceuticals (43, 44), 
(c) application with specific precursors-glycobiology (46), (d) click 
chemistry in chelate development (44), and (e) patent analysis (47).

An overview of click chemistry for radiopharmaceuticals is 
as follows:

 (a) Due to its bioorthogonal nature, click chemistry has been 
widely applied with different types of precursors.

 (b) Its application extends from
  i.  Linking two biomolecules without compromising the 

bio-efficacy
  ii.  Developing prosthetic groups that serve as radiolabeling 

precursors for fluorine-18 and carbon-11. Choice of a 
prosthetic group can influence (a) metabolic profile (b) 
in vivo behavior (41).

  iii.  Novel chelate development wherein the triazole moiety 
acts as an electron donor to the metal.

Few representative structures developed using click chemis-
try are shown in Figure 5 [structures referenced in Kettenbach 
et al. (41) and Pretze et al. (42)] covering the aspects b (ii) and 
b (iii). Though most popular as copper (I) catalyzed click chem-
istry leading to selective formation of 1,4 regioisomer, another 
variation using ruthenium complexes which leads to selective 1,5 
regioisomer has also been explored.

Strain-Promoted Click Chemistry/Strain-Promoted 
Azide Alkyne Cycloaddition
Largely driven by the requirement of copper-free click chemistry 
due to copper linked toxicity (cytotoxicity, non-compatibility with 

oligonucleotides, hepatitis, and implications in Alzheimer’s disease 
and neurological diseases), strain-promoted, and copper-free vari-
ants of click chemistry are being validated in radiopharmacy (42). 
Apart from being copper-free, the reaction proceeds at a faster rate 
and can be used for short-lived radioisotopes like 64Cu (67); it is 
efficient, has high specificity, and requires mild reaction conditions 
(68). These were first reported in 2011 (69). Since then, the reac-
tion has been used for radiolabeling of peptides [BBN (70), RGD 
(67, 71), c-Met-binding peptide (71), apoptosis-targeting peptide 
(ApoPep) (72), somatostatin analogs (72), DOTA-biotin conjugate 
(73), and NPs (68, 74)]. However, the concern for strain-promoted 
azide alkyne cycloaddition (SPAAC) include (a) effect of bulky 
moieties such as DBCO and ADIBO on lipophilicity, binding affin-
ity with the target and the variation on pharmacokinetic behavior, 
and (b) non-regioselective product formation consisting both 1,4 
and 1,5 regioisomers (72). Figure 6 presents precursors for fluorine 
labeling and radiopharmaceuticals developed using SPAAC.

Other Ligations: Staudinger Ligation, Tetrazines 
(Tetrazine-Trans-Cyclooctene Ligation), and Radio-
Kinugasa Reaction
Staudinger Ligation
Staudinger ligation is another example of the metal-free conjuga-
tion reaction (42). Two variants exist: the non-traceless with the 
inclusion of phosphine oxide and the traceless version without the 
inclusion of the phosphine oxide in the final product. Both lead to 
the formation of the amide bond. The non-traceless version has 
not been as widely applied as the traceless version. Furthermore, 
the reaction can be accomplished either through direct approach 
(azide of biomolecule reacted with 18F-phosphanes) or indirect 
approach (phosphane derivatized biomolecule reacted with 
18F-azide). The range of radiopharmaceuticals developed using 
the Staudinger Ligation is covered in the review (42).

Tetrazines (Tetrazine-Trans-Cyclooctene Ligation) (41, 42)
Tetrazine-trans-cyclooctene ligation (TTCO ligation), 
introduced in 2010, is the inverse electron demand of the 
Diels–Alder (IEDDA) cycloaddition between a cyclooctene 
and a 1,2,4,5-tetrazine under the release of nitrogen (77). Here, 
the tetrazine functionalized biomolecule is reacted with an 
18F-labeled cyclooctene (more preferred for radiolabeling). The 
approach has the advantages of fast reaction rates even without 
catalyst making it suitable for 11C-labeling reaction (78), non-
reversibility because of nitrogen release, broad tolerance range, 
both aqueous and organic based high yields. Its mechanism 
and the application are covered in the review (42). In short, the 
reaction has been applied for labeling peptides (RGD, GLP-1, 
exendin), small molecules PARP1-targeting small molecule and 
DOTA derivatives [refer review (79)].

Radio-Kinugasa Reaction
A recent addition to the radio fluorination is the Kinugasa 
reaction validated in 2014 (80). Advantage includes fast kinetics 
and a broad spectrum of biological activities and low toxicity of 
β-lactams. Radiochemical yields of the Kinugasa reaction prod-
ucts could be significantly increased by the use of different Cu(I) 
ligands (81).
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Click chemistry for radiolabeling using prosthetic groups

Fluroalkynes (48):  
[18F]fluoroethylazide ([18F]FEA 
(49) 

[18F]fluoro-PEGx-derivatives (50) [18F]fluoro-aryl-based 
[p-[18F]F-SA] (51)

Propargyl-4-
[18F]fluorobenzoate 
([18F]PFB) 
Bioconjugate RCY: 
37% to 88%:(52)

1-(azidomethyl)-4-
[18F]fluorobenzene 
(53)
Used for labeling 
oligonucleotides. 
Bioconjugate RCY 
of 15 ± 5%

Comments: 
High volatility, Side reactions-
vinyl acetylene when using 
shorter alkynes less than 4 C 
atoms: RCY (81-99%)

Reduced volatility, increased polarity, easy 
handling, pharmacokinetic behavior longer 
circulation time and a reduced renal 
clearance, RCY of 85–94%, used for 
labeling Peptides, NPs

Increase the lipophilicity and metabolic stability of radiotracers: 
Since, 18F attached to aryl sp2 carbon, compounds labeled with the 
prosthetic group expected to be resistant to in vivo defluorination.

[18F]-gluco-derivatives (54) [18F]fluoroborate (55) [18F]-labeled alanine (56)
([18F]BFP) and 1-(3-azidopropyl)-4-(3-
[18F]fluoropropyl)piperazine 
([18F]AFP) piperazine-based prosthetic 
groups (57)

Comments: 

Bioconjugate RCY of 60-75%
improve pharmacokinetics eg  
blood clearance and stability: 
multistep synthesis

Better methodology: Rapid Labeling at 
room temperature and at acidic pH 2-3 to 
afford a water-soluble, non-coordinating, 
highly polar ArBF3 – anion. Used for 
labeling RGD peptide.

Improve the 
pharmacokinetic profile 
of labeled biomolecules

Glaser coupling- side reaction avoided 
by using [18F]AFP
May form strong copper complexes

Trifluoroborate- radiolabeling 
through 18F-19F isotope 
exchange (58, 59)

pyridine-based18F-prosthetic group: pyridines [18F] labeled at ortho-position to –N generally reported to be stable 
against in vivo defluorination (62)

[18F]-FPy5yne (60)
[18F]-FPyKYNE (2-
[18F]fluoro-3-pent-4-yn-1-
yloxypyridine)  (61)

6-[18F]fluoro-2 ethynylpyridine (62)

Comments:

Derivatives for click 
conjugation followed by 

isotope exchange reactions

RCY ≈ 90%- 93%: Volatile product (57-
58ºC), NMe2 side product necessitates 
HPLC Bioconjugate RCY ≈18-25%: aryl 
18F- labeling agent:  

Bioconjugate RCY of 12–18% Bioconjugate RCY of 5–20%

Carbon Labeling precursor: [11C]methylazide (63,64)
Click chemistry for chelate development

1,4 and 1,5 regioisomers as chelate (M=99mTc, Re) (44, 48, 65) (66)

FiGURe 5 | Applications of click chemistry. Structures referenced in (41, 42, 48–66).
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For RadioLabeling 

(DBCO, n=2, RCY of 69–98%: n=5 )) (69) ADIBO derivatives, n=5 (75)

[18F]-containing cyclooctyne derivatives 

For conjugation with 18F Precursor-[18F]fluoroethylazide 

(70) (76)

Radiopharmaceuticals reported using SPAAC

R
G

D

y K
LINKER

BIOTIN

Mn+
Mn+

cRGD-ADIBOT-[18F] (71) DOTA-biotin conjugate for 68Ga (73)
64Cu-chelator complex system SPAAC conjugated to 

glycosylated RGD (67)

FiGURe 6 | Representative examples for radiopharmaceuticals using SPAAC. Structures referenced in (42, 67, 69–71, 73, 75, 76).
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Novel Cross-Coupling Approaches
The transition metal-mediated cross-coupling reactions have 
been used as part of organic synthesis for the precursors for 
radiolabeling. The cross-coupling reactions came into the pic-
ture in 1995 with the work of Langstorm using Stille and Suzuki 
reactions for PET radiopharmaceuticals. Largely driven by mild 
conditions as opposed to the harsh conditions of conventional 
fluorine labeling, high radiochemical yields and fast kinetics, the 
metal-mediated cross-coupling reactions are being increas-
ingly validated. The review presented by Doi (80) and Pretze 
et  al. (82), cover the historical and development details for 
Stille, Suzuki coupling, Negishi coupling, and Sonogashira and 
Heck coupling. Among the reactions, Stille reaction has been 
widely applied in the synthesis of radiopharmaceuticals.

Figures 7–9 summarizes the major contribution of the cross-
coupling reactions in the development of radiopharmaceuticals.

Stille Reaction
Stille reaction involves coupling between an organotin compound 
with alkyl or aryl halogenide using Pd-catalyst and a phosphane-
based coligand for the formation of both C–C bond and C–X 
bond (80, 82). The reaction has been tested with the following 

reaction conditions and validated for the synthesis of precursors 
as in Figure 7 (80, 82, 85–111).

Optimized conditions for catalyst and solvents include:  
(80, 82) 

(Temperature and time dependent on reactants)

[11C]-Labeling
[11C]labeled methyl iodide

 i. aromatictrimethylstannyl compounds in DMF or DMSO, 
Pd2(dba)3 with P(o-Tol)3 as coligand and CuCl/K2CO3 as 
additive in DMF

 ii. aromatictrimethylstannyl compounds with Pd2(dba)3/P(o-Tol)3, 
DMF

carbonylative[11C]-CO coupling

 i. organic iodides with organostannanes in DMSO with an 
excess of P(o-Tol)3 relative to Pd-catalyst

[11C]-acetyl chloride

 i. organostannate with Pd2(dba)3 and coligand 2,8,9-trimethyl-
2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane hydro-
chloride in the ratio 1:0.5, respectively.
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Stille reaction

Nucleosides

X=H [methyl-11C] thymidine
X=F [11C] FMAU

(85)

4′-[methyl-11C]thiothymidine
(86)

[11C] stavudine
(87)

[11C]zidovudine
(87)

[11C]telbivudine
(87)

Probes for different applications

[11C]-labeled GN8 derivative: prion disease
(88)

4- [11C]methylmetaraminol
Myocardial sympathetic innervations

(89)

[11C]toluene:
Pharmacokinetics parameters 

assessment (80)

Neuroligands

Serotonin transporter probes

[p-11C-methyl]MADAM (90) 5-[11C]methyl- 6-nitroquipazine (91) [11C]-labeled citalopram analogue
(92)

Imidazoline Receptor Probes

[11C]FTIMD (93) [11C]metrazoline (94) [11C]TEIMD (94)

Other receptors Probes

[11C]celecoxib : COX2 inhibitor
(95)

5-[11C]methyl-A-85380: 
nicotinic acetyl choline probe

(96)

[11C]SB 222200
NK3 receptor antagonist 

probe (97)

(–)-[11C]OMV (-)-o-
[11C]methylvesamicol,
Vesicular acetylcholine 

transporter probe (98)
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[18F]-Fluorination
1-[18F]fluoro-4-iodobenzene

 i. hexamethylphosphoramide is used as solvent and Pd(PPh3)4 
as catalyst

 ii. Pd(PPh3)2Cl2/CuI as catalyst in dioxane
 iii. DMF/dioxane (1:1) or THF/dioxane (1:1) mixture using 

Pd2(dba)3/CuI/AsPh3

 iv. Pd2(dba)3/P(o-Tol)3/CuI, DMF/toluene (1:1)

1-[18F]fluoro-4-bromobenzene:

 i. Pd2dba3/AsPh3 as mediator in a DMF:dioxane mix ture (1:1)

 ii. DMF/dioxane mixture and Pd(PPh3)4

 iii. dioxane with PdCl(PPh3)2

Common conditions: DMF:dioxane mixture (1:1) as solvent 
and BnClPd(PPh3)2:CuI (ratio 1:1) as catalyst.

Advantages are (a) mild conditions, (b) wide tolerance of 
functional groups such as amino, hydroxyl, thiol, or carboxylate, 
and (c) stability of the organotin compounds.

Disadvantages include (a) metal linked toxicity and (b) kinetic 
and thermodynamic feasibility of the reaction.

Challenges are possible side reactions with different func-
tional groups, difficult preparation and purification of stannyl 

FiGURe 7 | Continued
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[11C]CHIBA-1001 for alpha7 nicotinic acetylcholine 
receptors (99) [11C]-TIC methyl ester: melanocortin-4 receptor agonists n=3

(100)
mGluR5 antagonist mGluR1 antagonist/probe

[11C]M-MTEB (101) [11C]-JNJ-16567083 (102)

[11C]MPEP (103) [11C]ITDM (104)

[carbonyl-11C]benzyl acetate imaging glial 
metabolism of acetate to glutamate (105)

[11C]H-1152: Rho Kinase probe
(106)

[11C]-labeled
reboxetine analogues (X=O,S) (107)

Fluorine Labeling

4-[18F]fluorophenylallylpiperidine (108) [18F]- labeled cytisine analog
α4 β2 nicotinic acetylcholine receptor probe (109)

[18F]-labeled nucleosides
(110) COX-2 inhibitors (111)

FiGURe 7 | Selected structures developed using Stille reaction. Structures referenced in (80, 82, 85–111).

compounds, reproducibility can be sensitive to the purification 
level of 11C-methyl iodide.

Suzuki Reactions
The Suzuki coupling is based on the conjugation of boron sub-
strates (alkylborane/benzylborane/alkenylboranes) with alkyl 
halide leading to C–C bond formation or C–X bond formation 
(80, 82). General Optimized conditions (80, 82) for the synthesis 
of various precursors (Figure 8) include:

(Temperature and time dependent on reactants)

[11C]-Carbon Labeling
[11C]-methyl iodide

 (i) aryl iodide or aryl boranes (reactant) with Pd(PPh3)4 as 
catalyst with THF as solvent under basic conditions.

 (ii) aryl boranes (especially consisting acidic protons) in the 
presence of [Pd(dppf)Cl2] and K3PO4 in DMF under micro-
wave heating

 (iii) aryl boranes using Pd0-mediated conventional thermal 
heating method
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Sonogashira coupling

For Carbon Labeling

17α-(3′-[11C]prop-1-yn-1-yl)-3-methoxy-3,17β-estradiol (119)
For Fluorine Labeling

Cyclopentylcarbinol (120) steroid precursors R’= OH, OMe (120)

FiGURe 9 | Selected radiopharmaceuticals developed using Sonogashira coupling. Structures referenced in (80, 82, 119–120).

Suzuki Reaction

[11C]-PSPA-4: probe for 
acromelic acid A induced 

disorder (112)

[11C]-cetrozole
probe for aromatase (113)

[11C]ATRA all-trans-retinoic 
acid: ligand for the retinoic 

acid receptors (114)

[18F]fluoromethylated 
derivative (115)

[11C]-labeling vortioxetine: 
high affinity for a range of 

different serotonergic 
targets in the CNS (116)

[11C]-labeled CIMBI-712: 
cerebral 5-HT7 receptors

(117)

[11C]-dehydropravastatin
OATP1B1 and 

MRP2 transporter probe 
(118)

[18F]- pitavastatin: probe 
for hepatic organic anion 
transporting polypeptides 

(hOATP) (83)

FiGURe 8 | Selected structures developed using Suzuki reactions. Structures referenced in (80, 82, 83, 112–118).
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 (iv) pinacolphenylboronate/alkenylboranes/aryl boranewith 
Pd2(dba)3/P(o-tolyl)3/K2CO3 (1:4:4) in DMF or DMF/H2O 
(9:1)

[11C]-CO

 (i) aryl iodides and phenylboronic acid (reactant) with 
Pd(PPh3)2Cl2(catalyst), K2CO3(base) and DMSO (solvent)

 (ii) aryltriflate +  alkyl boronic acid (reactant) with bases such 
as tetra-butylammonium fluoride or aryltriflate + aromatic 
boronic acid (reactant) with bases such as potassium tert-
butoxide. Lithium bromide (promoter) may also be added.

Fluorine Labeling
[18F] fluoromethyl iodide ([18F]-FCH2I)

 (i) pinacolphenylboronate with 1:3 ratio of Pd/P(o-tolyl)3

1-[18F]fluoro-4-iodobenzene

(i) organoboranes with Pd2(dba)3 as mediator, Cs2CO3 as base 
and acetonitrile as solvent.

Advantages are (a) borane derivatives that are less toxic than the 
stannous substrates, (b) organoborane has relatively high reactivity, 
especially in the presence of a base or a fluoride anion, (c) compat-
ible with a wide variety of functionalities, and (d) water tolerant.

Sonogashira Coupling
Based on organocopper species that interacts with the Pd-catalyst 
in transmetalation step for conjugation of terminal alkynes with 
vinylic or aryl halides (Figure 9) (80, 82, 119–120).

Optimized conditions: (80, 82)
(Temperature and time dependent on reactants)
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[11C]stilbene derivatives (R= -H, -NH2, -CH2OH, -COOEt,- CH3) 

FiGURe 10 | Radiopharmaceutical developed using Heck reaction. Structures referenced in (82, 121).

For Carbon Labeling
alkenyl zirconocene 

complexes
Pd-mediated cross-

coupling Pd-mediated cross-coupling [11C]cyanide

Used with prenyl group with [11C]CO
using1,1'-bis-

(diphenylphosphino)
Ferrocene as coligand

2,4,4-[11C]trimethyl-
pent-2-ene (122)

[carbonyl-
11C]acrylamides

(Z=-CH, -N) (123)

[11C]NAD-299: serotonin 
transport probe (124)

dopamine D3 receptor 
probe (125)

Cuprates mediated Rh(I)-complexes mediated

[11C]progesterone (126) [11]C-labeled urea derivative: VEGFR-2/PDGFR-ß inhibitor (127)
For Fluorine Labeling

Buchwald-Hartwig conditions Ullmann-type conditions.

fanserin [18F]RP 62203, a 5-HT2A

serotonin receptor antagonist (128)
Radiofluorinated farglitazar : probe for  peroxisome proliferator-

activated receptor-γ ligands (PRARγ) (129)

4-[18F]Fluorophenylpiperazines: [18F]FAUC 316: Dopamine D4 Ligand (84)

FiGURe 11 | Representative radiopharmaceuticals developed using Misc reactions. Reference: (80, 82, 84, 122–129).

Carbon Labeling
[11C]-methyl iodide

 i. terminal alkyne with Pd2(dba)3, AsPh3 and tetra-n-butyl-
ammonium fluoride in THF (for Sonogashira-like coupling)

Fluorine Labeling
i. 4-[18F]fluoro-1-iodobenzene: THF as solvent and Et3N as base

Heck Reaction
Based on palladium-catalyzed C–C bond formation between 
olefins and aryl/vinyl halides (Figure 10) (82).

Negishi Reaction and Misc Reactions
Negishi coupling can be a coupling of choice when other cou-
plings fail (80, 82). It is based on organozincs as nucleophiles 
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and is palladium-catalyzed reaction. Disadvantages include (a) 
incompatible with common functional groups, such as hydroxyl, 
sulfhydryl, aldehyde, and carboxylic acid, hence limited scope 
and (b) sensitive to environmental conditions.

Carbon Labeling: (Temperature and Time Dependent 
on Reactants)
Arylzinc iodide and 11C labeled methyl iodide with Pd(PPh3)Cl2 in 
dimethylacetamide at room temperature or elevated temperature.

Apart from the above-mentioned cross-coupling reactions, 
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important contribution in near future. Figure  11 summarizes 
some contributions (80, 82, 84, 122–129).

Future Directions
The future directions for successfully utilizing the novel chem-
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regioisomer selectivity, and (e) studies to understand the effect of 
bulky precursors on pharmacokinetics and biological efficacy of 
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CONCLUSiON

This review has summarized the applications and scope of the 
three approaches for the development of radiopharmaceuti-
cals (a) bivalent ligand approach (BLA) for the novel design of 
the radiopharmaceuticals, (b) lipidization and surface modi-
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and development of radiopharmaceuticals. The reactions 
have been tested with a wide variety of biomolecules-small 
molecules, steroids, nucleosides, glucose derivatives, pep-
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kinetics are the key requirements for being a method of choice 
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