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Tryptases are predominantly mast cell-specific serine proteases with pleiotropic biological activities and play a critical role in skin
allergic reactions, which are manifested with rapid edema and increases of vascular permeability. The exact mechanisms of mast cell
tryptase promoting vascular permeability, however, are unclear and, therefore, we investigated the effect and mechanism of tryptase
or human mast cells (HMC-1) supernatant on the permeability of human dermal microvascular endothelial cells (HDMECs).
Both tryptase and HMC-1 supernatant increased permeability of HDMECs significantly, which was resisted by tryptase inhibitor
APC366 and partially reversed by anti-VEGF antibody and SU5614 (catalytic inhibitor of VEGFR). Furthermore, addition of
tryptase to HDMECs caused a significant increase of mRNA and protein levels of VEGF and its receptors (Flt-1 and Flk-1) by
Real-time RT-PCR and Western blot, respectively. These results strongly suggest an important role of VEGF on the permeability
enhancement induced by tryptase, which may lead to novel means of controlling allergic reaction in skin.

1. Introduction

Mast cells are critical for allergic inflammatory responses
and cutaneous hypersensitivity reactions, such as atopic
dermatitis, contact dermatitis, eczema and nettle rash [1–
4]. Mast cells can be activated to release a diverse array
of potent biologically active products and cytokines [5–7].
The major secretory product of human mast cells is the
serine proteinase tryptase (tetrameric trypsin-like substrate
specificities), which is emerging as a major mediator of
allergic disease and as a promising target for therapeutic
intervention [8]. Human mast cells contain at least two
tryptases, α-tryptase and β-tryptase. Human mature β-
tryptase is stored in the mast cells granules and released upon
activation while α-tryptase is apparently processed only to
the proenzyme stage and is constitutively secreted along with
β protryptase [8, 9]. In healthy individuals, only α-tryptase
can be detected whereas β-tryptase is undetectable. However,
significant elevations of circulating β-tryptase levels were
observed in patients with allergic diseases [10, 11].

The common clinical sign of allergic hypersensitivity
reactions in skin is edema, which caused by increases in
vascular permeability [12, 13]. It is reported that tryptase
may contribute to vascular permeability by the direct or
indirect generation of bradykinin from kininogens [14].
Mast cell tryptase increases intracellular Ca2+, leading to
elevation of paracellular permeability of colonocytes [15].
Intradermal injection of tryptase or mast cell secretagogue
compound 48/80 in rats can induce the immediate cutaneous
reaction and increase dermal microvascular permeability,
which can be inhibited by potent and specific tryptase
inhibitor nafamostat or synthetic tryptase inhibitor APC366
[16, 17]. However, the mechanism of enhancement of
vascular permeability induced by tryptase is still not clear
and need further study.

Vascular endothelial growth factor (VEGF), an endothe-
lial cell mitogen that promotes angiogenesis, was initially
identified as a vascular permeability factor (VPF) [18,
19]. VEGF interacts with two high-affinity tyrosine kinase
receptors, VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1),
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to increase microvascular permeability and induce angio-
genesis [20]. In patients with delayed hypersensitivity, the
amount of VEGF produced in lesional scales was approxi-
mately 25 times higher than that in normal stratum corneum
[21]. In patients with allergic contact dermatitis, the mRNA
levels of VPF/VEGF and two VPF/VEGF vascular endothelial
cell receptors (Flt-1 and Flk-1) were all strikingly overex-
pressed in dermal microvascular cells [22]. Interestingly,
tryptase, VEGF, and VEGF receptors all abundantly reside in
the regions of dermal allergic and hypersensitive reactions.
Based on the above reports, we hypothesized that tryptase
may increase the dermal microvascular permeability as well
as edema through regulating the expression of VEGF and
VEGF receptors.

In the present study, we evaluated the effect of VEGF
on hyperpermeability induced by purified human β-tryptase
or human mast cell supernatant in cultured human dermal
microvascular endothelial cells (HDMECs) and investigated
the effect of tryptase and tryptase inhibitor (APC366) on
VEGF and VEGF receptor (Flt-1, Flk-1) expression. The
results provide the evidence that VEGF is involved in the
increase of tryptase-induced microvascular permeability,
which represents a novel pathway for controlling allergic
reaction in skin.

2. Materials and Methods

Culture media, reagents, and SuperScript First-Strand Syn-
thesis System for RT-PCR were purchased from Invitrogen
(Carlsbad, CA, USA). SV Total RNA Isolation Kit was from
Promega (Madison, WI, USA). SYBR Green real-time PCR
Master Mix was from Toyobo Company (Osaka, JP). Primary
antibody against von Willebrand factor (vWF), CD34,
vascular endothelial growth factor (VEGF), fms-like tyrosine
kinase (Flt-1), kinase insert domain containing receptor
(Flk-1), and Glyceraldehydes-3-phosphate dehydrogenase
(GAPDH) were purchased from SantaCruz Biotechnology,
Inc. (Santa Cruz, CA). Antihuman VEGF Antibody for
inhibiting VEGF was obtained from R&D Systems (Min-
neapolis, MN, USA). SuperSignal West Pico Chemilumi-
nescent Substrate was obtained from Pierce Biotechnology,
Inc. (Rockford, IL, USA). β-trypatase was kindly provided
by Dr. Shunlin Ren (Division of Gastroenterology, Virginia
Commonwealth University, Richmond,VA, USA). All other
reagents were from Sigma-Aldrich Chemical Co. (St. Louis,
MO) unless otherwise mentioned.

2.1. Isolation, Culture, and Identification of Human Dermal
Microvascular Endothelial Cells (HDMECs). The method
of HDMECs isolation and culture was set up based on
literatures published previously [23–26]. Briefly, human
neonatal foreskins were cut into small pieces and digested
by 0.5 mg/mL Dispase dissolved in sodium acetate at 37◦C
for 1 h. After removal of the epidermis, the dermal frag-
ments were treated with 1% collagenase I at 37◦C for 1 h.
The microvascular segments were passed through a 100-
μm nylon mesh cell strainer, collected, and purified by
Percoll gradient centrifugation. The fraction with a density

<1.048 g/mL, which was rich in microvascular fragments,
was removed and applied to gelatin-precoated tissue-culture
dishes and cultured in Dulbecco’s modified Eagle’s medium
(DMEM; 1000 mg/L glucose) supplemented with 10 mM
HEPES, 10 mM L-glutamine, 15 U/mL heparin, 1 μg/mL
hydrocortisone acetate, 325 μg/mL glutathione, 0.05 mM
dibutyryl cyclic AMP, 5 μg/mL insulin, 5 μg/mL transferrin,
5 μM 2-mercaptoethanol, 100 U/mL penicillin, 100 μg/mL
streptomycin, and 20% fatal bovine serum. The HDMECs
were identified on the basis of morphological characteristics,
immunofluorescent staining of von Willebrand factor (vWF)
and CD34. All experiments used HDMECs at passages 2–4.

2.2. Culture of Human Mast Cell Line HMC-1. The human
mast cell line HMC-1 was kindly obtained from Second
Military Medical University, Shanghai, China. The cells were
cultured in 75 cm2 flasks in Iscove’s modified Dulbecco’s
medium (IMDM) supplemented with 10% fetal bovine
serum (FBS), 100 IU/mL penicillin and 100 μg/mL strepto-
mycin in humidified air with 5% CO2 at 37◦C. Collected
HMC-1 cells were activated and degranulated in the addition
of prodegranulating agent a23187. The HMC-1 supernatant
containing tryptase is collected, centrifuged, filtered, and
then used as conditioned medium (henceforth referred as
HMC-1 supernatant) in the following experiments. The
activity of tryptase released from HMC-1 was quantified by
monitoring hydrolysis of tosyl-L-Gly-ProLysp-nitroanilide
(t6140) using a standard spectrophotometric assay at 405 nm
wavelength. Tryptase was released from HMC-1 cells in
a23187 (a prodegranulating agent) dose-dependent manner
and HMC-1 cells density-dependent manner (Supplemental
Figure 2 available online at doi:10.5402/2012/941465). The
optimal stimulation and release were achieved by incubating
HMC-1 cells (1 × 107/mL) for 2 h with a23187 (1 μg/mL) at
37◦C.

2.3. Determination of Vascular Permeability in Cultured
HDMECs. As described in previous literature [27], HDMECs
were grown to confluent monolayer on gelatin-coated mem-
branes in double-chamber tissue culture plates (Transwell
membrane, 0.4 μM pore size, Corning Costar). After 48 h,
chambers were examined microscopically for integrity and
uniformity of endothelial monolayers. The confluent mono-
layers were incubated with APC366 (250 μg/mL), anti-
VEGF antibody (0.1 μg/mL) or SU5614 (5 μM) following its
activation by either tryptase or HMC-1 supernatant for 18 h
as described. At the end of the incubation period, FITC-
conjugated dextran (1 mg/mL, Mr 42,000; Sigma-Aldrich)
was added to the upper chambers, and fluorescence in
the lower chamber was measured 1 h later with a fluores-
cence reader. Experiments were performed in triplicate and
repeated 3 times.

2.4. Determination of Gene Expression of VEGF and Its
Receptors. Total cell lysates of HDMECs were extracted on
ice with 1% NP40, 0.5% sodium deoxycholate and 0.1% SDS
in PBS with proteinase inhibitor cocktail (Sigma). Fifty μg
total proteins were loaded on 7.5% SDS-PAGE for detection
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Table 1: Primer pairs used to amplify PCR products.

Gene Sequence (5′-3′) Product size Annealing T (◦C) GeneBank no.

VEGF
Forward: CAACATCACCATGCAGATTATGC

132 bp 60◦C NM 001033756
Reverse: CCCACAGGGATTTTCTTGTCTT

Flt-1
Forward: TGGCTGCGACTCTCTTCTG

118 bp 60◦C NM 002019
Reverse: CAAAGGAACTTCATCTGGGTCC

Flk-1
Forward: GGCCCAATAATCAGAGTGGCA

104 bp 60◦C NM 002253
Reverse: TGTCATTTCCGATCACTTTTGGA

GAPDH
Forward: CATGAGAAGTATGACAACAGCCT

113 bp 60◦C NM 002046
Reverse: AGTCCTTCCACGATACCAAAGT

of the specific proteins, including VEGF, and its receptors
Flt-1 and Flk-1, using GAPDH as loading control. Western
blot analysis was performed as previously described [28]. All
Western blot experiments were repeated at least three times
with separate cells preparation.

Total RNA was extracted using SV Total RNA Isolation
Kit (Promega, Wisconsin, WI) according to the supplier’s
instructions. Two micrograms of total RNA were reversely
transcribed and amplified. The relative mRNA levels were
measured by real-time PCR as described previously [28].
Specific primer pairs for VEGF, Flt-1, Flk-1, and GAPDH
were listed in Table 1.

2.5. Statistical Analysis. Data were presented as mean
± SEM. Statistical significance was assessed by one-way
ANOVA and discrepancies between groups were considered
statistically significant at P < 0.05.

3. Results

3.1. Culture and Identification of Human Dermal Microvas-
cular Endothelial Cells (HDMECs). All HDMECs gave typ-
ical confluent cobblestone appearance (Supplemental Fig-
ure 1(a)) and had positive reactions to the antibodies against
vWF (Supplemental Figure 1(b)) and CD34 (Supplemental
Figure 1(c)). Negative control without first antibody exhib-
ited no staining (Supplemental Figure 1(d)). More than 90%
cells were positive for vWF and CD34, suggesting the purity
of the primary cells exceeded 90%.

3.2. Determination of the Tryptase Activity in HMC-1
Supernatant. To confirm the existence of tryptase in the
conditioned medium, we incubated the HMC-1 supernatant
with substrate (t6140, N-Tosylglycyl-L-prolyl-L-lysine 4-
nitroanilide acetate salt, 8 mmol/L) in the presence and
absence of prodegranulating agent a23187 (1 μg/mL) for
10 minutes in the reaction buffer (40 mM HEPES, 0.12 M
NaCl, pH 7.4). OD value of the reaction was detected by
spectrophotometer at 405 nm each 30 seconds. As shown in
Supplemental Figure 2(a), the change of OD405 (formation
of t6140-derived product digested by tryptase) was linear
for at least 10 minutes, and 5 minutes was chosen as
the reaction time. Tryptase was released in the HMC-1
supernatant, which is increased dramatically by prodegran-
ulating agent a23187 (Supplemental Figure 2(b)). a23187

stimulated HMC-1 cells to release tryptase dose-dependently
(Supplemental Figure 2(c)). On the other way, tryptase was
released from HMC-1 cells by 1 μg/mL a23187 in cell density-
dependent manner (Supplemental Figure 2(d)). In the fol-
lowing experiments, HMC-1 supernatant was prepared by
using 1× 107 HMC-1 cells treated with 1 μg/mL a23187.

3.3. Effect of Tryptase/HMC-1 Supernatant on the Permeability
of HDMECs. As described in the method, the amount
of FITC-dextran in the lower chamber leaked from the
HDMECs layer was detected to measure the permeability
of HDMECs. The permeability of HDMECs with different
treatments was quantified by the percentage of OD490
change. The confluent monolayers were treated with tryptase
or HMC-1 supernatant for 18 h in the presence or absence
of APC366 (a selective inhibitor of tryptase, 250 μg/mL)
pretreatment. As shown in Figure 1(a), tryptase significantly
increased the permeability of HDMECs in a dose-dependent
manner, which was resisted by APC366. Because β-tryptase
was added into HDMECs accompanied by heparin as
stabilizer, heparin control was also studied. It turns out
that addition of heparin to HDMECs had no effect on the
permeability. Figure 1(b) showed that HMC-1 supernatant
enhanced the permeability of HDMECs dose-dependently,
which was resisted by APC366. To investigate whether VEGF
is involved in the hyperpermeability, anti-VEGF antibody
(0.1 μg/mL) was preincubated on HDMECs to block VEGF.
The data was normalized to groups treated with normal
goat IgG. As a result, inhibition of VEGF significantly
attenuated tryptase-induced permeability (Figure 1(c)), but
only modestly attenuated HMC-1 supernatant-induced per-
meability (Figure 1(d)). SU5614, 3-[(2,4-demethylpyrrol-5-
yl)methylidene]-indolin-2-one, is a small synthetic inhibitor
of the catalytic function of the VEGF receptor (VEGFR-2;
Flk-1/KDR) tyrosine kinase. It was used to strengthen the
evidence that VEGF is involved in the hypermeability caused
by tryptase. As shown in Figure 1(c), pretreatment of 5 μM
SU5416 with HDMECs dramatically attenuated tryptase-
induced hypermeability.

3.4. Effect of Tryptase on the VEGF, Flt-1, and Flk-1
Protein Levels in HDMECs. To study the mechanism of
resistance of tryptase-induced hyperpermeability by anti-
VEGF antibody, the protein levels of VEGF, Flt-1, and
Flk-1 in HDMECs of indicated treatments were analyzed
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Figure 1: Effect of tryptase and HMC-1 supernatant on the permeability of HDMECs. As described in Methods, the permeability of
HDMECs after indicated treatment was detected by measuring fluorescence in the lower chamber at 490 nm after incubation with FITC-
dextran for 1 h in the upper chamber. The changes of OD490 in the lower chamber after 1 h of incubation were calculated for the permeability
of HDMECs. (a) Effect of tryptase at different concentrations on the permeability of HDMECs in the presence or absence of APC366. The
heparin was used as Vehicle control. (b) Effect of HMC-1 supernatant at different concentrations on the permeability of HDMECs with
or without APC366. (c) Effect of anti-VEGF antibody and SU5416 on the increase of permeability stimulated by tryptase. (d) Effect of
anti-VEGF antibody on the increase of permeability stimulated by HMC-1 supernatant. ∗P < 0.05 compared to the group of nonaddition.
#P < 0.05 compared to the group only treated with tryptase. &P < 0.05 compared to the group only treated with HMC-1 supernatant.

by Western blot. Different concentrations of tryptase were
added into HDMECs for 18 h in the absence or presence of
APC366. The heparin control was also analyzed. As a result,
addition of different concentration of tryptase to HDMECs
in culture significantly increased the protein levels of VEGF
(Figure 2(a)), Flt-1 (Figure 2(b)), and Flk-1 (Figure 2(c)),
which was resisted by APC366, a synthetic tryptase inhibitor.
However, there was no effect on these protein expressions
following the treatment of heparin control.

3.5. Effect of Tryptase on the VEGF, Flt-1, and Flk-1 mRNA
Levels in HDMECs. To further study the mechanism of
resistance of tryptase-induced hyperpermeability by anti-
VEGF antibody, the effect of tryptase on VEGF, Flt-1, and
Flk-1 expressions in HDMECs at mRNA level was analyzed
by Real-time RT-PCR. GAPDH was determined in parallel
and used as an internal standard. Different concentrations of
tryptase were added into HDMECs for 6 h. The expression
levels were normalized to heparin control. As shown in
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Figure 2: Effect of tryptase on the VEGF, Flt-1, and Flk-1 protein levels in HDMECs with or without APC366. HDMECs were treated with
different concentrations of tryptase for 18 h in the absence or presence of APC366 (250 μg/mL). The protein levels of VEGF (a), Flt-1 (b),
and Flk-1 (c) were determined by Western blot and normalized to GAPDH. The heparin control was also analyzed. ∗P < 0.05 compared to
the group of nonaddition. #P < 0.05 compared to the group only treated with tryptase at the same concentration.

Figure 3, tryptase upregulated VEGF, Flt-1, and Flk-1 mRNA
levels significantly.

4. Discussion

In the present study, we demonstrated that both mast
cell tryptase and HMC-1 supernatant promote vascular
hyperpermeability in cultured human dermal microvascular
endothelial cells (HDMECs), which can be significantly
blocked by anti-VEGF and SU5416 (inhibitor of VEGF
receptor, VEGFR-2/Flk-1). Furthermore, tryptase increases
the expression of VEGF and its receptors (Flt-1 and Flk-1),
which can be inhibited by synthetic tryptase inhibitor
(APC366). These results provide the evidence that VEGF is
involved in the increase of tryptase-induced microvascular
permeability, which represents a novel pathway for control-
ling allergic reaction in skin.

Tryptases are predominantly mast cell-specific serine
proteases with pleiotropic biological activities [8, 29]. Under
physiological conditions, tryptases are primarily detectable
in mast cells and basophils and at least consist of α-tryptase
and β-tryptase. β-tryptase appears to be the main isoenzyme
that is expressed in human lung and skin mast cells, whereas
in basophils α-tryptase predominates [30]. β-tryptase with
physiological activities exists as tetrameric conformation,
which is ionically bound to heparin proteoglycan [31].

Heparin stabilizes tryptase in its enzymatically active form
[32, 33]. Therefore, heparin proteoglycan with identical con-
centrations was used as Vehicle control in our experiments.

Increasing evidences indicate that mast cell tryptase plays
an important role in enhancement of vascular permeability
[14–17]. Mast cell tryptase increases intracellular Ca2+,
leading to elevation of paracellular permeability of colono-
cytes [15]. Mast cells control permeability of the intestinal
epithelium by cleaving protease-activated receptor 2 (PAR2)
on the basolateral membrane of colonocytes and activating
extracellular signal-regulated kinases 1/2 (ERK1/2) [15, 17].
Our data also demonstrated that either purified tryptase or
HMC-1-released tryptase stimulated vascular permeability
in primary human dermal microvascular endothelial cells
(HDMECs), which can be partly inhibited by synthetic
tryptase inhibitor (APC366) (Figure 1). Tryptase inhibitors
reduced but did not abolish the effects of HMC-1 mast cell
supernatant on permeability of HDMECs, suggesting that
mast cell mediators other than tryptase may also regulate
vascular permeability.

In addition to tryptase, mast cells release a number of
mediators that act directly on the vasculature to produce
vasodilatation and increase permeability, including vascular
endothelial growth factor (VEGF) [34]. VEGF is an endothe-
lial cell-specific mitogenic peptide and plays a key role in
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Figure 3: Effect of tryptase on the VEGF, Flt-1, and Flk-1 mRNA levels in HDMECs. Different concentrations of tryptase (0, 1, and
10 nmol/L) were added into HDMECs for 6 h. The mRNA levels of VEGF (a), Flt-1 (b), and Flk-1 (c) were determined by Real-time RT-PCR
and normalized to GAPDH. The heparin control was also analyzed. ∗P < 0.05 compared to the group of heparin control.

vasculogenesis, angiogenesis, and stimulation of vascular
permeability [35–38]. The VEGF family includes VEGF-
A, placenta growth factor (PlGF), VEGF-B, VEGF-C, and
VEGF-D. The original member of the VEGF family, VEGF-A,
also known as vascular permeability factor, was characterized
as a potent inducer of vascular permeability [19, 35, 39,
40]. In the present work, VEGF-A is represented as VEGF.
VEGF binding to the 2 types III receptor tyrosine kinases
VEGF receptor-1 (VEGFR-1/Flt-1) and VEGFR-2 (Flk-1) are
primarily expressed in vascular endothelial cells. Previous
studies have revealed that VEGF expressions by epidermal
keratinocytes and endothelial expression of VEGF receptors
are upregulated in cutaneous inflammation [21]. However,
whether VEGF and its receptors are involved in the tryptase-
induced hyperpermeability is unknown. Therefore, in the
present study, we investigated the effect of tryptase on the
expressions of VEGF and its receptors (Flt-1 and Flk-1).
The results showed that tryptase significantly increased the
mRNA and protein levels of VEGF and its receptors in
HDMECs, which can be inhibited by APC366 (Figures 2 and
3). Furthermore, SU5614, a potent inhibitor of VEGF, and
anti-VEGF effectively resisted the tryptase-induced hyper-
permeability (Figure 1). Hereby, VEGF is at least partially
responsible to the enhancement of permeability induced by
tryptase. However, the specific mechanism of how tryptase
stimulates expression of VEGF and its receptors should be
elucidated in the further study.

In conclusion, mast cells tryptase significantly increased
the expressions of VEGF and its receptors (Flt-1 and Flk-
1) and promoted microvascular permeability in HDMECs,
which can be reversed by VEGF inhibitor. The results indi-
cated that VEGF is involved in the increase of dermal micro-
vascular hyperpermeability by tryptase. These findings may
lead to novel means of controlling allergic reaction in skin.
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