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Abstract: The present study aimed at testing the hypothesis that application of multiscale
cross-approximate entropy (MCAE) analysis in the study of nonlinear coupling behavior of two
synchronized time series of different natures [i.e., R-R interval (RRI) and crest time (CT, the time
interval from foot to peakof a pulse wave)] could yield information on complexity related to
diabetes-associated vascular changes. Signals of a single waveform parameter (i.e., CT) from
photoplethysmography and RRI from electrocardiogram were simultaneously acquired within a
period of one thousand cardiac cycles for the computation of different multiscale entropy indices from
healthy young adults (n = 22) (Group 1), upper-middle aged non-diabetic subjects (n = 34) (Group 2)
and diabetic patients (n = 34) (Group 3). The demographic (i.e., age), anthropometric (i.e., body
height, body weight, waist circumference, body-mass index), hemodynamic (i.e., systolic and diastolic
blood pressures), and serum biochemical (i.e., high- and low-density lipoprotein cholesterol, total
cholesterol, and triglyceride) parameters were compared with different multiscale entropy indices
including small- and large-scale multiscale entropy indices for CT and RRI [MEISS(CT), MEILS(CT),
MEISS(RRI), MEILS(RRI), respectively] as well as small- and large-scale multiscale cross-approximate
entropy indices [MCEISS, MCEILS, respectively]. The results demonstrated that both MEILS(RRI) and
MCEILS significantly differentiated between Group 2 and Group 3 (all p < 0.017). Multivariate linear
regression analysis showed significant associations of MEILS(RRI) and MCEILS(RRI,CT) with age and
glycated hemoglobin level (all p < 0.017). The findings highlight the successful application of a novel
multiscale cross-approximate entropy index in non-invasively identifying diabetes-associated subtle
changes in vascular functional integrity, which is of clinical importance in preventive medicine.

Keywords: multiscale entropy (MSE); cross-approximate entropy; crest time; R-R interval; diabetes

1. Introduction

The World Health Organization has identified cardiovascular and cerebrovascular diseases as the
top two global killers. The development of such “non-communicable diseases” is attributable to chronic
metabolic anomalies, including hyperglycemia, hyperlipidemia, and hypertension, that require early
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detection and timely intervention [1]. In addition to commonly available non-invasive monitoring
parameters such as heart rate, blood pressure, and electrocardiogram (ECG), more sophisticated and
accurate indicators of changes in microvascular blood flow are needed for guiding lifestyle modifications
before the development of overt diseases [2]. Aged and hypertensive subjects were first reported to show
carotid arterial pulsations different from those of healthy individuals over five decades ago [3]. A decade
later, analog and electrical arterial pulsation signals were found to be consistent, thereby validating
non-invasive means of arterial stiffness analysis using waveform contour [4]. A large-scaled study
later demonstrated age-related differences in arterial waveform contour [5]. With the advancement of
electronic technology, photoplethysmography (PPG) has become a popular means of acquiring “digital
volume pulse” (DVP) that accurately reflects peripheral microvascular blood flow. Changes in DVP
have been reported under physiological [6] and pathological [7] conditions.

Apulse wave is a complex physiological signal composed of systolic and diastolic components.
The former arises mainly from aforward-going pressure wave transmitted from the left ventricle to
the recording site (i.e., finger), while the latter arises mainly from pressure waves transmitted along
the aorta to small arteries in the lower body, from where they are reflected back along the aorta as a
reflected wave that travels to the finger. Reduced compliance of the elastic arteries shortens the time of
return of the ‘reflected wave’, causing a disproportionate elevation in systolic pressure [8]. On pulse
wave analysis, such an interaction between the incident pulse wave that travels from the heart to the
periphery and the reflected pulse wave from the periphery to the central region can beevaluated and
expressed as the “augmentation index”. Besides, increased central arterial stiffness and/or peripheral
reflectance is related to an increased propagation speed of waves and proximal shifting of the reflection
point in the arterial tree, thereby enhancing the interaction between the incident and reflected waves [9].
Crest time (CT), which is the time interval from foot to peak of a pulse wave, has been found to be a
consistent parameter markedly increased in the elderly with arteriosclerosis [10].

R-R interval (RRI) from ECG, which is the time between two successive ventricular
depolarizations, has been widely applied in the evaluation of autonomic neural activities [11–13].
On the other hand, CT (i.e., when the derivative is equal to zero)has been shown to be a consistent
parameter significantly increased in the aged population with arteriosclerosisand could be used for
cardiovascular disease classification [14]. While RRI represents changes in electrical activities, CT
reflects the actual peripheral microvascular hemodynamic changes. The concept of multiscale allows
viewing of the complexity of a set of data from different angles by organizing adjacent data into
groups of different sizes (i.e., coarse-grained modeling). The clinical application of multiscale entropy
(MSE) in RRI data sets to differentiate patients with congestive heart disease and atrial fibrillation
from healthy individuals was first reported in 2002 [15–17]. Based on this concept, the use of MSE for
CT data analysis has also been found to differentiate among young, aged, and diabetic subjects [18].
Although MSE analysis on single waveform contour parameters (i.e., amplitude, time between systolic
and diastolic peaks, CT, and pulse wave velocity) have been used to gain a deeper insight into vascular
status [18–20], another set of MSE-based indices have been developed after taking into account two
synchronized sets of data (i.e., amplitudes from bilateral fingers, time between R wave on ECG and
waveform peak from finger, time between R wave and foot point of a waveform) to further reflect
vascular health [21–23]. The aim of the present study is to test the hypothesis that the application of
multiscale cross-approximate entropy (MCAE) analysis in the study of nonlinear coupling behavior
of two synchronized time series of different natures (i.e., RRI and CT) could yield information on
complexity related to diabetes-associated vascular changes.

2. Methods

2.1. Study Population

Between July 2009 and March 2012, 95 volunteers were originally enrolled for this study.
All diabetic patients were recruited from the diabetes outpatient clinic of the Hualien Hospital,



Entropy 2018, 20, 497 3 of 15

while healthy controls were from a health screening program at the same hospital. Of the 95 subjects,
fivewere excluded due to incomplete or unstable waveform data acquisition. The remaining 90 subjects
were then divided into three groups, including healthy young subjects (Group 1, age range: 18–40,
n = 22), healthy upper middle-aged subjects (Group 2, age range: 41–80, n = 34), type 2 diabetic
patients (Group 3, age range: 41–80, n = 34, glycosylated hemoglobin (HbA1c) ≥6.5%) (Table 1) [24].
All healthy subjects had no personal or family history of cardiovascular diseases. Type 2 diabetes was
diagnosed by either a fasting blood sugar concentration ≥126 mg/dL or HbA1c ≥6.5%. All diabetic
patients received regular treatment and follow-up in the clinic for over two years. The study was
approved by Institutional Review Board (IRB) of Hualien Hospital. All subjectswere required to refrain
from caffeine-containing beverages and theophylline-containing medications for at least 8 h before
each hospital visit. All subjects signed informed consents for the study, completed questionnaires on
demographic data and medical histories, and underwent blood sampling before data acquisition.

Table 1. Demographic, anthropometric, hemodynamic, and serum biochemical parameters of the
testing subjects.

Parameters Group 1 (n = 22) Group 2 (n = 34) Group 3 (n = 34)

Male/Female 13/9 10/24 22/12
Age (years) 28.68 ± 6.34 56.21 ± 10.72 ** 60.71 ± 8.46

Body weight (kg) 68.27 ± 15.89 61.73 ± 10.55 73.88 ± 14.86 ††
WC(cm) 82.30 ± 13.53 80.79 ± 9.43 95.00 ± 11.56 ††

BMI (kg/m2) 23.60 ± 4.48 23.72 ± 3.54 27.92 ± 4.70 ††
SBP (mmHg) 117.46 ± 10.94 118.97 ± 16.60 127.38 ± 17.14 ††
DBP (mmHg) 73.91 ± 7.02 72.97 ± 9.03 76.06 ± 10.16
PP (mmHg) 43.55 ± 7.65 46.00 ± 11.12 51.32 ± 13.84

HDL (mg/dL) 46.46 ± 15.34 55.27 ± 19.34 40.21 ± 13.13 ††
LDL (mg/dL) 124.86 ± 41.11 157.88 ± 43.48 * 148.62 ± 47.39

Cholesterol (mg/dL) 174.64 ± 56.33 165.44 ± 94.19 154.94 ± 53.51
Triglyceride (mg/dL) 79.64 ± 36.31 102.03 ± 30.99 * 117.59 ± 45.06 †

HbA1c(%) 5.51 ± 0.34 5.87 ± 0.40 ** 8.14 ± 1.27 ††
PWVfinger(m/sec) 4.48 ± 0.87 4.88 ± 0.49 5.93 ± 0.58 †

Values are expressed as mean ± SD; Group 1: Healthy young subjects; Group 2: Healthy upper middle-aged
subjects; Group 3: Type 2 diabetic patients; BMI: Body mass index; SBP: Systolic blood pressure; DBP: Diastolic
blood pressure; PP: Pulse pressure; WC: Waist circumference; HbA1c: Glycated hemoglobin; PWVfinger: Left index
finger pulse wave velocity [19]; * p < 0.017 (p corrected): Group 1 vs. Group2; ** p < 0.001: Group 1 vs. Group 2;
† p < 0.017: Group 2 vs. Group 3; †† p < 0.001: Group 2 vs. Group 3.

2.2. Study Protocol

A single waveform parameter (i.e., CT) and cardiac electrical parameter (i.e., RRI) were obtained
from all subjects. MSE analysis was performed on the acquired data of CT and RRI from scale 1 to
scale 6 to obtain multiscale entropy index for CT and RRI [i.e., MEI(CT) and MEI(RRI)], respectively.
Cross approximateanalysis on CT and RRI was performed also from scales 1 to 6 to obtain multiscale
cross-approximate entropy index (MCEI). Mean values from scales 1 to 3 were defined as small
scale (SS), whereas those from scales 4 to 6 were defined as large scale (LS). The associations of the
computational parameters thus obtained [i.e., MEISS(CT), MEILS(CT), MEISS(RRI), MEILS(RRI), MCEISS,
MCEILS] with the demographic (i.e., age), anthropometric (i.e., body height, body weight, waist
circumference, body-mass index), hemodynamic (i.e., systolic and diastolic blood pressures), and serum
biochemical (i.e., high- and low-density lipoprotein cholesterol, total cholesterol, and triglyceride)
parameters of the three groups of testing subjects were analyzed and compared.

2.3. Data Acquisitionand Analysis

All subjects were allowed to rest in a supine position in a quiet, temperature-controlled room
at 25 ± 1 ◦C for 5 min before another 30 min of measurement. Blood pressure was obtained once
over the left arm in supine position using an automated oscillometric device (BP3AG1, Microlife,
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Taibei, Taiwan) with a cuff of appropriate size, followed by collection of data on left index finger
waveform using six-channel ECG-pulse wave velocity (PWV) as previously reported [19]. Briefly,
the six-channel ECG-PWV system was used for left index finger waveform measurement [7]. Infrared
sensors were put on the points of reference simultaneously to acquire data. ECG was obtained using the
conventional method. After being processed through an analog-to-digital converter (USB-6009 DAQ,
National Instruments, Austin, TX, USA) with a sampling frequency of 500 Hz, the digitized signals
were stored in a computer for later analysis. The digital volume pulses (DVPs) were recorded by
photoplethysmography, the methodology and the devices of which have been previously reported [19].
We used DVP from the fingertip for waveform contour analysis. The systolic peak and foot point were
extracted from the contour of the DVP. The crest time (CT) was the time interval between foot and
systolic peak of a pulse wave [10].

2.3.1. Definition of Two Synchronized Physiological Signals: R-R Interval (RRI) and Crest Time (CT)

RRI time series {RRI(i)} = {RRI(1), RRI(2), . . . , RRI(1000)} and CT time series {CT(j)} = {CT(1),
CT(2), . . . , CT(1000)} for each participant were obtained from photoplethysmography (PPG) and
electrocardiogram (ECG), respectively. One thousand stable consecutive cardiac cycles were obtained
from ECG together with the recording of digital waveform signals from PPG within the same period
(Figure 1).

Figure 1. Recording of 1000 consecutive cardiac cycles from electrocardiogram (ECG) and simultaneous
arterial waveform signals from photoplethysmography (PPG). RRI: R-R interval; CT: Crest time (i.e.,
time from foot point to peak of a waveform); RRI(n): RRI during the nth cardiac cycle; CT(n): CT
during the nth cardiac cycle.

2.3.2. MSE and MCAE Analyses

A. Detrending, Normalization, and Coarse-Graining

Acquisition of synchronized RRI and CT signals from 1000 consecutive cardiac cycles gave RRI
series {RRI(i)}= {RRI(1), RRI(2), . . . , RRI(1000)} and CT series {CT(j)}= {CT(1), CT(2), . . . , CT(1000)},
respectively, for the purpose of the present study. Due to a trend within physiological signals, non-zero
means may be included. Therefore, empirical mode decomposition (EMD) [25] was adopted to
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deconstruct the {RRI(i)}and {CT(j)} series, thereby eliminating the trend from the original series.
The detrending process consists of decomposing the acquired signals into different intrinsic mode
functions (IMFs) which are extracted level by level. First, the highest frequency local oscillations on
the corresponding lower frequency part of the data are extracted. The procedure is followed by the
extraction of the next level highest-frequency local oscillations of the residual of the data. The process
then continues until no complete oscillation can be noted in the residual, which can be considered
to be the trend of the original signals in general [26]. Using adaptive decomposition computation of
EMD, the number of decomposition levels depends on the length of sampled data [27]. For the present
study, a cut-off frequency of around 0.001 Hz was adopted. The {RRI(i)} and {CT(j)} series was then
normalized, as shown in (1). In these equations, SDRRI(i) and SDCT(j) represent the standard deviations
of series {RRI(i)}and {CT(j)}, respectively. RRI(i) denotes the mean of the {RRI(i)} series, while CT(j)
represents the mean of the {CT(j)} series:

{
RRI′(i)

}
=
{RRI(i)} − RRI(i)

SDRRI(i)

{
CT′(j)

}
=
{CT(j)} −CT(j)

SDCT(j)
(1)

The use of a scale factor τ (τ = 1, 2, 3, . . . , n), which is selected according to a 1-D series of
consecutive cycles, is mandatory for multiple analysisto enable the application of a coarse-graining
process in order to derive a new series prior to the computation of entropy in each new individual
series [15].With this approach, coarse-graining on the normalized 1-D consecutive cycles of the{

RRI′(i)
}

and
{

CT′(j)
}

series based on scale factor τ can be performed to obtain the series RRI′(τ)

and CT′(τ) as shown in (2):

RRI′(u)(τ) = 1
τ

uτ

∑
i=(u−1)τ+1

RRI′(i), 1 ≤ u ≤ 1000
τ ,

CT′(u)(τ) = 1
τ

uτ

∑
j=(u−1)τ+1

CT′(j), 1 ≤ u ≤ 1000
τ ,

(2)

Hence, different multiscale entropy indices and the multiscale cross-approximate entropyindices
can be calculated.

B. Computation of MEI for RRI and CT

To assess the complexity of
{

RRI′(i)
}

and
{

CT′(j)
}

series based on scale factor τ series, sample
entropy was used for multiscale analysis [28]. The results of sample entropy between scale factors
1 and 3 were defined as small scales, and those between scale factors 4 and 6 were defined as large
scales. The mean of sample entropy in small scales of

{
RRI′(i)

}
and

{
CT′(j)

}
series was defined as

MEISS(RRI) vs. MEISS(CT), while the mean of sample entropy in large scales of
{

RRI′(i)
}

and
{

CT′(j)
}

series was defined as MEILS(RRI) vs. MEILS(CT).To ensure efficiency and accuracy of calculation,
the parameters of this study were set at N = 1000, m = 2, and r = 0.15 multiplied by the standard
deviation of the time series of

{
RRI′(i)

}
and

{
CT′(j)

}
.

C. Computation of MCEI for Synchronized RRI and CT Signals

Cross-approximate entropy (XApEn) is a refined approximate entropy approach to complexity
analysis for the investigation of two sets of synchronized physiological signals [29]. To study the
physiological complexity of the acquired signals, XApEn for each time scale was computed using{

RRI′(τ)
}

and
{

CT′(τ)
}

time series after the coarse-graining process for Equation (2). The details
of the whole algorithm for obtaining the multiscale cross-approximate entropy index (MCEI) are as
follows [21–23]:
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Step 1. For a given m and two sets of m-vectors:

x(i) =
[
RRI′(τ)(i) RRI′(τ)(i + 1) . . . RRI′(τ)(i + m + 1)

]
, i = 1, N −m + 1

y(j) =
[
CT′(τ)(j) CT′(τ)(j + 1) . . . CT′(τ)(j + m + 1)

]
, j = 1, N −m + 1

(3)

Step 2. Define the distance between the vectors x(i) and y(j) as the maximum absolute difference
between the correspondingelements in

{
RRI′(i)

}
and

{
CT′(j)

}
as follows:

d[x(i), y(j)] = max
k=1,m

[
∣∣∣RRI′(τ)(i + k− 1)−CT′(τ)(j + k− 1)

∣∣∣] (4)

Step 3. With the given matrix x(i) which refers to
{

RRI′(i)
}

(where i = 1 to N − m + 1), find the
number of time in which d[x(i), y(i)] (where j = 1 to N − m + 1) are smaller than or equal to r and
the ratio of this number to the total number of m-vectors (N − m + 1). That is, let Nm

RRI′(τ)CT′(τ)
(i)

equal the number of y(j) satisfying the requirement d[x(i), y(j)] ≤r; then in (5) Cm
RRI′(τ)CT′(τ)

measures
the frequency of the m-point

{
CT′(j)

}
pattern being similar (within a tolerance of ±r) to the m-point{

RRI′(i)
}

pattern formed by x(i):

Cm
RRI′(τ)CT′(τ)(i) =

Nm
RRI′(τ)CT′(τ)

(i)

N −m + 1
(5)

Step4. Average the logarithm of (5) over i to obtain ∅m
RRI,CT(r) as follows:

∅m
RRI,CT(r) =

1
N −m + 1

N−m+1

∑
i=1

ln [Cm
RRI′(τ)CT′(τ)(i)] (6)

Step 5. Increase m by 1 and repeat Steps 1–4 to obtain Cm+1
RRI′(τ)CT′(τ)

(i) and ∅m+1
RRI,CT(r).

Step 6. Finally, for N-point data, the estimate is:

XApEn(RRI, CT) = ∅m
RRI,CT(r)−∅m+1

RRI,CT(r) (7)

where m represents the chosen vector dimension, r represents a tolerance range, and N is the data
length. From Pincus’s study, in order to effectively distinguish two data series by cross-approximate
entropy, it would be better to set N ≥ 1000, m ≥ 2, and r ≥ 0.1 [30]. To ensure efficiency and accuracy
of calculation, the parameters of this study were set at N = 1000, m = 3, and r = 0.6 multiplied by the
standard deviation of the time series of {RRI’(i)} and {CT’(j)}.

Repeat Steps 1–6 to calculate the MCEI in scales 1–6. The values of XApEn (RRI, CT) were
obtained from a range of scale factors between 1 and 6. The mean values of XApEn (RRI, CT) between
scale factors 1 and 3 were defined as small scales in (8). The mean values of XApEn (RRI, CT) between
scale factors 4 and 6 were defined as large scales in (9):

MCEIss =
1
3

3

∑
τ=1

XApEnτ(RRI, CT) (8)

MCEILS =
1
3

6

∑
τ=4

XApEnτ(RRI, CT) (9)

2.4. Statistical Analysis

The average values are expressed as mean ± SD. Normality of distribution was tested
with one sample Kolmogorov-Smirnov test and the homoscedasticity of variables was verified
using the R Language software. The significance of difference in anthropometric, hemodynamic,



Entropy 2018, 20, 497 7 of 15

and computational parameters (i.e., MEISS(RRI), MEILS(RRI), MEISS(CT), MEILS(CT), MCEISS,
and MCEILS) among different groups was determined using independent sample t-test with Bonferroni
correction. The correlation between parameters and risk factors for different groups was compared
using Pearson correlation test with Bonferroni correction. For significant parameters acquired through
univariate analysis, multivariate regression analysis was used for further verification of the statistical
significance. Statistical Package for the Social Science (SPSS, version 14.0 for Windows, SPSS Inc.,
Chicago, IL, USA) was used for all statistical analyses. Statistical significance was determined using p
value corrected as shown at the end of each figure and table in the Results section.

3. Results

3.1. MSE Analysis on Single Waveform Contour Cardiovascular System-Related Parameters (RRI and CT)

MSE analysis of CT series of the three groups of participants showed that, although the three
groups tended to separate from scale 2 onwards, there was no statistically significant difference among
the three groups (Figure 2a, Table 2). For sample entropy of RRI, although the three groups appeared
to be separated from scale 1 onwards, significant difference between Group 1 and Group 2 was noted
only at scale 2. By contrast, Group 3 had significantly lower sample entropy compared to that of Group
1 and Group 2 from scale 3 onwards (Figure 2b, Table 2).

Figure 2. (a) Sample entropy of crest time (CT) series of the three groups of testing subjects; (b) Sample
entropy of R-R interval (RRI) series of the three groups of testing subjects. Values expressed as
mean ± standard deviation (SD); Group 1: Healthy young subjects; Group 2: Non-diabetic upper
middle-aged subjects; Group 3: Diabetic upper middle-aged subjects; † p < 0.017 (p corrected): Group 3
vs. Group 1 and Group 2; †† p < 0.001: Group 3 vs. Group 1 and Group 2; * p < 0.05: Group 1 vs.
Group 2 and Group 3.
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Table 2. Multiscale entropy indices for crest time and R-R interval at different time scales in three
groups of testing subjects.

Parameters Group 1 (n = 22) Group 2 (n = 34) Group 3 (n = 34)

MEISS(CT) 0.65 ± 0.13 0.65 ± 0.12 0.65 ± 0.13
MEILS(CT) 0.49 ± 0.07 0.47 ± 0.06 0.44 ± 0.08
MEISS(RRI) 0.64 ± 0.08 0.58 ± 0.11 * 0.51 ± 0.17
MEILS(RRI) 0.54 ± 0.06 0.52 ± 0.07 0.44 ± 0.11 ††

MCEISS(RRI,CT) 0.70 ± 0.11 0.64 ± 0.10 0.63 ± 0.12
MCEILS(RRI,CT) 0.55 ± 0.06 0.51 ± 0.06 0.46 ± 0.08 †

Values are expressed as mean ± SD; Group 1: Healthy young subjects; Group 2: Non-diabetic upper middle-aged
subjects; Group 3: Diabetic upper middle-aged subjects. MEI: Multiscale entropy index; CT: Crest time; RRI: R-R
interval; MEISS(CT): Small-scale multiscale entropy index for crest time (i.e., average MEI for CT series of time
scale 1, 2, and 3); MEILS(CT): Large-scale multiscale entropy index for crest time (i.e., average MEI for CT series of
time scale 4, 5, and 6); MEISS(RRI): Small-scale multiscale entropy index for R-R interval (i.e., average MEI forRRI
series at time scale 1, 2, and 3); MEILS(RRI): Large-scale multiscale entropy index for R-R interval (i.e., average
MEI for RRI series at time scale 4, 5, and 6); MCEISS(RRI,CT): Small-scale multiscale cross-approximate entropy
index (i.e., average MCEI for synchronized RRI and CT series at time scale 1, 2, and 3); MCEILS(RRI,CT): Large-scale
multiscale cross-approximate entropy index (i.e., average MCEI for synchronized RRI and CT series at time scale 4,
5, and 6); * p < 0.017 (p corrected): Group 1 vs. Group 2; † p < 0.017: Group 2 vs. Group 3; †† p < 0.001: Group 2 vs.
Group 3.

3.2. MultiscaleCross-Approximate Entropy Analysis of Synchronized RRI and CT Time Series

MCAE analysis of synchronized RRI and CT series of the testing subjects using cross-approximate
entropy demonstrated a unanimous decrease in all groups from scale 1 to scale 4 (Figure 3). Significant
differentiation among the three groups was noted at scales 4 (p < 0.017). While Group 1 had the highest
cross-approximate entropy at scale 4, Group 3 had the lowest cross-approximate entropy at scale 4, 5,
and 6 (Figure 3, Table 2).

Figure 3. Multiscale cross-approximate entropy analysis of synchronized R-R interval (RRI) and crest
time (CT) time series showing changes in cross-approximate entropyof the three groups of testing
subjects with time scale 1 to 6. Group 1: Healthy young subjects; Group 2: Non-diabetic upper
middle-aged subjects; Group 3: Diabetic upper middle-aged subjects; * p < 0.017 (p corrected): Group 1
vs. Group 2; † p < 0.017: Group 2 vs. Group 3.

Comparison of multiscale entropy indices for crest time and R-R interval at different time scales
[i.e., MEI(CT), MEI(RRI), and MCEI(CT,RRI)] among the testing subjects showed no significant
difference among the three groups in MEI for CT (Table 2). On the other hand, small-scale MEI
for RRI [i.e., MEISS(RRI)] successfully differentiated Group 2 from Group 1 at time scale 2 (Figure 2a).
As a whole, MEISS(RRI) was significantly lower in Group 2 than that in Group 1 (Table 2). By contrast,
MEI for RRI of Group 3 was significantly lower than that in Group 2 at scale 3, 4, 5, and 6. Consistently,
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large-scale MEI for RRI [i.e., MEILS(RRI)] was significantly lower in Group 3 than that in Group 2
(p < 0.001). As for cross-approximate entropy index for synchronized RRI and CT time series
[i.e., MCEI(RRI,CT)], it is interesting to find that there were significant differences among the three
groups at scale 4. On the other hand, large-scale MCEI [i.e., MCEILS(RRI,CT)] was significantly lower
in Group 3 than that in Groups 1 and 2 (Table 2).

3.3. Correlations of Different Multiscale Entropy Indices with Demographic, Anthropometric, Hemodynamic,
and Serum Biochemical Parameters in the Testing Subjects

To study theassociations of different multiscale entropy indices [i.e., MEISS(CT), MEILS(CT),
MEISS(RRI), MEILS(RRI), MCEILS(RRI,CT), MCEISS(RRI,CT)]with demographic, anthropometric,
hemodynamic, and serum biochemical parameters in non-diabetic subjects, healthy young individuals
(Group 1) and upper middle-aged non-diabetic subjects (Group 2) were investigated (Table 3).
Total cholesterol levelwas found to be negatively associated with MEILS(RRI) (p = 0.003).

Table 3. Correlations of different multiscale entropy indices with demographic, anthropometric,
hemodynamic, and serum biochemical parameters in young healthy individuals (Group 1) and
non-diabetic upper middle-aged subjects (Group 2) (n = 56).

MEISS(CT) MEILS(CT) MEISS(RRI) MEILS(RRI) MCEISS MCEILS

p r p r p r p r p r p r

Age (years) 0.736 0.046 0.649 −0.062 0.102 −0.221 0.385 −0.118 0.408 −0.113 0.125 −0.207
BH (cm) 0.254 −0.155 0.265 −0.151 0.819 −0.031 0.227 −0.164 0.537 0.084 0.491 −0.094
BW (kg) 0.081 −0.236 0.996 0.001 0.152 −0.194 0.327 −0.134 0.921 −0.014 0.771 −0.040
WC (cm) 0.064 −0.250 0.974 −0.005 0.180 −0.182 0.301 −0.141 0.584 −0.075 0.506 −0.091
BMI (kg/m2) 0.161 −0.190 0.362 0.124 0.074 −0.241 0.705 −0.052 0.449 −0.103 0.874 0.022
SBP (mmHg) 0.209 0.171 0.259 0.153 0.398 0.115 0.332 0.132 0.113 0.214 0.107 0.218
DBP (mmHg) 0.742 0.045 0.183 0.181 0.740 0.045 0.877 −0.021 0.533 0.085 0.525 0.087
PP (mmHg) 0.115 0.213 0.584 0.075 0.334 0.131 0.117 0.212 0.070 0.244 0.065 0.248
HDL (mg/dL) 0.802 0.034 0.254 −0.153 0.819 −0.031 0.915 −0.015 0.418 −0.110 0.254 −0.155
LDL (mg/dL) 0.515 0.089 0.590 −0.074 0.051 −0.263 0.239 −0.160 0.927 −0.012 0.259 −0.153
Cholesterol (mg/dL) 0.403 −0.114 0.740 −0.045 0.067 −0.247 0.003* −0.394 0.058 −0.255 0.020 −0.311
Triglyceride (mg/dL) 0.958 −0.007 0.857 0.025 0.681 −0.056 0.365 −0.123 0.910 0.016 0.451 −0.103
HbA1c (%) 0.332 0.132 0.947 0.009 0.226 −0.164 0.911 0.015 0.958 0.007 0.641 0.064
FBS (mg/dL) 0.626 0.066 0.606 0.070 0.683 0.056 0.315 −0.137 0.759 −0.042 0.451 −0.103

Values are expressed as mean ± SD; Group 1: Healthy young subjects; Group 2: Non-diabetic upper middle-aged
subjects. MEI: Multiscale entropy index; CT: Crest time; RRI: R-R interval; MEIτ=n(CT): Multiscale entropy index for
crest time series at time scale n; MEISS(CT): Small-scale multiscale entropy index for crest time (i.e., average MEI
for CT series of time scale 1, 2, and 3); MEILS(CT): Large-scale multiscale entropy index for crest time (i.e., average
MEI for CT series of time scale 4, 5, and 6); MEIτ=n(RRI): Multiscale entropy index for R-R interval series at time
scale n; MEISS(RRI): Small-scale multiscale entropy index for R-R interval (i.e., average MEI forRRI series at time
scale 1, 2, and 3); MEILS(RRI): Large-scale multiscale entropy index for R-R interval (i.e., average MEI for RRI series
at time scale 4, 5, and 6); MCEIτ=n(RRI,CT): Multiscale cross-approximate entropy index for synchronized R-R
interval and crest time series at time scale n;MCEISS(RRI,CT): Small-scale multiscale cross-approximate entropy
index (i.e., average MCEI for synchronized RRI and CT series at time scale 1, 2, and 3); MCEILS(RRI,CT): Large-scale
multiscale cross-approximate entropy index (i.e., average MCEI for synchronized RRI and CT series at time scale 4,
5, and 6); * p < 0.017 (p corrected).

To investigate the correlations of different multiscale entropy indices with demographic,
anthropometric, hemodynamic, and serum biochemical parameters inupper middle-aged subjects,
upper middle-aged non-diabetic (Group 2) and diabetic (Group 3) subjects were studied together
(Table 4). Body weight was found to be negatively associated with MCEILS(RRI,CT) (p < 0.017).
Besides, waist circumference was negatively related to MEILS(CT), MEILS(RRI), and MCEILS(RRI,CT)
(all p < 0.017). By contrast, pulse pressure was positively correlated with MCEISS(RRI,CT) (p < 0.017).
On the other hand, MEILS(RRI) was negatively associated with glycated hemoglobin (HbA1c) level
and fasting blood sugar concentration (both p < 0.017) (Table 4).
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Table 4. Correlations of different multiscale entropy indices with demographic, anthropometric,
hemodynamic, and serum biochemical parameters in upper middle-aged non-diabetic subjects
(Group 2) and diabetic patients (Group 3) (n = 68).

MEISS(CT) MEILS(CT) MEISS(RRI) MEILS(RRI) MCEISS MCEILS

p r p r p r p r p r p r

Age (years) 0.409 0.102 0.778 −0.035 0.395 −0.105 0.029 −0.264 0.725 0.043 0.272 −0.135
BH (cm) 0.079 −0.214 0.248 −0.142 0.656 −0.055 0.793 −0.032 0.070 −0.221 0.222 −0.150
BW (kg) 0.044 −0.245 0.040 −0.250 0.086 −0.210 0.057 −0.232 0.032 −0.260 0.017 * −0.288
WC (cm) 0.031 −0.262 0.009 * −0.314 0.063 −0.227 0.014 * −0.298 0.042 −0.248 0.004 * −0.343
BMI (kg/m2) 0.190 −0.161 0.105 −0.198 0.067 −0.223 0.043 −0.246 0.139 −0.181 0.047 −0.242
SBP (mmHg) 0.136 0.183 0.580 0.068 0.729 0.043 0.416 −0.100 0.165 0.170 0.875 0.019
DBP (mmHg) 0.757 −0.038 0.924 0.012 0.213 −0.153 0.116 −0.192 0.540 −0.076 0.697 −0.048
PP (mmHg) 0.022 0.276 0.498 0.084 0.156 0.174 0.936 0.010 0.017 * 0.288 0.611 0.063
HDL (mg/dL) 0.923 0.012 0.267 0.136 0.400 0.104 0.067 0.224 0.636 0.058 0.077 0.216
LDL (mg/dL) 0.555 0.073 0.833 0.026 0.187 −0.162 0.829 −0.027 0.869 0.020 0.482 0.087
Cholesterol (mg/dL) 0.464 −0.090 0.905 0.015 0.179 −0.165 0.087 −0.209 0.263 −0.138 0.259 −0.142
Triglyceride (mg/dL) 0.671 0.052 0.434 0.096 0.762 0.037 0.760 0.038 0.531 0.077 0.383 0.107
HbA1c (%) 0.808 0.030 0.102 −0.200 0.225 −0.149 0.015 * -0.294 0.875 0.020 0.077 −0.216
FBS (mg/dL) 0.778 0.035 0.092 −0.206 0.148 −0.177 0.005 * -0.335 0.955 0.007 0.043 −0.246

Values are expressed as mean ± SD; Group 2: Non-diabetic upper middle-aged subjects; Group 3: Diabetic upper
middle-aged subjects. MEI: Multiscale entropy index; CT: Crest time; RRI: R-R interval; MEIτ=n(CT): Multiscale
entropy index for crest time series at time scale n; MEISS(CT): Small-scale multiscale entropy index for crest time
(i.e., average MEI for CT series of time scale 1, 2, and 3); MEILS(CT): Large-scale multiscale entropy index for
crest time (i.e., average MEI for CT series of time scale 4, 5, and 6); MEIτ=n(RRI): Multiscale entropy index for
R-R interval series at time scale n; MEISS(RRI): Small-scale multiscale entropy index for R-R interval (i.e., average
MEI forRRI series at time scale 1, 2, and 3); MEILS(RRI): Large-scale multiscale entropy index for R-R interval
(i.e., average MEI for RRI series at time scale 4, 5, and 6); MCEIτ=n(RRI,CT): Multiscale cross-approximate entropy
index for synchronized R-R interval and crest time series at time scale n;MCEISS(RRI,CT): Small-scale multiscale
cross-approximate entropy index (i.e., average MCEI for synchronized RRI and CT series at time scale 1, 2, and 3);
MCEILS(RRI,CT): Large-scale multiscale cross-approximate entropy index (i.e., average MCEI for synchronized RRI
and CT series at time scale 4, 5, and 6); * p < 0.017 (p corrected).

When both age and diabetes were taken into account by taking all three groups of testing subjects
into consideration (Table 5), MEISS(RRI), MEILS(RRI), and MCEILS(RRI,CT) were found to be negatively
associated with age in a highly significant way (all p < 0.005). Moreover, negative correlations were
also noted between body weight and MEISS(CT) (p < 0.017). While waist circumference was negatively
correlated with all multiscale entropy parameters except MCEISS(RRI,CT), body-mass index was
negatively associated with MEISS(RRI), MEILS(RRI), and MCEILS(RRI,CT) (all p < 0.017). On the other
hand, glycated hemoglobin levelwas negatively associated with MEILS(CT), MEISS(RRI),MEILS(RRI),
andMCEILS(RRI,CT), while fasting blood sugar levels were negatively associated with MEISS(RRI),
MEILS(RRI),and MCEILS(RRI,CT) (all p < 0.017).Both sugar control parameters were highly significantly
correlated withMEILS(RRI) and MCEILS(RRI,CT) in a negative fashion (all p < 0.005).



Entropy 2018, 20, 497 11 of 15

Table 5. Correlations of different multiscale entropy indices with demographic, anthropometric,
hemodynamic, and serum biochemical parameters in healthy young adults (Group 1), upper
middle-aged non-diabetic subjects (Group 2) and diabetic patients (Group 3) (n = 90).

MEISS(CT) MEILS(CT) MEISS(RRI) MEILS(RRI) MCEISS MCEILS

p r p r p r p r p r r

Age (years) 0.779 0.030 0.097 −0.176 0.003 * −0.310 0.001 * −0.332 0.135 −0.159 −0.334
BH (cm) 0.037 −0.221 0.272 −0.117 0.838 0.022 0.743 0.035 0.696 −0.042 −0.013
BW (kg) 0.006* −0.286 0.053 −0.204 0.040 −0.217 0.046 −0.211 0.089 −0.180 −0.237
WC (cm) 0.008 * −0.280 0.012 * −0.263 0.007 * −0.284 0.004 * −0.300 0.038 −0.219 −0.327
BMI (kg/m2) 0.065 −0.195 0.137 −0.158 0.008 * −0.276 0.010 * −0.269 0.073 −0.190 −0.261
SBP (mmHg) 0.343 0.101 0.894 0.014 0.744 −0.035 0.309 −0.108 0.368 0.096 −0.016
DBP (mmHg) 0.728 −0.037 0.907 0.013 0.143 −0.156 0.078 −0.187 0.538 −0.066 −0.073
PP (mmHg) 0.119 0.165 0.927 0.010 0.504 0.071 0.966 −0.005 0.089 0.180 0.034
HDL (mg/dL) 0.653 0.048 0.247 0.123 0.340 0.102 0.044 0.213 0.963 0.005 0.172
LDL (mg/dL) 0.555 0.063 0.449 −0.081 0.043 −0.213 0.229 −0.128 0.895 −0.014 −0.074
Cholesterol (mg/dL) 0.495 −0.073 0.897 −0.014 0.316 −0.107 0.114 −0.168 0.241 −0.125 −0.139
Triglyceride (mg/dL) 0.815 0.025 0.983 −0.002 0.467 −0.078 0.333 −0.103 0.885 0.015 −0.053
HbA1c (%) 0.842 0.021 0.013 * −0.261 0.013 * −0.261 0.001 ** −0.354 0.430 −0.084 −0.306
FBS (mg/dL) 0.846 0.021 0.023 −0.239 0.012 * −0.263 <0.001 ** −0.384 0.391 −0.091 −0.322

Values are expressed as mean ± SD; Group 1: Healthy young subjects; Group 2: Non-diabetic upper middle-aged
subjects; Group 3: Diabetic upper middle-aged subjects. MEI: Multiscale entropy index; CT: Crest time; RRI:
R-R interval; MEIτ=n(CT): Multiscale entropy index for crest time series at time scale n; MEISS(CT): Small-scale
multiscale entropy index for crest time (i.e., average MEI for CT series of time scale 1, 2, and 3); MEILS(CT):
Large-scale multiscale entropy index for crest time (i.e., average MEI for CT series of time scale 4, 5, and 6);
MEIτ=n(RRI): Multiscale entropy index for R-R interval series at time scale n; MEISS(RRI): Small-scale multiscale
entropy index for R-R interval (i.e., average MEI forRRI series at time scale 1, 2, and 3); MEILS(RRI): Large-scale
multiscale entropy index for R-R interval (i.e., average MEI for RRI series at time scale 4, 5, and 6); MCEIτ=n(RRI,CT):
Multiscale cross-approximate entropy index for synchronized R-R interval and crest time series at time scale
n;MCEISS(RRI,CT): Small-scale multiscale cross-approximate entropy index (i.e., average MCEI for synchronized
RRI and CT series at time scale 1, 2, and 3); MCEILS(RRI,CT): Large-scale multiscale cross-approximate entropy
index (i.e., average MCEI for synchronized RRI and CT series at time scale 4, 5, and 6); * p < 0.017 (p corrected),
** p < 0.001.

3.4. Multivariate Analysis for MEILS(CT), MEILS(RRI), and MCEILS(RRI,CT)

The three multiscale entropy indices found to be significantly associated with the demographic,
anthropometric, hemodynamic, and serum biochemical parameters of the testing subjects using
Pearson correlation test (Table 5) were MEILS(CT), MEILS(RRI), and MCEILS(RRI,CT) for which
multivariate analysis was performed. The results showed significant associations of MEILS(RRI),
and MCEILS(RRI,CT) with age and glycated hemoglobin level in all subjects as a whole without
focusing on the effects of age and diabetes (all p < 0.05) (Table 6).

Table 6. Multivariate linear regression analysis for MEILS(CT), MEILS(RRI), and MCEILS(RRI,CT) for
all subjects (n = 90).

MEILS(CT) MEILS(RRI) MCEILS(RRI,CT)

B-Coef SE p B-Coef SE p B-Coef SE p

Variable

Age (year) 0.000 0.001 0.569 −0.001 0.001 0.040 −0.001 0.001 0.022
HbA1c(%) −0.012 0.006 0.041 −0.018 0.007 0.012 −0.012 0.006 0.041
B0 0.563 0.039 <0.001 0.686 0.046 <0.001 0.644 0.036 <0.001

B-Coef:Regression coefficient; SE:Standardized regression coefficient; HbA1c: Glycated hemoglobin.

4. Discussion

Taking into consideration the clinical implications of non-invasive indices including
digital volume pulse (DVP) from photoplethysmography [6,7] and R-R interval (RRI) from
electrocardiogram [11], the present study tested the value of a multiscale entropy index utilizing
two synchronized sets of non-invasively acquired physiological data [i.e., MCEI(RRI,CT)] in discerning
the adverse impacts of systemic conditions (i.e., age and diabetes) on vascular health in a clinical setting.
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Our results demonstrated a unique property of the novel index in identifying diabetes-associated
changes in vascular condition in human subjects.

In 2002, Peng et al. first described the application of multiscale entropy in the analysis of R-R
interval from electrocardiogram to differentiate healthy individuals from those with congestive heart
failure and atrial fibrillation who were found to have significantly reduced signal complexity [15].
To evaluate the impact of age and a systemic disease (i.e., diabetes) on vascular health, the current study
attempted to adopt different multiscale entropy indices to identify the one that could best reflect the
influences of such systemic conditions. Previous studies have demonstrated that small-scale multiscale
entropy represents autonomic nervous activity, whereas large-scale multiscale entropy reflects vascular
regulatory function [28,31]. In the present study, MEISS(RRI) identified age-related vascular changes
by significantly differentiating between young (Group 1) and healthy upper middle-aged (Group 2)
subjects (p = 0.015) (Table 2). Since small scales (i.e., scale 1 to 3) reflects autonomic nervous control
of the cardiovascular system in the present setting, the finding of reduced MEISS(RRI) in Group 2
suggests significantly elevated resting sympathetic tone in Group 2 compared to that in Group 1.
The results is supported by a previous study showing an increase in resting sympathetic outflow with
age [32]. In addition, our results demonstrated consistent and significant reductions of MEILS(RRI) in
upper middle-aged individuals with diabetes (Group 3) compared to those without (Group 2) (Table 2),
highlighting its ability to identify diabetes-associated vascular changes. The finding is consistent with
the fact that diabetes impairs vascular structural integrity [33]. On the other hand, MEILS(RRI) failed
to detect age-related vascular changes (i.e., between Group 1 and Group 2), underscoring its limitation
in this aspect.

The physiological significance of the application of multiscale cross-approximate entropy (MCAE)
analysis in this study is the identification of subtle differences in age- and diabetes-associated vascular
changes by comparing the degree of nonlinear coupling between two related synchronized time
series. While RRI stands for the electrical component of cardiovascular activities, CT represents the
mechanical component. It has been documented that, although age and diabetes are both systemic
conditions adversely affect vascular integrity, the mechanisms are different. While aging is known
to cause arterial medial degeneration involving increase in collagen and calcium deposits as well
as elastin lamellae fragmentation resulting from upregulation of proteolytic enzymes and possible
repetitive cyclic stress on the arterial wall over a life span [34,35], diabetes mellitus has been shown
to be associated with the generation of advanced glycation end-products (AGEs) that give raise to
collagen crosslinking in the arterial medial layer and contributes to arterial stiffness [33].

Analysis of the correlations of different multiscale entropy indices with demographic,
anthropometric, hemodynamic, and serum biochemical parameters in non-diabetic subjects showed a
significant negative association of MEILS(RRI) with serum cholesterol level (Table 3). As large-scale
entropy represents vascular regulatory function, the finding is consistent with that of a previous
study demonstrating that the cellular and molecular mechanisms underlying hypercholesterolemia
could contribute to an imbalance between phosphorylation and dephosphorylation of lipid
and protein kinase, thereby modulating vascular endothelial L-arginine/nitric oxide synthetase
(eNOS) and produce vascular endothelium dysfunction [36]. The significant negative correlations
ofbody weightwith MCEILS(RRI,CT) as well as wrist circumference with MEILS(CT), MEILS(RRI),
and MCEILS(RRI,CT) in upper middle-aged subjects with and without diabetes (Group 3 and Group 2)
(Table 4) imply an association of increased anthropometric parameters with impaired vascular function
in the aged subjects. The significant negative associations of MEILS(RRI) with fasting blood sugar
andglycated hemoglobin levels (Table 4) further highlight the adverse impact of diabetes on vascular
endothelial function in both acute [37] and chronic [38] hyperglycemia, respectively.

When all subjects were taken into account (Table 5), MEISS(RRI), MEILS(RRI), MCEILS were all
negatively associated with age in a highly significant manner (p < 0.005). The results underscore
the sensitivity of MEI(RRI) in discerning age-related changes in both autonomic nervous control
and function of the cardiovascular system, while MCEI seems sensitive to age-related alterations in
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cardiovascular function. On the other hand, negative associations of different multiscale entropy
indices with anthropometric parameters (i.e., waist circumference, and body-mass index) in general
reflect the sensitivity of these indices in identifying anthropometric anomalies contributing to
adverse changes in cardiovascular function. In addition, the significant negative associations of
MEISS(RRI), MEILS(RRI), and MCEILS(RRI,CT) with the parameters of acute (i.e., fasting blood
sugar level) and chronic (i.e., glycated hemoglobin concentration) blood sugar control indicate the
sensitivity of MEI(RRI) in reflecting blood sugar-related changes in both autonomic nervous control
and function of the cardiovascular system, whereas MEI(CT) and MCEI appear to be indicators of
hyperglycemia-related vascular changes. To further elucidate the significance of these parameters,
multivariate linear regression analysis demonstrated significant associations of MEILS(RRI), and
MCEILS(RRI,CT) with age and glycated hemoglobin level (all p < 0.05) (Table 6).

Like MEILS(RRI), the successful differentiation between upper-middle aged subjects with
(Group 3) and without (Group 2) diabetes using MCEILS(RRI,CT) (Table 2) highlights the ability of this
index to discern diabetes-related changes in vascular regulatory function. In addition, MCEI(RRI,CT)
was the only multiscale entropy index that successfully differentiated among the three groups at scale
4 in the present study (Figure 3). This index was also found to be negatively related to anthropometric
parameters (i.e., wrist circumference, body-mass index) and fasting blood sugar (Table 5), underlining
its association with metabolic syndrome.

There are several limitations of the present study. First, since the harvesting of PPG signals from
the finger is prone to interference from body motion such as respiratory movement, detrending with
EMD was performed before standardization of the two times series. Second, there were eight patients
in Group 3 with established diagnosis of hypertension under medical control. Since those patients
have different combinations of anti-hypertensives which also changed during different periods of
treatment (e.g., from calcium channel blocker to angiotensin-converting-enzyme inhibitor), it was
difficult to determine who should be excluded from the study. Therefore, the potential influence of
anti-hypertensive agents on their spontaneous cardiac activity cannot be excluded.Third, although
it has been reported that cross-sample entropy could avoid some potential problems related to
XApEn [39], cross-sample entropy analysis was not performed in the present study for comparison.

5. Conclusions

The present study demonstrated the successful application of multiscale cross-approximate
entropy (MCAE) analysis in the study of two synchronized time series of different natures to yield
additional information on complexity related to diabetes-associated vascular changes. Our findings
showed that MCEILS could serve as a novel non-invasive biomarker for discerning diabetes-related
changes in the cardiovascular system, which is of clinical importance in preventive medicine.
The results of the current study successfully identified the risk factors for cardiovascular diseases by
comparing the nonlinear coupling behavior of two cardiovascular system-related synchronized time
series of different natures. It is anticipated that the risk factors of diseases of other organ systems could
be identified with this approach through the analysis ofnonlinear coupling of different synchronized
physiological signals pertinent to different organ systems.
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