
Ventral hippocampus-lateral septum circuitry promotes foraging-
related memory

Léa Décarie-Spain1,5, Clarissa M. Liu1,2,5, Logan Tierno Lauer1, Keshav Subramanian1,2, 
Alexander G. Bashaw1,2, Molly E. Klug1, Isabella H. Gianatiempo1, Andrea N. Suarez1, 
Emily E. Noble4, Kristen N. Donohue1, Alyssa M. Cortella1, Joel D. Hahn3, Elizabeth A. 
Davis1, Scott E. Kanoski1,2,6,*

1Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College 
of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los 
Angeles, CA 90089, USA

2Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, 
CA 90089, USA

3Neurobiology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and 
Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA

4Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA 30602, 
USA

5These authors contributed equally

6Lead contact

SUMMARY

Remembering the location of a food or water source is essential for survival. Here, we reveal 

that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron 

activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves 

communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-

to-LS signaling impairs spatial memory retention for food or water location. This neural pathway 

selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial 

memory for escape location in a negative reinforcement procedure, food intake, or social and 

olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses 

reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily 
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GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the 

neural substrates controlling spatial memory are outcome specific based on reinforcer modality.

Graphical abstract

In brief

How do hungry or thirsty animals find food or water? Décarie-Spain et al. identify a ventral 

hippocampus to lateral septum circuit that selectively promotes spatial memory for appetitive-

based (food or water) but not aversive-based (escape) reinforcement. These findings identify a 

neural pathway that selectively encodes foraging-related memory.

INTRODUCTION

A survival advantage common to early humans and lower-order mammals is the ability 

to accurately remember the location of a food or water source in the environment and 

efficiently navigate back to a shelter or other safe location. The neurobiological substrates 

that regulate visuospatial navigation are therefore critical to effectively implement food-

directed or water-directed foraging behavior. In rodents, a number of maze tasks have 

been developed that have been instrumental in identifying brain structures within the 

telencephalon that are essential for visuospatial mapping and egocentric orientation in the 

environment, including the hippocampus and the medial entorhinal cortex, respectively 

(Morris, 1997; Rowland et al., 2016). However, despite reliably locating food and water 

sources in the environment being a key selection pressure driving the evolution of 
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visuospatial navigation, the overwhelming majority of rodent model research on the neural 

substrates of spatial learning and memory have utilized procedures such as the Morris 

water maze and the Barnes maze that each involve escaping aversive stimulus conditions 

(Barnes, 1979; Morris, 1984). Furthermore, while single-unit recordings have been used to 

identify specific populations of neurons that subserve distinct navigational functions (e.g., 

hippocampal ‘‘place cells,’’ medial entorhinal ‘‘grid cells’’) (Hafting et al., 2005; O’Keefe 

and Dostrovsky, 1971), and these neurons have been shown to respond to taste (Herzog et 

al., 2019, 2020; Ho et al., 2011), the bulk of this research has recorded neural activity under 

neutral conditions devoid of either appetitive or aversive reinforcement. Very little research 

has been dedicated to identifying brain regions and neural circuits that may specifically 

promote spatial memory based on the location of appetitive reinforcers (e.g., food, water), as 

well as the extent to which the nature of the reinforcement is a critical factor in deciphering 

the brain’s control of visuospatial navigation.

Rodent model research investigating brain regions that mediate visuospatial navigational 

memory has predominantly focused on the anterior and ‘‘dorsal’’ subregion of the 

hippocampus (septal pole; HPCd). However, the posterior and ‘‘ventral’’ hippocampus 

subregion (temporal pole; HPCv), while classically associated with stress- and affect-

associated memory processes (Fanselow and Dong, 2010), also plays a role in visuospatial 

learning and memory (de Hoz et al., 2003; Keinath et al., 2014; Kjelstrup et al., 2008). 

For example, under some testing conditions, selective HPCv lesions impair spatial memory 

performance in the Morris water maze (Ferbinteanu et al., 2003; de Hoz et al., 2003). 

Moreover, place cells that are responsive to location changes in the visuospatial environment 

are present within both the HPCd and HPCv pyramidal layers, with a linear increase in 

the spatial scale of representation from the dorsal to the ventral pole (Kjelstrup et al., 

2008). Despite a common role for the HPCd and HPCv in mediating spatial memory, 

there is also evidence for a functional distinction between the subregions (Fanselow and 

Dong, 2010; Kanoski and Grill, 2017; Moser and Moser, 1998). For instance, lesions of 

the HPCv but not the HPCd alter stress responses (Henke, 1990) and anxiety-like behavior 

(Kjelstrup et al., 2002), whereas HPCd but not HPCv lesions impair spatial memory in 

an incidental (nonreinforced) procedure (Gaskin et al., 2009). These two HPC subregions 

also have disparate neuroanatomical connectivity, supporting a framework for a functional 

diversity in which the HPCd preferentially processes cortical-derived sensory information 

and the HPCv preferentially processes metabolic and limbic-derived affective information 

(Fanselow and Dong, 2010; Kanoski and Grill, 2017). These functional distinctions are 

further supported by the generation of the hippocampus gene expression atlas, which 

provides a comprehensive integration of gene expression and connectivity across the HPC 

septotemporal axis (Bienkowski et al., 2018; Gergues et al., 2020). Given that both the 

HPCv and the HPCd participate in spatial memory but have distinct neuroanatomical 

connectivity and contributions when it comes to regulating other cognitive and mnemonic 

processes, it is feasible that the HPCv and HPCd support different forms of spatial memory 

depending on the type of reinforcement and/or the context associated with the behavior.

Recent findings identify the HPCv as a critical brain substrate in regulating feeding behavior 

and food-directed memory processes. Reversible inactivation of HPCv neurons after a meal 

increases the size of and reduces the latency to consume a subsequent meal (Hannapel et 
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al., 2017, 2019). In addition, receptors for feeding-related hormones are more abundantly 

expressed in the HPCv compared with the HPCd (e.g., ghrelin receptors [Mani et al., 

2014; Zigman et al., 2006], glucagon-like peptide-1 [GLP-1] receptors [Merchenthaler et 

al., 1999]), and these HPCv endocrine and neuropeptide receptor systems alter food intake 

and feeding-related memory (Hsu et al., 2015a, 2018b, 2018a; Kanoski et al., 2011, 2013; 

Suarez et al., 2020). Olfactory information, which is intimately connected with feeding 

behavior, is also preferentially processed within the HPCv rather than the HPCd (Aqrabawi 

and Kim, 2018; Aqrabawi et al., 2016). The HPCv field CA1 (CA1v), specifically, is 

bidirectionally connected to brain regions that process olfactory information (Fanselow and 

Dong, 2010; De La Rosa-Prieto et al., 2009; Petrovich et al., 2001), and CA1v neurons 

respond more robustly to olfactory contextual cues than CA1d neurons (Keinath et al., 

2014). Given these appetite-relevant HPCv neuroanatomical connections, endocrine and 

neuropeptide receptor expression profiles, and functional evidence linking this subregion 

with food-motivated behaviors, we hypothesize that HPCv mediation of visuospatial 

memory is preferentially biased to appetitive food- and water-reinforced foraging behavior.

HPCv pyramidal neurons have extensive projection targets throughout the brain (Swanson 

and Cowan, 1977), yet the functional relevance of these pathways is poorly understood. 

The lateral septum (LS) is a robust target of HPCv glutamatergic pyramidal neurons 

(Arszovszki et al., 2014; Risold and Swanson, 1996). Given that this pathway has been 

shown to affect feeding behavior (Kosugi et al., 2021; Sweeney and Yang, 2015) and 

that neuroplastic changes occur in the LS after learning a spatial memory task (Garcia et 

al., 1993; Jaffard et al., 1996), we predict that that HPCv-to-LS projections participate in 

regulating foraging-related spatial memory for food and water location. To investigate this 

hypothesis, we developed two appetitive reinforcement-based spatial foraging behavioral 

tasks that allow for direct comparison with an aversive reinforcement-based task of 

similar difficulty that uses the same apparatus and spatial cues. First, foraging-related 

spatial memory was assessed following neurotoxic ablation of the HPCv, and CA1v 

bulk intracellular calcium activity was recorded during memory probe performance in 

intact control animals. Performance in these tasks was next assessed following pathway-

specific dual viral-based reversible (chemogenetic inhibition) or chronic (targeted apoptosis) 

disconnection of the CA1v-to-LS pathway. To further expand neural network knowledge on 

CA1v-to-LS signaling, we used conditional viral-based neuroanatomical tracing strategies to 

identify both first-order collateral and second-order targets of LS-projecting CA1v neurons, 

as well as immediate-early gene mapping approaches to confirm the functional relevance of 

downstream pathways. Collective results from the present study identify a neural circuitry of 

specific relevance to foraging behavior.

RESULTS

Ventral hippocampus neurons encode memory for the spatial location of food

To examine the importance of the HPCv in memory for the spatial location of food 

reinforcement, HPCv bulk calcium-dependent activity was recorded in animals performing 

a food-reinforced appetitive visuospatial memory task that utilizes a Barnes maze apparatus 

(Figure 1A). Fiber photometry recordings in the HPCv (representative injection site in 
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Figures 1B and 1C) revealed HPCv activity fluctuations in response to escape hole 

investigations during the appetitive visuospatial memory task memory probe in which no 

food was present (Figure 1D; time × investigation type, p < 0.05). HPCv changes in neuron 

activity immediately following escape hole investigation differ between investigation type 

(correct versus incorrect, Figure 1E; p < 0.05, Cohen’s d = −1.0582), such that 5-s calcium 

activity increased following correct hole investigations yet decreased following incorrect 

hole investigations. In addition, a significant correlation was found between changes in 

HPCv activity 5 s following a hole investigation and distance from the appropriate escape 

hole (Figure 1F; p < 0.01, r2 = 0.08584). To verify whether the HPCv is necessary for 

food location-based spatial memory, another group of animals received bilateral N-methyl-D-

aspartate excitotoxic lesions of the HPCv or bilateral sham injections (histological analyses 

for the neuron-specific NeuN antigen in Figure 1G) and were tested with the appetitive 

visuospatial memory task (representative behavioral traces in Figure 1H). Results revealed 

no significant differences in errors (incorrect hole investigations) (Figure 1I) or latency to 

locate the food source hole (Figure 1J) during training. However, memory probe results 

show that animals with HPCv lesions decreased the ratio of correct + adjacent/total holes 

explored compared with controls (Figure 1K; control versus HPCv lesion, p < 0.05, Cohen’s 

d = −1.0174, t test; control group different from chance performance, p < 0.001, one-sample 

t test), indicating impaired memory for the spatial location of food reinforcement.

Postsurgical analyses of food intake (Figure S1A) and body weight (Figure S1B) found no 

significant group differences in these measures over time. These collective results indicate 

that the HPCv is required for memory retention but not learning of the spatial location of 

food in the environment, and that HPCv neural activity is modulated by appetitive spatial 

memory accuracy.

Ventral hippocampus CA1 projections to the lateral septum mediate appetitive spatial 
memory for food or water location, but not aversive spatial memory for escape location

To identify a specific neural pathway mediating the results described above, we investigated 

the functional relevance of the CA1v-to-LS signaling in learning and recalling the spatial 

location of either food or water reinforcement using conditional dual viral approaches 

to either reversibly (via Cre-dependent pathway-specific inhibitory chemogenetics with 

clozapine-N-oxide [CNO] administration prior to the memory probe; diagram of approach 

in Figure 2A) or permanently (via Cre-dependent pathway-specific caspase-induced lesions; 

diagram of approach in Figure 2B) disconnect CA1v-to-LS communication. Results from 

the appetitive food-seeking spatial memory task reveal no significant group differences 

during training in either errors before locating the correct hole (Figure 2D) or latency to 

locate the food source hole (Figure 2E). However, memory probe results demonstrate that 

both acute (pathway-specific designer receptors exclusively activated by designer drugs 

[DREADDs]) and chronic (pathway-specific caspase) CA1v-to-LS disconnection decreased 

the ratio of correct + adjacent/total holes explored compared with controls (Figure 2F; 

control versus DREADDs and control versus caspase, p < 0.05, Cohen’s d = −1.142; control 

different from chance, p < 0.0001, caspase different from chance, p < 0.05, one-sample t 

test), indicating impaired memory for the spatial location of food reinforcement.
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Results from an analogous appetitive water-seeking spatial memory task in a separate cohort 

of water-restricted rats also reveal no significant group differences during training in either 

errors before locating the correct hole (Figure 2G) or latency to locate the water source 

hole (Figure 2H). However, a significant impairment was observed following either acute 

or chronic CA1v-to-LS disconnection of the ratio of correct + adjacent/total holes explored 

compared with controls (Figure 2I; control versus DREADDs and control versus caspase, p 

< 0.05, Cohen’s d= −1.18; control different from chance, p < 0.01, DREADDs and caspase 

different from chance, p < 0.05, one-sample t test), indicating impaired memory for the 

spatial location of water reinforcement.

Histological analyses confirmed successful viral transfection of LS-projecting CA1v 

neurons with DREADDs (Figure 2C), as well as successful lesioning of LS-projecting CA1v 

neurons for the caspase approach (Figures S2G and S2H). The reversible DREADDs-based 

disconnection approach was further confirmed by c-Fos analyses in the LS, where the 

number of c-Fos immunoreactive neurons in the LS in response to the food reinforcement-

based spatial memory probe test was reduced following CNO treatment relative to vehicle/

control treatment (Figures S2A–S2C; p < 0.01, Cohen’s d = −3.9578). We further confirmed 

that intracerebroventricular (i.c.v.) administration of CNO failed to influence LS neuronal 

activation in the absence of inhibitory DREADDs (Figures S2D–S2F). Postsurgical analyses 

of food intake (Figure S1C) and body weight (Figure S1D) found no group differences in 

these measures over time (in the absence of CNO treatment). These data demonstrate that 

the CA1v-LS disconnection approaches were successful, that CA1v-to-LS communication 

is critical for remembering the spatial location of food and water, and that these effects are 

unlikely to be based on differences in energy status or food motivation.

To evaluate whether CA1v-to-LS signaling is specifically involved in appetitive 

reinforcement-based spatial memory (food or water) versus spatial memory in general, in 

a separate cohort of animals we tested the effect of reversible and chronic CA1v-to-LS 

disconnection in a spatial learning task based on aversive reinforcement rather than food 

or water. Importantly, this task uses the same apparatus and visuospatial cues as the spatial 

location food and water memory tasks described above, but the animals are motivated to 

locate the tunnel to escape mildly aversive stimuli (bright lights, loud noise) with no food or 

water reinforcement in the tunnel. Training results revealed no significant group differences 

in errors before correct hole (Figure 2J) nor latency to locate the escape hole (Figure 2K). 

During the memory probe test, there were no group differences in the ratio of correct + 

adjacent/total holes investigated (Figure 2L; control, DREADDs, and caspase different from 

chance, p < 0.01, one-sample t test). Postsurgical analyses of food intake (Figure S1E) 

and body weight (Figure S1F) found no group differences in these measures over time. 

These collective findings suggest that CA1v-to-LS signaling specifically mediates spatial 

memory in a reinforcement-dependent manner, playing a role in appetitive (food or water 

reinforcement) but not aversive (escape-based) spatial memory.
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Disconnection of CA1v-to-LS signaling does not influence food intake, food-motivated 
operant responding, nonspatial HPC-dependent appetitive memory, anxiety-like behavior, 
or locomotor activity

While the results above suggest that the impairments in food- or water-based spatial memory 

were not based on long-term changes in food intake or body weight, these experiments 

were conducted under conditions of either chronic food or water restriction. To examine 

the role of CA1v-to-LS signaling on feeding behavior under free-feeding conditions, we 

examined meal pattern feeding analyses in the caspase group versus the control group 

(chronic CA1v-LS disconnection), and in the DREADDs group following CNO or vehicle 

(within-subjects design; reversible CA1v-LS disconnection). Results averaged over 5 days 

revealed no significant effect of chronic CA1v-to-LS disconnection (caspase group) on 24-h 

meal frequency, meal size, meal duration, or 24-h food intake in comparison with controls 

(Figures S3A–S3D). Similarly, CNO-induced acute reversible silencing of LS-projecting 

CA1v neurons (DREADDs group) did not significantly affect 24-h meal frequency, 

meal size, meal duration, or 24-h food intake relative to vehicle treatment (Figures S3E–

S3H). Furthermore, CNO-induced acute disconnection of the CA1v-to-LS pathway had 

no impact on effort-based lever press responding for sucrose rewards in a progressive 

ratio reinforcement procedure (Figure S3I). Collectively, these findings show that neither 

reversible nor chronic CA1v-to-LS disconnection influences food intake under free-feeding 

conditions nor food motivation in a non-visuospatial task.

The HPCv plays an important role in the social transmission of food preference procedure 

(STFP) (Carballo-Márquez et al., 2009; Countryman et al., 2005; Hsu et al., 2018a), 

which tests socially mediated food-related memory based on previous exposure to socially 

communicated olfactory cues (Figure S4A). However, results revealed that neither chronic 

nor acute disconnection of CA1v-to-LS signaling affected the STFP preference ratio 

between groups (Figure S4B), with all three groups performing significantly above chance 

(based on within-group one-sample t tests, p < 0.05).

HPCv-to-LS circuitry has been shown to play a role in mediating anxiety and stress 

behavior (Parfitt et al., 2017; Trent and Menard, 2010). Given that altered anxiety-like 

behavior and/or locomotion could produce behavioral changes that may lead to an apparent 

spatial memory deficit in any of the spatial learning tasks used, we examined whether 

CA1v-to-LS disconnection yields differences in anxiety-like behavior (zero maze task; 

Figure S4C) and/or locomotion (open field test). Zero maze results showed no significant 

group differences in time spent in the open zones (Figure S4D) nor in the number of open 

zone entries (Figure S4E). In addition, CA1v-to-LS disconnection had no effect on general 

locomotor activity in the open field test (Figure S4F). These collective results suggest 

that the observed deficits in food- and water-seeking spatial memory are not secondary 

to impaired nonspatial appetitive learning, general differences in anxiety-like behavior, or 

locomotor impairments.
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Collateral medial prefrontal cortex projections from LS-projecting CA1v neurons do not 
contribute to appetitive spatial memory

In addition to the LS, CA1v neurons also robustly project to the medial prefrontal cortex 

(mPFC), a pathway that we have previously shown to be involved in feeding behavior (Hsu 

et al., 2018b). To examine whether LS-projecting CA1v neurons have collateral targets in 

the mPFC or in other brain regions, we utilized a conditional dual viral neural pathway 

tracing approach that identifies collateral targets of a specific monosynaptic pathway (CA1v 

→ LS; diagram in Figure 3A; representative CA1v and LS injection sites in Figure 3B 

[left and middle]). Results revealed that LS-projecting CA1v neurons also project to the 

mPFC (Figure 3B, right), whereas very minimal labeling was observed in other brain regions 

throughout the neuraxis. Thus, it may be the case that the impaired spatial memory for food 

location observed following either reversible or chronic CA1v-to-LS disconnection is based, 

in part, on CA1v-to-mPFC signaling from the same LS-projecting CA1v neurons.

We next sought to test the functional relevance to food-directed spatial memory of a CA1v-

originating neural pathway (CA1v to mPFC) that is a collateral target of LS-projecting 

CA1v neurons. Inhibitory DREADDs were expressed in mPFC-projecting CA1v neurons 

(diagram of approach in Figure 3C and representative CA1v injection site in Figure 3D), and 

animals received an i.c.v. infusion of CNO or aCSF 1 h prior to the memory probe. Training 

results from the appetitive spatial memory task revealed no group differences in errors 

before locating the correct hole (Figure 3E) or latency to locate the food-baited hole (Figure 

3F). Importantly, memory probe results demonstrate that CA1v-to-mPFC disconnection (via 

CNO treatment) did not alter the ratio of correct + adjacent/total holes explored (Figure 

3G; aCSF different from chance, p < 0.01, CNO different from chance, p < 0.001, one-

sample t test) compared with controls (artificial cerebrospinal fluid [aCSF]). These data 

collectively demonstrate that CA1v-to-LS mediation of foraging-related memory does not 

require collateral projections to the mPFC neural pathway and that the impact of i.c.v. CNO 

administration on memory performance is not generalized to the inhibition of any CA1v 

projections.

Appetitive spatial memory engages LS GABAergic neurons and the lateral hypothalamic 
area downstream of HPCv-LS signaling

Fluorescent in situ hybridization analyses were used to determine the neurotransmitter 

phenotype of c-Fos+ LS neurons that were activated during the appetitive food-seeking 

spatial memory probe test. Results revealed that ~10% of c-Fos+ LS neurons express choline 

acetyltransferase (ChAT, a cholinergic marker; Figure 4A), ~88% of c-Fos+ LS neurons 

express GAD1 (a GABAergic marker; Figure 4B), and only ~2% of c-Fos+ LS neurons 

express VGlut2 (a glutamatergic marker; Figure 4C). These results suggest that LS neurons 

engaged during the spatial memory probe are primarily GABAergic (Figure 4D).

A dual viral tracing strategy (diagram of approach in Figure 5A; representative LS injection 

site in Figure 5B) was utilized to identify downstream targets of LS-projecting CA1v 

neurons. Results reveal that the lateral hypothalamic area (LHA) is the strongest second-

order target of the CA1v-to-LS-projecting neurons (Figures 5C and 5D). Quantitative 

analyses using a custom-built data-entry platform (Axiome C, created by J.D.H.) are 

Décarie-Spain et al. Page 8

Cell Rep. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



summarized graphically for a representative animal on a brain flatmap summary diagram 

(Figure 5D) for the hemisphere ipsilateral and contralateral to the injection sites (see 

Table S1 for data from complete forebrain analyses). Retrograde transfection of the adeno-

associated viruses (AAVs) from the injection sites was not observed, as tdTomato+ cell 

bodies were only observed in the LS following complete forebrain histological analyses. 

Additional confirmation of the LHA as a second-order target was provided via a co-injection 

(COIN) strategy (Suarez et al., 2018; Thompson and Swanson, 2010). This approach 

involved injections of a monosynaptic retrograde tracer, FluoroGold (FG), in the LHA 

(representative injection site in Figure 5E) and injection of a monosynaptic anterograde 

tracer, AAV1-GFP, in the CA1v (representative injection site in Figure 5F), which resulted in 

the observance of FG-GFP appositions in approximately 57.57% ± 5.04% of FG cell bodies 

in the LS, thus further confirming this multisynaptic pathway (Figure 5G).

The functional relevance of this pathway to appetitive spatial memory is provided by 

immediate-early gene mapping of c-Fos+ cells in the LHA subregions that are most densely 

innervated downstream of CA1v-to-LS signaling (juxtadorsomedial and juxtaventromedial 

regions, LHAjd and LHAjv), with results revealing reduced LHA c-Fos expression 

following appetitive spatial memory probe testing in animals receiving chemogenetic-

mediated CA1v-to-LS disconnection (i.c.v. CNO-injected rats) relative to aCSF-injected 

controls (Figures 5H–5J; p < 0.05, Cohen’s d = 1.8833). In contrast, medial LHA c-Fos 

expression following the appetitive spatial memory probe did not differ by treatment (i.c.v. 

CNO versus i.c.v. aCSF) in rats without expression of chemogenetic inhibitory receptors in 

LS-projecting CA1v neurons (Figure S5), thereby further validating the specificity of CNO 

actions to the inhibitory DREADDs receptor.

Immunohistochemistry analyses were used to determine whether acute disconnection of 

the CA1v-LS pathway influences c-Fos expression of cells co-expressing the orexin or 

melanin-concentrating hormone (MCH) neuropeptides in the medial LHA, each of which is 

associated with appetite-promoting effects (Barson et al., 2013; Lord et al., 2021). Results 

revealed that approximately 25% of orexin+ cells in the medial LHA co-express c-Fos 

following the appetitive spatial memory probe, and this effect did not differ by aCSF 

versus CNO treatment (Figure S6). A similar analysis in MCH+ cells of the medial LHA 

identified only a marginal proportion of MCH+ c-Fos+ neurons (≤3%, data not shown), so 

additional analysis was not conducted. These findings suggest that CA1v-to-LS signaling 

does not engage downstream orexin or MCH LHA signaling in the context of appetitive 

foraging-related memory.

DISCUSSION

Memory for the physical location of a food or water source is adaptive for maintaining 

adequate energy supply for reproduction and survival. However, the neural circuits 

mediating this complex behavior are not well understood, as research on visuospatial 

memory has predominantly used tasks with either aversive or neutral/passive reinforcement. 

Moreover, whether the neural circuitry mediating spatial memory function is divergent based 

on the nature (e.g., appetitive versus aversive) or modality (e.g., food versus water) of the 

reinforcement has not been systematically investigated. The present study illustrated the 
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critical role played by the HPCv in an appetitive spatial memory task for food location 

using both bulk regional calcium-dependent activity recordings and a lesion approach. A 

monosynaptic CA1v-to-LS pathway is further identified as a necessary substrate for food- 

and water-motivated spatial memory. Moreover, the selectivity of the CA1v-to-LS pathway 

in promoting spatial memory for food and water location is supported by results showing 

that disconnection of this pathway did not affect performance in an escape-motivated spatial 

memory task of comparable difficulty conducted with the same apparatus, feeding behavior, 

anxiety-like behavior, locomotor activity, motivated operant responding for palatable food, 

or olfactory and social-based appetitive memory. Fluorescent in situ hybridization analyses 

also demonstrate that LS neurons engaged during appetitive spatial memory testing are 

primarily GABAergic. Viral-based pathway tracing revealed that LS-projecting CA1v 

neurons also send collateral projections to the mPFC; however, functional disconnection 

of CA1v-mPFC signaling did not impair spatial memory for food location. Utilization of 

an anterograde multisynaptic viral tracing approach and quantitative forebrainwide axon 

mapping analyses revealed that the CA1v-to-LS pathway sends second-order projections to 

various feeding and reward-relevant neural substrates, particularly the LHA, and immediate-

early gene functional mapping analyses confirm that this multisynaptic pathway is relevant 

for appetitive spatial memory. Collectively, these data establish monosynaptic CA1v-to-LS 

signaling as an essential pathway for spatial memory-based foraging behavior, and we 

further identify a neural network of interconnected feeding-relevant substrates that are 

collateral and/or downstream targets of this pathway.

Historically, the hippocampus has been divided into the dorsal and ventral subregions that 

have both distinct and overlapping functions, anatomical connections, and genetic and 

receptor expression profiles (Bienkowski et al., 2018; Fanselow and Dong, 2010; Kanoski 

and Grill, 2017; Moser and Moser, 1998; Swanson and Cowan, 1977). The HPCd has 

been predominantly implicated in facilitating spatial memory, whereas the HPCv is linked 

more with stress responses, affective behavior, and energy balance. However, a recent 

study found that both the HPCd and HPCv were critical for food reward-directed spatial 

navigation in an obstacle-rich complex environment (Contreras et al., 2018), and under 

certain testing conditions spatial learning and memory in an aversive reinforcement-based 

water maze also require both subregions of the HPC (Lee et al., 2019). Here we expand 

this literature by identifying a specific HPCv-originating pathway (CA1v → LS) that 

is selectively involved in spatial memory for the location of appetitive (food or water) 

reinforcement. These findings suggest that the modality of the reinforcement should be 

considered when investigating the longitudinally organized processing of spatial information 

across the dorsal-ventral HPC axis.

While HPCv neurons project to multiple regions throughout the neuraxis, projections to 

the LS are particularly robust (Risold and Swanson, 1996). The LS has been implicated 

in food anticipatory/seeking behavior, whereby metabolic activation of the lateral septum 

peaks immediately before feeding (during food anticipatory activity) in rabbit pups (Olivo 

et al., 2017) and γ-rhythmic input to the LHA from the LS evokes food approach 

behavior (Carus-Cadavieco et al., 2017). In addition, the LS can bidirectionally modulate 

food intake via several feeding-relevant neuropeptides, including glucagon-like peptide-1, 

ghrelin, and urocortin (Maske et al., 2018; Terrill et al., 2016; Wang and Kotz, 2002). 
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These feeding-associated results are consistent with the contribution of the CA1v-to-LS 

pathway in promoting spatial memory in the context of foraging but not in the escape-based 

version of the visuospatial task. Given that the rats were food restricted or water restricted 

for the respective food- and water-seeking memory tasks, it is likely that a CA1v-to-LS 

pathway potentiates visuospatial memory in response to changes in internal state. Moreover, 

this internal state modulation of CA1v-to-LS control of appetitive behavior is specific to 

foraging-related memory, as disconnection of the circuit did not influence motivated operant 

responding for the same reinforcer (sucrose) used in the food-seeking spatial memory task.

Recent findings demonstrate that DREADDs-mediated disconnection of an HPCv-to-LS 

pathway (from CA3v and ventral dentate gyrus [DGv]) increases food intake in mice, with 

opposite/hyperphagic effects observed following activation of this pathway (Sweeney and 

Yang, 2015). Here we observe no differences in food intake or meal parameters following 

DREADDs-mediated acute silencing of the CA1v-to-LS pathway in rats with unlimited 

access to food and water, therefore establishing a role for this pathway in foraging-relevant 

memory processes under conditions that are more relevant to normal mammalian behavior, 

whereby food and water are not freely available. HPCv projections to the LS have also been 

shown to influence anxiety-like behaviors (Parfitt et al., 2017; Trent and Menard, 2010). 

However, neither our acute nor chronic disconnection model of the CA1v-to-LS pathway 

affected these behaviors. Given that these studies targeted the HPCv either independently of 

subregion or targeted CA3v and DGv, it is probable that functions of HPCv-to-LS pathways 

differ according to subregional specificity. In fact, a recent study demonstrated opposite 

effects of inhibition of CA1v and CA3v projections to the LS on approach-avoidance 

conflict resolution (Yeates et al., 2022).

This work focused on the contribution of an HPCv-to-LS neural pathway to foraging-related 

memory, yet it is likely that the HPCd also partakes in appetitive spatial memory. In fact, 

lesions of the HPCd were reported to impair performance in a reinforced radial arm maze 

procedure (Gaskin et al., 2009), and simultaneous recordings from HPCd and LS cells 

revealed comparable activity patterns in these two regions during spatial navigation toward 

a food reward (Wirtshafter and Wilson, 2020). Foraging-relevant memory processing in the 

HPCd may also engage the LS, as oscillatory patterns from HPCd neurons are predictive 

of interstitial peripheral glucose dynamics via projections to the LS (Tingley et al., 2021). 

In addition, the feeding-related neuropeptide MCH was shown to promote spatial learning 

and memory consolidation by strengthening excitatory signaling within an HPCd-to-LS 

neural pathway (Liu et al., 2022). The extent to which HPCv and HPCd inputs to the LS 

independently promote foraging-related memory remains to be elucidated.

The use of two different but complementary approaches for neural pathway-specific 

disconnection allowed us to test at the levels of learning and memory separately. For 

example, the use of a reversible (DREADDs) disconnection procedure allowed us to 

evaluate the effect of CA1v-to-LS disconnection during the memory probe only, with circuit 

intact during training (CNO was not administered at any point during training). In contrast, 

the chronic (caspase) disconnection procedure was performed before training and therefore 

could have affected learning if CA1v-to-LS pathways were required for the learning of the 

task. However, our results showed that CA1v-to-LS disconnection did not impair learning, 
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but rather only memory retention performance in the probe test conducted days after the end 

of training. Thus, we can now confirm, based on two complementary levels of analysis, that 

this pathway is involved in longer-term memory recall but not learning/acquisition, which is 

consistent with recent evidence demonstrating that complete HPCv lesions impair retrieval 

(probe performance) but not acquisition (learning) in a Morris water maze (Hauser et al., 

2020).

While the use of aversive reinforcement-based spatial memory tasks is predominant in the 

field, the radial arm maze has also been used to investigate food-motivated spatial memory 

(Olton, 1987). An advantage of the present food-reinforced Barnes maze apparatus-based 

approach over the radial arm maze procedure is that we have developed parallel procedures 

that use the same apparatus and visuospatial cues to examine water- and escape-motivated 

spatial memory, thus offering an arsenal to assess the selectivity of the circuit based on 

multiple reinforcement modalities (food versus water versus escape/aversive).

Utilizing dual viral approaches and functional immediate-early gene mapping analyses, 

our findings confirm that the CA1v-to-LS pathway projects downstream to the LHA. This 

region was the most robust forebrain downstream target of CA1v-to-LS signaling, and this 

multisynaptic pathway was corroborated by an additional monosynaptic tracing approach 

that combined retrograde tracing (FG in LHA) and anterograde tracing (AAV1-GFP in 

CA1v) to confirm a connection relay in the LS. The identification of the majority of LS 

neurons receiving input from the CA1v as GABAergic, along with the resulting increase in 

medial LHA c-Fos expression following acute disconnection of the CA1v-to-LS pathway, 

suggests that this chemogenetic intervention prevents medial LHA local inhibition of 

excitatory neurons. This is consistent with previous findings reporting disinhibition of LHA 

GABAergic neurons by projecting GABAergic neurons in the context of feeding (O’Connor 

et al., 2015; Sweeney and Yang, 2015).

We have previously found that the CA1v sends direct projections to the LHA to modulate 

food intake and meal size control by the orexigenic gastric hormone, ghrelin (Hsu et al., 

2015b; Suarez et al., 2020). In the present study, we highlight a multisynaptic pathway 

connecting the CA1v to the medial LHA through the LS to promote foraging-related 

spatial memory. These findings suggest that the CA1v is functionally connected to the 

LHA through direct and indirect projections to influence food intake and appetitive 

spatial memory, respectively. Interestingly, the direct CA1v-LHA pathway was shown to 

target orexin neurons whereas the current study finds that although medial LHA orexin 

neurons are engaged during the appetitive spatial memory probe, this activation is not 

influenced by acute disconnection of the CA1v-LS-LHA indirect pathway. Thus, these 

parallel pathways may be promoting differential feeding-relevant behaviors through different 

neuronal populations in the LHA, with the indirect pathway mediating appetitive memory 

and the direct pathway mediating food consumption.

Collective results identify a CA1v-to-LS pathway involved in food- and water-motivated 

spatial memory, but not escape-motivated spatial memory. Furthermore, the selectivity of 

this pathway to appetitive spatial memory is supported by data showing that neither chronic 

nor reversible disruption of CA1v-to-LS signaling influenced various other behavioral 
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outcomes, including food intake, anxiety-like behavior, locomotor activity, and nonspatial 

HPC-dependent appetitive memory. We also systematically characterized collateral (mPFC) 

and second-order (LHA) projections of this pathway that are not functional, and functional 

(respectively), for appetitive spatial memory. The present results shed light on the neural 

systems underlying complex learned and motivated behaviors that require functional 

connections between cognitive and feeding-relevant substrates.

Limitations of the study

A limitation of the present study is that we did not evaluate ‘‘gain of function’’ of CA1v-to-

LS signaling on appetitive spatial memory. However, we note that such gain-of-function 

approaches are more commonly utilized with models of memory dysfunction. Thus, an 

important area for follow-up research is to investigate whether enhanced CA1v-to-LS 

signaling (e.g., via excitatory pathway-specific DREADDs) can augment memory function 

in models where foraging-related memory is impaired. Another limitation of the present 

study is that the contribution of a CA1v-to-LS pathway on appetitive spatial memory 

was only investigated in the context of reference memory. Future research is needed to 

determine whether CA1v-to-LS signaling is also involved in spatial working memory based 

on appetitive and/or aversive reinforcement.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Scott Kanoski (kanoski@usc.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Original data have been deposited at the Open Science Framework Repository 

and are publicly available as of the date of publication. Accession number is 

listed in the key resources table.

• Original code has been deposited to the Open Science Framework Repository 

and are publicly available as of the date of publication. Accession number is 

listed in the key resources table.

• Any additional information required to reanalyse the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Adult male Sprague-Dawley rats (Envigo, 250–275g on arrival) were individually housed in 

hanging wire cages with ad libitum access (except where noted) to water and chow (LabDiet 

5001, LabDiet, St. Louis, MO) on a 12h:12h reverse light/dark cycle. All procedures 

were approved by the University of Southern California Institute of Animal Care and Use 

Committee. Sample size for all behavioral and neuroanatomical experiments was based 

Décarie-Spain et al. Page 13

Cell Rep. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on the authors’ extensive experience with the procedures and statistical power analyses 

(described below).

METHOD DETAILS

Appetitive food seeking spatial memory task—To test visuospatial learning and 

memory for food reinforcement, we developed a spatial food seeking task modified from 

the traditional Barnes maze procedure (Barnes, 1979). Throughout this paradigm, animals 

were maintained at 85% free-feeding body weight. In contrast to the traditional Barnes maze 

where an animal uses the spatial cues to escape mildly aversive stimuli in the environment 

(e.g. bright light and loud sound), this task utilizes food as motivation, such that each hidden 

tunnel contained five 45mg sucrose pellets (cat. no. F0023, Bio-Serv, Flemington, NJ).

The procedure involves an elevated gray circular platform (diameter: 122cm, height: 140cm) 

consisting of 18 uniform holes (9.5cm diameter) spaced every twenty degrees around the 

outside edge. Under one of the holes is a hidden tunnel (38.73cm L x 11.43cm W x 

7.62cm D and a 5.08cm step). Surrounding the table are distinct spatial cues on the wall 

(e.g., holiday lights, colorful shapes, stuffed unicorn) that are readily visible to the animal. 

Additionally, a quiet white noise (60dB) was used to drown out background noise and floor 

lamps were used for low-level ambient lighting.

On the first day, each animal underwent a habituation session consisting of 1min inside 

a transport bin under the table, 2min underneath the start box in the center of the table, 

and 3 min inside the hidden tunnel with five sucrose pellets. During training, each rat was 

assigned a specific escape hole according to the position of the spatial cues with the location 

counterbalanced across groups. Before each trial, animals were placed in the start box for 

30 seconds. Animals were trained over the course of two 5-min trials per day for four days 

(five days in contralesional experiments) to learn to use the spatial cues in order to locate 

the correct hole with the hidden tunnel with sucrose pellets. After finding the correct hole 

and entering the hidden tunnel during each 5min training session, animals were allowed 

to remain in the hidden tunnel for 1 minute, and consistently consumed all five sucrose 

pellets at this time. Learning during training was scored via animal head location tracking by 

AnyMaze Behavior Tracking Software (Stoelting Co., Wood Dale, IL). The incorrect hole 

investigations prior to finding the correct hole with sucrose pellets (‘‘errors before correct 

hole’’) as well as time to finding the correct hole (‘‘latency to correct hole’’) were calculated 

as an average of the two trials per day and examined across days of training. After the 

conclusion of training, rats had a two-day break where no procedures occurred, then were 

tested in a single 2min memory probe in which the hidden tunnel and sucrose pellets were 

removed.

In the event that a rat did not find the correct hole during the 3min training session, the 

experimenter gently guided the rat to the correct hole and were allowed to crawl in and then 

complete the training in the same fashion as rats that found the hole on their own. During 

training sucrose pellets were taped underneath all of the holes to preclude olfactory-based 

search strategies during training. Importantly, the memory probe test does not include any 

sucrose pellets in the apparatus at all, and therefore there is no possibility of sucrose odor 

cues to influence memory probe performance.
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In the memory probe, the ratio of the correct hole plus adjacent hole investigations 

over the total number of hole investigations were calculated via animal head location 

tracking by AnyMaze Behavior Tracking Software. This dependent variable was selected 

a priori instead of correct hole only investigations based on the spatial resolution of 

rodent hippocampal place cells which ranges from inches to meters depending on the 

subregion targeted (Kjelstrup et al., 2008) and recent findings demonstrating that taste-

responsive hippocampal neurons exhibit weaker spatial selectivity in comparison to non-

taste-responsive hippocampal neurons (Herzog et al., 2019). This biological range is better 

represented by a geometric plane that includes 3/18 circumference space versus 1/18 as we 

have previously reported (Suarez et al., 2018).

When establishing and refining the food-reinforced spatial memory procedure in multiple 

cohorts of rats, our preliminary data revealed that memory probe effects in normal/control 

animals are either stronger in the 1st minute, or in the 1st two minutes combined (but not 

the 2nd minute alone), with some cohorts showing larger paradigm effects in minute 1, and 

others in minutes 1+2. Thus, for all experiments presented we analyzed both the 1st minute 

and the 1st two minutes combined based on time at which paradigm effect is the strongest.

Intracranial injections—Rats were anesthetized via an intramuscular injection of an 

anesthesia cocktail (ketamine 90mg/kg body weight [BW], xylazine, 2.8mg/kg BW and 

acepromazine and 0.72mg/kg BW) followed by a pre-operative, subcutaneous injection of 

analgesic (ketoprofen, 5mg/kg BW). Post-operative analgesic (subcutaneous injection of 

ketoprofen, 5mg/kg BW) was administered once per day for 3 days following surgery. 

The surgical site was shaved and prepped with iodine and ethanol swabs, and animals 

were placed in a stereotaxic apparatus for stereotaxic injections. NMDA or viruses were 

delivered using a microinfusion pump (Harvard Apparatus, Cambridge, MA) connected 

to a 33-gauge microsyringe injector attached to a PE20 catheter and Hamilton syringe. 

Flow rate was calibrated and set to 83.3nL/sec. Injectors were left in place for 2min post-

injection to allow for complete delivery of the infusate. Specific viruses/drugs, coordinates, 

and injection volumes for procedures are detailed below. Following the completion of 

all injections, incision sites were closed using either surgical staples, or in the case of 

subsequent placement of an indwelling cannula, simple interrupted sutures. Upon recovery 

from anesthesia and return to dorsal recumbency, animals were returned to the home 

cage. All behavioral procedures occurred 21 days after injections to allow for complete 

transduction and expression of the viruses, or complete lesioning drugs. General intracranial 

injection procedures were followed for all injection procedures below.

Fiber photometry—To record bulk calcium-dependent activity in the HPCv, one group of 

animals (n = 6) received a bilateral injection of a virus driving expression of the calcium 

indicator GCaMP7s (AAV9-hSyn-GCaMP7s-WPRE; Addgene; 300nL per side) targeting 

the CA1v at the following stereotaxic coordinates: −4.9mm AP, +/−4.8mm ML, defined at 

bregma and −7.8mm DV, defined at skull site. A fiber-optic cannula (Doric Lenses Inc, 

Quebec, Canada) was implanted at the injection site and affixed to the skull with jeweler’s 

screws, instant adhesive glue, and dental cement.
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Photometry recording sessions occurred during the probe trial of the appetitive spatial food 

seeking memory task (when no food is present) and lasted 3 minutes (1 min acclimatation 

and 2 min probe trial). Photometry signal was acquired using the Neurophotometrics 

fiber photometry system (Neurophotometrics, San Diego, CA) at a sampling frequency 

of 40Hz and calcium-dependent signal (470nm) was corrected in MatLab by subtracting 

the isosbestic (415nm) value and fitting the result to a biexponential curve. Corrected 

fluorescence signal was then normalized within each rat by calculating the ΔF/F using 

the average fluorescence signal for the entire recording. The data was paired with real-

time localization of the animal obtained from the AnyMaze Behavior Tracking Software 

(Stoelting, Wood Dale, IL) using an original MatLab code and each investigation at least 5 

seconds apart were isolated for analysis. Z-scores were obtained by normalizing ΔF/F up to 

5 seconds following an investigation to the ΔF/F at the onset of the investigation (time 0s).

Chronic lesions of the HPCv—Lesion animals (n = 18) received bilateral excitotoxic 

HPCv lesions via intracranial injections of N-methyl-d-aspartate (NMDA, Sigma, St-Louis, 

MO; 4ug in 200nL; 100uL per hemisphere) at the following coordinates at three different 

sites along the rostro-caudal extent of the HPCv: [1] −4.8mm AP, +/−5.0mm ML, −7.5mm 

DV, [2] −5.5mm AP, +/−4.5mm ML, −7.0mm DV, and [3] −6.1mm AP, +/−4.8mm ML, 

−7.0mm DV with control animals (n = 11) receiving vehicle saline in the same location. The 

reference points for AP and ML coordinates were defined at bregma, and the reference point 

for the DV coordinate was defined at the skull surface at the target site.

Bilateral HPCv lesion brains were histologically evaluated for the correct placement of 

lesions in 1 out of 5 series of brain tissue sections. Neurons were visualized using 

immunohistochemistry for the neuron specific antigen NeuN (see Immunohistochemistry). 

The extent of NMDA lesions was determined postmortem by immunohistochemical 

detection of the neuronal marker NeuN. Rats showing pronounced (~65%) loss of NeuN 

labeling within the target region compared with the representative NeuN expression 

following sham injections in the control group (average HPCv count of NeuN+ cells in 

control group) were included in data analysis.

Acute and chronic disconnection models—Cre-dependent dual viral strategies were 

used to generate the following groups: [1] acute chemogenetic disconnection of the CA1v 

to LS neural pathway (DREADDs), [2] chronic disconnection of the CA1v to LS neural 

pathway (caspase lesion-induced), and [3] a common/shared control group for these two 

disconnection strategies. Regardless of group, all animals received a bilateral AAV retro-cre 

injection in the LS (AAV2[retro]-hSYN1-EGFP-2A-iCre-WPRE; Vector BioLabs; 200nL 

per side) at the following stereotaxic coordinates: +0.84mm AP, +/−0.5mm ML, −4.8mm 

DV, all defined at bregma. According to experimental group, animals received a different 

virus delivered to the CA1v subregion of the HPCv at the following coordinates: −4.9mm 

AP, +/−4.8mm ML, defined at bregma and −7.8mm DV, defined at skull site.

[1] DREADDs group for reversible inactivation of CA1v to LS: To allow reversible 

chemogenetic inactivation of the CA1v to LS neural pathway, one group of animals 

received a bilateral CA1v injection of a Cre-dependent virus to drive expression of 

inhibitory designer receptors activated by designer drugs (DREADDs), (AAV-Flex-hM4Di-

Décarie-Spain et al. Page 16

Cell Rep. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mCherry; Addgene; 200nL per side). This dual viral strategy drives expression of inhibitory 

DREADDs exclusively in LS-projecting CA1v neurons, which enables acute inactivation of 

these neurons by injection of the DREADDs ligand, clozapine-N-oxide (CNO), at the time 

of behavioral testing.

[2] Caspase group for chronic inactivation of CA1v to LS: To allow chronic 

disconnection of the CA1v to LS neural pathway, a second group of animals received a 

bilateral CA1v Cre-dependent caspase virus (AAV1-Flex-taCasp3-TEVp; UNC Vector Core; 

200nL per side) mixed with a Cre-dependent reporter virus (AAV-CAG-Flex-tdTomato-

WPRE-bGH, UPenn Vector Core; 200nL per side) for histological verification. This dual 

viral strategy drives expression of the apoptosis-mediator molecule caspase exclusively in 

LS-projecting CA1v neurons, which induces apoptotic cell death in these neurons while 

leaving other CA1v neurons intact.

[3] Common control: A common control group was used for the DREADDs and caspase 

groups. This allowed us to reduce the number of animals needed for the same experimental 

objective. Thus, all animals received an indwelling cannula and ICV injections of CNO as 

described below.

Immediately following viral injections, all animals were surgically implanted with 

a unilateral indwelling intracerebroventricular (ICV) cannula (26-gauge, Plastics One, 

Roanoke, VA) targeting the lateral ventricle (VL). Cannulae were implanted and affixed 

to the skull with jeweler’s screws and dental cement at the following stereotaxic coordinates: 

−0.9mm AP defined at bregma, +1.8mm ML defined at bregma, −2.6mm DV defined at 

skull surface at site.

Validation of inhibitory DREADDs expression—Cre-dependent DREADD 

expression targeting LS-projecting neurons in CA1v was evaluated based on localization of 

the fluorescent reporter mCherry. Immunohistochemistry for red fluorescent protein (RFP) 

was conducted to amplify the mCherry signal (see Immunohistochemistry). Only animals 

with mCherry expression restricted within CA1v neurons were included in subsequent 

behavioral analyses. The same approach was used to validation of inhibitory DREADDs 

expression for the CA1v-mPFC experiment.

Validation of caspase-mediated disconnection—The general approach for neuronal 

apoptosis due to activation of Cre-dependent caspase targeting LS-projecting neurons in 

CA1v was validated in a separate cohort (n = 8) based on reduction of a Cre-dependent 

fluorescent reporter tdTomato due to neuron cell death compared with controls. The caspase 

group brains (which received a retro-cre virus in the LS in conjunction with an injection 

of Cre-dependent caspase virus mixed with a Cre-dependent virus that drives a tdTomato 

fluorescent reporter in the CA1v) were compared to control brains (that received a retro-cre 

virus in the LS in conjunction with only a Cre-dependent that drives a tdTomato fluorescent 

reporter in the CA1v, which was equivalently diluted to match the caspase injections). 

In both groups, immunohistochemistry for red fluorescent protein (RFP) was conducted 

to amplify the tdTomato signal (see Immunohistochemistry). Confirmation of successful 

caspase-driven lesions in the CA1v using this approach was evaluated by reduced tdTomato 
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fluorescence in comparison to control animals, with the expression of CA1v tdTomato 

expression in the caspase group less than 15% of that observed in controls, on average. 

While this cohort allowed for successful validation of the pathway-specific disconnection 

caspase approach, to improve the viability of the animals for long-term behavioral analyses, 

the 3rd AAV with the fluorescent reporter (Cre-dependent tdTomato AAV) was omitted 

for cohorts undergoing behavioral analyses. For these groups, histological confirmation for 

inclusion in subsequent statistical analyses was based on identification of injections sites 

confined with the LS and CA1v, as observed using darkfield microscopy.

Validation of ICV cannula placement—Placement for the VL cannula was verified by 

elevation of blood glucose resulting from an injection of 210μg (2μL) of 5-thio-D-glucose 

(5TG) using an injector that extended 2mm beyond the end of the guide cannula (Ritter et 

al., 1981). A post-injection elevation of at least 100% of baseline glycemia was required for 

subject inclusion. Animals that did not pass the 5TG test were retested with an injector that 

extended 2.5mm beyond the end of the guide cannula and, upon passing the 5TG test, were 

subsequently injected using a 2.5mm injector instead of a 2mm injector for the remainder of 

the study.

ICV CNO infusion—Administration route for CNO (RTI International) and dosage were 

determined based on previous publications demonstrating reliable DREADDs activation 

(Hsu et al., 2018b; Noble et al., 2018; Terrill et al., 2020). Prior to behavioral testing where 

noted, all animals received an ICV 18mmol infusion (2uL total volume) of the DREADDs 

ligand clozapine N-oxide (CNO), rendering only DREADDs animals chemogenetically 

inactivated. CNO injections were hand delivered using a 33-gauge microsyringe injector 

attached to a PE20 catheter and Hamilton syringe through the indwelling guide cannula. 

Injectors were left in place for 30sec to allow for complete delivery of the CNO.

Appetitive water seeking spatial memory task—We modified our spatial food 

seeking task to utilize water reward instead of food reward. Throughout this paradigm, 

animals were water restricted and received 90-min access to water daily (given at least 

1hr after the termination of behavioral procedures each day). In addition to the habituation 

parameters described above, animals in this task were subjected to two 10-min habituation 

sessions in the hidden tunnel with a full water dish prior to training, which allowed them to 

become accustomed to reliably drinking from the water dish in the hidden tunnel. Training 

procedures were the same as for the food-based task above, except instead of sucrose pellets 

in the hidden tunnel, a water dish containing ~100 mL of water was placed in the back 

of the hidden tunnel during training, and animals were allowed to remain in the hidden 

tunnel for 2min (instead of 1min, as above). Each animal consumed a minimum of 2mL of 

water during this time for the training sessions. This adapted procedure allowed us to test 

spatial learning and memory motivated by water reward using similar apparatus and stimulus 

conditions to the food-reinforced task.

Aversive spatial memory escape task (Barnes maze)—To test visuospatial learning 

and memory for escape-based reinforcement, we used a modified traditional Barnes maze 

procedure, which is a visuospatial escape task (Barnes, 1979). Procedures were the same 
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as above (appetitive spatial memory food seeking and water seeking tasks, using the same 

apparatus, in the same room, and with the same visuospatial cues) aside from the omission 

of the sucrose pellets or water dish in the hidden tunnel, the presence of mildly aversive 

bright (120W) overhead lighting instead of dim ambient lighting, and a mildly aversive 

loud white noise (75dB) instead of a quiet white noise (60dB). This allowed us to test 

spatial learning and memory motivated by escape from aversive stimuli in a nearly identical 

procedure to our spatial foraging test for learning and memory motivated by palatable food 

or water consumption.

Identification of CA1v to LS collateral targets—Collateral targets of the CA1v to LS 

neural pathway were identified using a dual viral approach where a retrograde vector was 

injected into the LS (AAV2retro-hSyn1-eGFP-2A-iCre-WPRE; Vector BioLabs; 200nL per 

side), and a Cre-dependent anterograde vector (AAV1-CAG-Flex-tdTomato-WPRE-bGH, 

UPenn Vector Core; 200nL per side) was injected in the CA1v. This latter injection 

drives tdTomato transgene expression in CA1v neurons that project to the LS, which 

allows for brain-wide analyses of collateral targets. After 3 weeks of incubation time 

to allow for complete transduction and expression of the viruses, brains were collected, 

immunohistochemically processed, and imaged as described below.

Acute CA1v to mPFC disconnection—To functionally disconnect the CA1v to mPFC 

pathway (diagram of approach in Figure 3C) a group of animals all received bilateral 

AAV retro-cre injection in the mPFC (AAV2[retro]-hSYN1-EGFP-2A-iCre-WPRE; Vector 

BioLabs; 200nL per side) at the following stereotaxic coordinates: +2.7mm AP, +/− 0.5mm 

ML and −4.3mm DV, all defined at bregma. The same animals also received bilateral 

infusion of a Cre-dependent inhibitory DREADDs (AAV-Flex-hM4Di-mCherry; Addgene; 

200nL per side) in the CA1v at the following stereotaxic coordinates: −4.9mm AP, +/

−4.8mm ML, defined at bregma and −7.8mm DV, defined at skull site. Finally, all these 

animals were additionally implanted with a unilateral indwelling ICV cannula as described 

for the previous cohorts at the following stereotaxic coordinates: −0.9mm AP defined at 

bregma, +1.8mm ML defined at bregma, −2.6mm DV defined at skull surface at site. Prior 

to the memory probe (1h), animals received an ICV 18mmol infusion of CNO (n = 8) or its 

vehicle (aCSF; n = 6).

Food intake and body weight—For the day prior to surgery (day 0) and for two 

weeks thereafter, 24h chow intake was measured daily just prior to dark cycle onset to 

determine effects of experimental procedures on food intake. Spillage was accounted for 

daily by collecting crumbs onto Techboard paper placed under the cages of each animal. 

Additionally, animals were weighed daily just prior to dark cycle onset to determine effects 

of experimental procedures on body weight.

Meal pattern analysis—Meal size, meal frequency, meal duration, and cumulative 24h 

food intake were measured using Biodaq automated food intake monitors (Research Diets, 

New Brunswick, NJ). Rats were acclimated to the Biodaq on ad libitum chow for 3 days. 

Caspase group (n = 7) vs. control group (n = 7) feeding behavior data were collected over 

a 5-day period (untreated, between-subjects design). The DREADDs group was tested using 
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a 2-treatment within-subjects design. Rats (n = 8) received 18mmol infusion of ICV CNO 

(2uL total volume) or vehicle (aCSF, 33% dimethyl sulfoxide in artificial cerebrospinal 

fluid) 1h prior to lights off and 24h feeding behavior was measured. Meal parameters were 

set at minimum meal size = 0.2g and maximum intermeal interval = 600s.

Operant responding for sucrose rewards—Rats expressing inhibitory DREADDs in 

CA1v-to-LS projections and implanted with an ICV cannula (n = 6) were trained to lever 

press for 45mg sucrose pellets (cat. no. F0023, Bio-Serv) over the course of 6 days with a 

1h session each day (2 days of fixed ratio 1 with autoshaping procedure, 2 days of fixed 

ratio 1 and 2 days of fixed ratio 3 reinforcement schedule) in operant conditioning boxes 

(Med Associates Inc, St. Albans, VT). Over two treatment days separated by 48h, rats were 

placed back in the operant chambers to lever press for sucrose under a progressive ratio 

reinforcement schedule, 1h following ICV infusion (2uL) of 18mmol CNO or aCSF, with 

both treatments administered to each rat in a counter-balanced manner (within-subject). The 

response requirement increased progressively using the following formula: F(i) = 5e^0.2i-5, 

where F(i) is the number of lever presses required for the next pellet at i = pellet number 

and the breakpoint was defined as the final completed lever press requirement that preceded 

a 20-min period without earning a reinforcer, as described previously (Hsu et al., 2015a).

Social transmission of food preference (STFP)—To examine food-related memory 

based on social- and olfactory-based cues, we utilized the social transmission of food 

preference (STFP) task and adapted protocols from (Countryman and Gold, 2007; 

Countryman et al., 2005; Hsu et al., 2018a). Briefly, untreated normal adult rats were 

designated as ‘Demonstrators’, while experimental groups were designated as ‘Observers’. 

Demonstrators and Observers were habituated to a powdered rodent chow [LabDiet 5001 

(ground pellets), LabDiet, St. Louis, MO] overnight. 24h later, Observers were individually 

paired with demonstrators and habituated to social interaction, where rat pairs were placed 

in a social interaction arena (23.5cm W × 44.45cm L × 27cm H clear plastic bin with Sani-

chip bedding) and allowed to interact for 30min. Both Observers and Demonstrators were 

returned to their home cages and food was withheld for 23hr prior to the social interaction. 

For the social interaction, Demonstrators were given the opportunity to consume one of two 

flavors of powdered chow (flavored with 2% marjoram or 0.5% thyme; counterbalanced 

according to group assignments) for 30min in a room separate from Observers. Our pilot 

studies and previous published work (Galef and Whiskin, 2003; Galef et al., 2005) showed 

that rats equally prefer these flavors of chow. The Demonstrator rat was then placed in 

the social interaction arena with the Observer rat, and the pairs were allowed to socially 

interact for 30min. Observers were then returned to their home cage and allowed to eat 

ad libitum for 1h and then food was removed. The following day, the 23h food-deprived 

Observer animals were given a home cage food preference test for either the flavor of 

chow paired with the Demonstrator animal, or a novel, unpaired flavor of chow that is 

a flavor that was not given to the Demonstrator animal (2% marjoram vs. 0.5% thyme; 

counterbalanced according to group assignments). All animals received an ICV 18mmol 

infusion of CNO (2uL total volume) 1h prior to the social interaction session, rendering only 

DREADDs animals chemogenetically inactivated by CNO. Food intake (1h) was recorded 

with spillage accounted for by collecting crumbs onto Techboard paper that was placed 
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under the cages of each animal. The % preference for the paired flavor was calculated as: 

100*Demonstrator-paired flavored chow intake/Demonstrator + Novel flavored chow intake. 

In this procedure, normal untreated animals learn to prefer the Demonstrator paired flavor 

based on social interaction and smelling the breath of the Demonstrator rat (Countryman and 

Gold, 2007; Countryman et al., 2005; Galef and Whiskin, 2003; Galef et al., 2005; Hsu et 

al., 2018a).

Zero maze—The zero maze behavioral paradigm was used to evaluate anxiety-like 

behavior. The zero maze apparatus used was an elevated circular track, divided into four 

equal length sections. Two zones were open with 3 cm high curbs (‘open zones’), whereas 

the two other zones were closed with 17.5 cm high walls (‘closed zones’). All animals 

received an ICV 18mmol infusion of CNO (2uL total volume) 1h prior to testing, rendering 

only DREADDs animals chemogenetically inactivated by CNO. Behavioral testing was 

performed during the light cycle. Animals were placed in the maze for a single, 5min trial in 

which the location of the center of the animal’s body was measured by AnyMaze Behavior 

Tracking Software (Stoelting). The apparatus was cleaned with 10% ethanol in between 

animals. During the trial, the number of open zone entries and total time spent in open 

sections (defined as body center in open sections) were measured, which are each indicators 

of anxiety-like behavior in this procedure.

Open field—An open field test was used to evaluate general levels of locomotor activity. 

The apparatus used for the open field test was an opaque gray plastic bin (60 cm × 56 

cm), which was positioned on a flat table in an isolated room with a camera directly 

above the center of the apparatus. Desk lamps were positioned to provide indirect lighting 

to all corners of the maze such that the lighting in the box uniformly measured 30 lux 

throughout. All animals received an ICV 18mmol infusion of CNO (2uL total volume) 1h 

prior to testing rendering only DREADDs animals chemogenetically inactivated by CNO. 

Behavioral testing began at dark onset. At the start of the 10min test, each animal was placed 

in the open field apparatus in the same corner facing the center of the maze. The location 

of the center of the animal’s body was measured with the AnyMaze Behavior Tracking 

Software (Stoelting). Total distance traveled was measured by tracking movement from the 

center of the animal’s body throughout the test.

c-Fos+ FISH neurotransmitter phenotyping—Activation of LS neurons from the 

spatial memory probe test was confirmed with c-Fos immunoreactivity analyses. Animals 

receiving the DREADDs-mediated treatment for reversible inactivation of CA1v to LS 

signaling underwent training in the appetitive food seeking memory task (conducted as 

described above). One hour before the memory probe, animals received ICV injection of 

CNO (n = 4) or vehicle (aCSF; n = 4). Animals were tested in the memory probe and 

perfused with tissue harvest 90 min later. Fluorescent in situ hybridization analyses for 

c-Fos (cat. no. 403591, ACD, Newark, CA), ChAT (cat. no. 430111, ACD), GAD1 (cat. no. 

316401, ACD), and vGLUT2 (cat. no. 317011, ACD) were performed, and co-localization 

of c-Fos positive cells and individual neurotransmitter markers was quantitatively analyzed 

for a subset of rats (n = 3) in the vehicle treated group.

Décarie-Spain et al. Page 21

Cell Rep. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Identification of second-order targets—To identify second order targets of CA1v to 

LS-projecting neurons, animals received a bilateral injection of a transsynaptic Cre-inducing 

anterograde vector into CA1v (AAV1-hSyn-Cre-WPRE-hGH, UPenn Vectore Core; 200nL 

per side; coordinates as above) that drives expression of Cre in both first-order (CA1v 

injection site) and 2nd-order (but not 3rd-order) neurons via transsynaptic virion release 

(Suarez et al., 2018; Zingg et al., 2017). This was combined with a bilateral injection of 

a Cre-dependent anterograde vector in the LS (AAV1-CAG-Flex-tdTomato-WPRE-bGH, 

UPenn Vector Core; 200nL per side, coordinates as above). This latter injection allows for 

anterograde tracing from 1st-order LS targets receiving synaptic input from CA1v. After 3 

weeks of incubation time to allow for complete transduction and expression of the viruses, 

brains were collected, immunohistochemically processed, and imaged as described below.

Data were entered using a custom built data-entry platform (Axiome C, created by JDH) 

built around Microsoft Excel software and designed to facilitate entry of data points for all 

gray matter regions across their atlas levels as described in a rat brain reference atlas: Brain 

Maps 4.0 (Swanson, 2018). The Axiome C approach was used previously to facilitate the 

analysis of brain gene-expression data (Hahn et al., 2019). An ordinal scale, ranging from 0 

(absent) to 7 (very strong), was used to record the qualitative weight of anterograde labeling. 

An average value was then obtained for each region across its atlas levels for which data 

were available. These data are summarized graphically for a representative animal on a brain 

flatmap summary diagram (adapted from (Hahn et al., 2021)).

The LHA was identified as a primary downstream target of the CA1v to LS pathway from 

the analyses described above. In order to further confirm this conclusion, an additional co-

injection monosynaptic neural tracing strategy (COIN; (Suarez et al., 2018; Thompson and 

Swanson, 2010)) was conducted. Animals (n = 6) received unilateral pressure injections of 

AAV1-GFP (AAV1-hSyn-eGFP-WPRE-bGH; Vector BioLabs; anterograde tracer) targeting 

the CA1v and, in the same animal, fluorogold (Fluorochrome; retrograde tracer) targeting 

the LHA (injection coordinates described above). Following a 10-day incubation period, 

animals were fixation-perfused and tissue was collected and processed as described below. 

Injection sites were confined to the CA1v (AAV1) and LHA (FG) in the same animal 

(‘‘double hits’’, n = 4). Appositions between FG and GFP were examined in the LS in these 

animals by visualizing native GFP and FG fluorescence and the percentage of FG cells in 

direct contact with GFP CA1v-originating axons was quantified (n = 4).

To verify if acute silencing of the CA1v to LS neuronal pathway reduces neuronal activity 

in the LHA, staining against c-Fos was performed on coronal LHA slices from animals with 

expression of inhibitory DREADDs in CA1v to LS neurons and infused with CNO (n = 

4) or vehicle (aCSF; n = 4) 1h prior to the memory probe. Counts of c-Fos+ cells were 

done in the 2 subregions of the LHA found to receive the highest density of projections 

from CA1v neurons (LHAjd and LHAjv). In another series of LHA coronal sections from 

the same animals, counts of c-Fos+ cells were done in orexin+ or MCH+ neurons (see 

Immunohistochemistry).

Décarie-Spain et al. Page 22

Cell Rep. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Counts of c-Fos+ cells were also done in LHA coronal sections from rats treated with 

CNO (n = 6) and aCSF (n = 4) lacking expression of inhibitory DREADDs as a control 

experiment.

Immunohistochemistry—Rats were anesthetized via an intramuscular injection of an 

anesthesia cocktail (ketamine 90mg/kg BW xylazine, 2.8mg/kg BW and acepromazine and 

0.72mg/kg BW) then transcardially perfused with 0.9% sterile saline (pH 7.4) followed by 

4% paraformaldehyde (PFA) in 0.1M borate buffer (pH 9.5; PFA). Brains were dissected 

from the skull and post-fixed in PFA with 15% sucrose for 24h, then flash frozen in 

isopentane cooled in dry ice. Brains were sectioned to 30μm thickness on a freezing 

microtome. Sections were collected in 5-series and stored in antifreeze solution at −20°C 

until further processing. General fluorescence IHC labeling procedures were performed as 

follows. The antibodies and dilutions that were used are as follows: [1] For lesion histology 

using the neuron-specific protein NeuN, the rabbit anti-NeuN primary antibody (1:1000, 

Abcam, Boston, MA) was used followed by a donkey anti-rabbit conjugated to AF488 

(1:500, Jackson Immunoresearch, West Grove, PA). [2] To amplify the native tdTomato 

signal for neuroanatomical tracing or DREADDs histology, the rabbit anti-RFP primary 

antibody (1:2000, RRID: AB_2209751, Rockland, Limerick, PA) was used followed by a 

donkey anti-rabbit conjugated to Cy3 (1:500, Jackson Immunoresearch). [3] To amplify 

the native GFP signal for LS injection site histology, the chicken anti-GFP primary 

antibody (1:500, Abcam) was used followed by a donkey anti-chicken secondary antibody 

conjugated to AF488 (1:500, Jackson Immunoresearch). [4] To validate that the acute 

disconnection approach reduced neuronal activity in the LS and LHA, the mouse anti-c-Fos 

primary antibody (1:1000, Ab208942, Abcam) was used followed by a donkey anti-mouse 

secondary antibody conjugated to AF647 (1:500, Jackson Immunoresearch). To identify the 

neuropeptide population in which LHA c-Fos is expressed following the foraging spatial 

memory probe, the rabbit anti-orexin (1:5000, AB3704, EMD Millipore, Burlington, MA) 

or anti-MCH (1:10000, H_070_47, Phoenix Pharmaceuticals, Burlingame, CA) primary 

antibody was also used followed by a donkey anti-rabbit secondary antibody conjugated to 

AF488 (1:500, Jackson Immunoresearch).

Antibodies were prepared in 0.02M potassium phosphate buffered saline (KPBS) solution 

containing 0.2% bovine serum albumin and 0.3% Triton X-100 at 4°C overnight. After 

thorough washing with 0.02M KPBS, sections were incubated at 4°C overnight in secondary 

antibody solution. Sections were mounted and coverslipped using 50% glycerol in 0.02 

M KPBS and the edges were sealed with clear nail polish. Photomicrographs were 

acquired using a Nikon 80i (Nikon DSQI1,1280X1024 resolution, 1.45 megapixel) under 

epifluorescence or darkfield illumination.

Lesions and virus expression were quantified in one out of five series of brain tissue sections 

and analyses were performed in sections from Swanson Brain Atlas level 34–36 (Swanson, 

2018). The inclusion/exclusion criteria are described above in the methods of each of these 

experiments.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data are expressed as mean ± SEM, statistical details can be found in the figure legends 

and n’s refer to the number of animals for each condition. Differences were considered 

statistically significant at p < 0.05. All variables were analyzed using the advanced analytics 

software package Statistica (StatSoft, Tulsa, OK, USA).

A simple linear regression analysis was performed to illustrate the relationship between 

variation in z-score to distance from escape hole. A two-tailed paired two-sample Student’s 

t-test was used to compare delta z-score 5 seconds following a correct versus incorrect 

investigation and meal pattern analysis and operant responding for sucrose rewards in 

response to treatment in the model of acute disconnection of the CA1v to LS pathway. For 

measures during memory probes in the HPCv lesion and CA1v-mPFC experiments, 5-day 

averages for meal pattern analysis in the model of chronic disconnection and c-Fos counts 

following administration of CNO or aCSF, differences between groups were evaluated using 

two-tailed independent two-sample Student’s t-tests. For CA1v to LS acute and chronic 

disconnection experiments, measures during spatial foraging and spatial escape task probes, 

the STFP paradigm, the zero maze paradigm, and the open field test, differences between 

groups were evaluated using one-way ANOVAs. For the variation in photometry signal 

across time, meal pattern analysis for the chronic disconnection model and all measures 

of food intake, body weight, and errors/latency during spatial foraging and spatial escape 

task training, differences between groups were evaluated using two-way repeated measures 

ANOVAs (treatment x time). Significant ANOVAs were analyzed with a Fisher’s LSD 

posthoc test where appropriate. For all memory probes, as well as the STFP, one-sample 

t-tests were conducted to determine whether performance was significantly different from 

chance set at 0.1667 and 0.5, respectively. Outliers were identified as being more extreme 

than the median +/− 1.5 * interquartile range. For all experiments, assumptions of normality, 

homogeneity of variance (HOV), and independence were met where required.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Ventral hippocampus activity increases during memory retrieval for food 

location

• Ventral CA1-lateral septum circuitry encodes food- and water-based spatial 

memory

• This circuitry does not regulate spatial memory in an escape-based procedure

• Ventral CA1-lateral septum foraging circuitry targets the lateral hypothalamus
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Figure 1. Bilateral HPCv lesions impair spatial memory for food location
(A) Spatial foraging task apparatus.

(B) Diagram of stereotaxic viral infusion (AAV-hSYN-GCaMP7s) and placement of optic 

fiber in the HPCv for bulk photometry recordings.

(C) Representative histology of GCaMP7s expression in HPCv neurons. Scale bar, 100 μm.

(D) Variation in HPCv bulk calcium-dependent activity following a correct or incorrect 

investigation during a spatial food-seeking task (time × investigation type, p < 0.05).

(E) Delta Z score 5 s following a correct versus incorrect investigation during a spatial 

food-seeking task (p < 0.05).

(F) Simple linear regression of delta Z score 5 s following investigation relative to distance 

of investigated hole from correct escape hole (p < 0.01).

(G) Representative HPCv lesion histology with NeuN immunohistochemistry. Scale bar, 500 

μm.
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(H) Left: representative navigation paths of a control animal preferentially investigating 

correct (filled red) and adjacent holes (outlined orange) during spatial foraging memory 

probe. Right: representative navigation path of HPCv lesioned animal during spatial 

foraging memory probe.

(I and J) Bilateral HPCv lesions did not impair learning of the spatial foraging task 

compared with controls, as measured by errors before locating correct hole during task 

training (I) and latency to locate correct hole during task training (J).

(K) Bilateral HPCv lesions impaired retention of the spatial foraging task, as measured by 

the ratio of investigation of correct plus adjacent holes over total investigated during the first 

minute of the task (p < 0.05). Dotted line indicates chance performance level (0.1667).

For graphs (D), (E), and (F), n = 6 (within-subjects). For graphs (I), (J), and (K), lesion n = 

11, control n = 18. All values expressed as mean ± SEM.
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Figure 2. Reversible and chronic CA1v-to-LS neural disconnection impairs spatial memory for 
food and water location but not for escape location
(A) Diagram of dual viral approach using a Cre-dependent inhibitory DREADDs (AAV-

hSyn-DIO-hM4D(GI)-mCherry) approach to reversibly disconnect CA1v-to-LS neural 

pathway (with CNO injected 1 h before memory probe).

(B) Diagram of dual viral approach using a Cre-dependent caspase (AAV1-Flex-taCasp3-

TEVp) approach to chronically disconnect CA1v-to-LS neural pathway.

(C) Representative injection site in CA1v demonstrating LS-projecting neurons infected 

with inhibitory DREADDs, which simultaneously drives expression of a fluorescent 

mCherry transgene. Scale bars, 500 μm (left) and 100 μm (right).

(D and E) Neither reversible (DREADDs) nor chronic (caspase) disconnection of the CA1v-

to-LS pathway impaired learning of the spatial food-seeking task compared with controls, as 

measured by errors before correct hole during task training (D) and latency to correct hole 

during task training (E).
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(F) Both reversible and chronic disconnection of the CA1v-to-LS pathway impaired 

retention of the food location as measured by the ratio of investigation of correct plus 

adjacent holes over total investigations during entire 2 min of the task (p < 0.05).

(G–I) Likewise, reversible (DREADDs) and chronic (caspase) disconnection of the CA1v-

to-LS pathway did not impair learning of the spatial water-seeking task compared with 

controls, as measured by errors before correct hole during task training (G) and latency to 

correct hole during task training (H), but impaired memory retention of the water location 

during the probe (I).

(J and K) In contrast, disconnection of the CA1v-to-LS pathway either reversibly 

(DREADDs) or chronically (caspase) did not impair performance on the spatial escape task. 

There were no differences in learning as measured by errors before correct hole during task 

training (J) and latency to correct hole during task training (K).

(L) Unlike the spatial foraging task, retention of the spatial escape task was not impaired 

by reversible or chronic disconnection of the CA1v-to-LS pathway. For graphs (E), (F), and 

(G) (CA1v-to-LS disconnect cohort 1), DREADDs n = 6, caspase n = 10, control n = 8. 

For graphs (H), (I), and (J) (CA1v-to-LS disconnect cohort 3), DREADDs n = 8, caspase 

n = 8, control n = 7). For graphs (K). (L), and (M) (CA1v-to-LS disconnect cohort 2), 

DREADDs n = 8, caspase n = 12, control n = 10. Dotted line indicates chance performance 

level (0.1667). All values expressed as mean ± SEM.
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Figure 3. CA1v to mPFC projections do not contribute to appetitive spatial memory
(A) Diagram of dual viral approach to identify collateral targets of the CA1v-to-LS neural 

pathway.

(B) Left: representative CA1v injection site from collateral identification approach. Scale 

bar, 500 μm. Middle: representative LS injection site from collateral identification approach 

in relation to the caudal (LSc) and rostral (LSr) subregions, the corpus callosum body (ccb), 

and lateral ventricle (VLa). Scale bar, 500 μm. Right: representative image collateral axons 

of the CA1v-to-LS pathway located in the prelimbic (PL) and infralimbic (ILA) areas of the 

mPFC. Scale bar, 50 μm.

(C) Diagram of dual viral approach using Cre-dependent inhibitory DREADDs (AAV-hSyn-

DIO-hM4D(GI)-mCherry) to acutely disconnect the CA1v-to-mPFC neural pathway (with 

CNO or aCSF injected 1 h before memory probe).

(D) Representative injection site in CA1v demonstrating mPFC-projecting neurons infected 

with inhibitory DREADDs, which simultaneously drives expression of a fluorescent 

mCherry transgene. Scale bars, 100 μm.

(E and F) Disconnection of the CA1v-to-mPFC neural pathway did not influence learning of 

the spatial foraging task compared with controls, as measured by errors before correct hole 

during training (E) and latency to correct hole during training (F).

(G) Disconnection of the CA1v-to-mPFC pathway did not influence retention of the spatial 

foraging task in the memory probe.
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For graphs (E), (F), and (G), aCSF n = 6, CNO n = 8. Dotted line indicates chance 

performance level (0.1667). All values expressed as mean ± SEM.
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Figure 4. LS neurons activated during food-seeking memory probe are predominantly 
GABAergic
(A–C) c-Fos and ChAT colocalization was observed in ~2% of LS neurons (A; scale bar, 

500 μm), c-Fos and GAD1 colocalization was observed in ~88% of LS neurons (B; scale 

bar, 500 μm), and c-Fos and VGlut2 colocalization was observed in ~10% of LS neurons (C; 

scale bar, 500 μm) following the spatial memory probe test (for food reinforcement).

(D) Percentage of c-Fos+ LS neurons expressing GABAergic, cholinergic and glutamatergic 

markers. Quantification from DREADDs vehicle group, n = 3.
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Figure 5. Identification of second-order neural projections downstream of CA1v-to-LS 
projections
(A) Diagram of dual viral approach to identify brain regions that are second-order (2°) 

targets of the CA1v-to-LS neural pathway.

(B) Representative LS injection site from second-order identification approach in relation to 

the caudal (LSc) and rostral (LSr) subregions, the corpus callosum body (ccb), and lateral 

ventricle (VLa). Scale bar, 100 μm.

(C) Representative image of second-order fibers of the CA1v-to-LS pathway within the 

juxtadorsomedial (jd), juxtaventromedial dorsal (jvd), juxtaventromedial ventral (jvv), and 

subfornical anterior (sfa) subregions of the LHA. Scale bar, 200 μm.

(D) Summary of the projection targets of LS neurons that receive input from CA1v (for 

expanded information see Table S1). The outputs of the right side of LS neurons receiving 

CA1v input are represented at the macroscale (gray matter region resolution) on a partial 

flatmap representation of the rat forebrain, adapted from Hahn et al. (2021). Connection 
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weights are represented by block colors for each region following an ordinal scale ranging 

from weakest (0 = very weak or absent) to strongest (6 = strong), as there were no 7 (very 

strong) values. The lower panels represent one side of the brain with the part represented in 

the upper diagram outlined in magenta.

(E–G) The COIN approach for further confirmation of second-order tracing strategy is 

depicted with FG injection site in the LHA (E; scale bar, 500 μm), representative AAV1-

GFP injection site in the CA1v (F; scale bar, 100 μm), and FG-GFP appositions in the LS 

(G; scale bar, 100 μm).

(H) Representative histology of c-Fos expression in the medial LHA (LHAjd and LHAjv) 

following i.c.v. infusion of aCSF. Scale bar, 200 μm.

(I) Representative histology of c-Fos expression in the medial LHA (LHAjd and LHAjv) 

following i.c.v. infusion of CNO to inhibit LS-projecting CA1v neurons, Scale bar, 200 μm.

(J) Counts of c-Fos-positive cells in the medial LHA (LHAjd and LHAjv) are reduced with 

i.c.v. administration of CNO (p < 0.05). aCSF n = 4 and CNO n = 4. Values expressed as 

mean ± SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chicken anti-GFP Abcam Cat. no. ab13970; RRID:AB_300798

Donkey anti-chicken AF488 Jackon Immunoresearch RRID: AB_2340375

Donkey anti-rabbit AF488 Jackson Immunoresearch RRID: AB_2340619

Donkey anti-rabbit Cy3 Jackon Immunoresearch RRID: AB_2307443

Rabbit anti-MCH Phoenix Pharmaceuticals Cat. no. H_070_47; RRID:AB_10013632

Rabbit anti-NeuN Abcam Cat. no. Ab177487; RRID:AB_2532109

Rabbit anti-RFP Rockland RRID: AB_2209751

Rabbit anti-orexin EMD Millipore Cat. no. AB3704; RRID:AB_91545

Bacterial and virus strains

AAV1-CAG-Flex-tdTomato-WPRE-bGH UPenn Vector Core N/A

AAV2-Flex-hM4i-mCherry Addgene Cat. no. 44362-AAV2

AAV1-Flex-taCasp3-TEVp UNC Vector Core N/A

AAV1-hSyn-Cre-WPRE-hGH UPenn Vector Core N/A

AAV1-hSyn-eGFP-WPRE-bGH Vector BioLabs Cat. no. VB4870

AAV2[retro]-hSYN1-EGFP-2A-iCre-WPRE Vector BioLabs Cat. no. VB4855

AAV9-hSyn-GCaMP7s-WPRE Addgene Cat. no. 104487-AAV9

Chemicals, peptides, and recombinant proteins

Clozapine-N-oxide RTI International N/A

NMDA Sigma M3262

Fluorogold Fluorochrome N/A

Deposited data

Original data This paper OSF: https://osf.io/rb2w8/

Experimental models: Organisms/strains

Sprague Dawley rat Envigo RRID:RGD_737903

Oligonucleotides

c-Fos ACD Cat. no. 403591

ChAT ACD Cat. no. 430111

GAD1 ACD Cat. no. 316401

vGLUT2 ACD Cat. no. 317011

Software and algorithms

AnyMaze Behavior Tracking Software Stoelting N/A

MatLAB MathWorks N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Statistica StatSoft N/A

Axiome C Hahn et al., 2021 N/A

Other

Original MatLab code This paper OSF: https://osf.io/rb2w8/
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