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Distinguishing mirror from glass is a challenging visual
inference, because both materials derive their
appearance from their surroundings, yet we rarely
experience difficulties in telling them apart. Very few
studies have investigated how the visual system
distinguishes reflections from refractions and to date,
there is no image-computable model that emulates
human judgments. Here we sought to develop a deep
neural network that reproduces the patterns of visual
judgments human observers make. To do this, we
trained thousands of convolutional neural networks on
more than 750,000 simulated mirror and glass objects,
and compared their performance with human
judgments, as well as alternative classifiers based on
“hand-engineered” image features. For randomly
chosen images, all classifiers and humans performed
with high accuracy, and therefore correlated highly with
one another. However, to assess how similar models are
to humans, it is not sufficient to compare accuracy or
correlation on random images. A good model should
also predict the characteristic errors that humans make.
We, therefore, painstakingly assembled a diagnostic
image set for which humans make systematic errors,
allowing us to isolate signatures of human-like
performance. A large-scale, systematic search through
feedforward neural architectures revealed that relatively
shallow (three-layer) networks predicted human
judgments better than any other models we tested. This
is the first image-computable model that emulates
human errors and succeeds in distinguishing mirror from
glass, and hints that mid-level visual processing might be
particularly important for the task.

Introduction

Different materials, such as steel, silk, meat, or
glass, have distinctive visual appearances, and our
ability to recognize such materials by sight is crucial
for many tasks, from selecting food to effective tool
use. Yet, material perception is challenging. The retinal
image of a given object is the result of complex
interactions between the object’s optical properties,
three-dimensional shape, and the incoming light
(Adelson, 2001; Fleming, 2014; Komatsu & Goda,
2018). Thus, a given material can take on an enormous
variety of different appearances, depending on the
lighting, object shape, and viewpoint. At the same time,
similar objects with different material properties can
create quite similar images in terms of the raw spatial
patterns of color and intensity (Fleming, Dror, &
Adelson, 2003). To succeed at material perception, the
visual system must somehow tease apart similar images
belonging to different materials, while at the same time
grouping together very diverse images belonging to the
same material class (Rajalingham et al., 2018; Storrs,
Anderson, & Fleming, 2021; van Assen & Fleming,
2016). This is a fundamental aspect of biological visual
processing, which remains poorly understood.

A particularly challenging case is to distinguish
polished mirror-like specular materials (“mirror”) from
colorless transparent materials (“glass”) (Fleming,
Jäkel, & Maloney, 2011; Kim & Marlow, 2016; Schlüter
& Faul, 2014, 2016; Tamura, Higashi, & Nakauchi,
2018; Tamura & Nakauchi, 2018). Both kinds of
materials derive their appearance entirely from their
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Figure 1. Distinguishing mirror from glass. (A) Example objects made of mirror (left) and glass (right) materials. The three-dimensional
shape, illumination, and camera position are identical but the object’s optical properties are different. (B) Illustration of different light
paths through mirror and glass objects. Mirror reflects from the surface; glass refracts through the body of the object.

surroundings, but through different light transport
processes (Figure 1). Mirrors create a distorted
reflection of the surrounding world, whereas, for
glass materials, incident light also enters the material,
refracts, and may reflect internally multiple times
before re-emerging. Yet, in both cases, changing the
object’s shape or surrounding world radically alters the
image. As a result, the visual cues we use to distinguish
between mirror and glass must generalize well across
an enormous variety of images. At the same time,
to distinguish the two kinds of material, the visual
system must presumably use quite sophisticated image
measurements that latch onto subtle differences in the
image resulting from the way light interacts with them.
Thus, investigating how the brain distinguishes mirror
from glass can tap into the core processes underlying
visual surface appearance more generally.

We reasoned that, to work out how the visual system
distinguishes mirror from glass, it is useful to take a
big data approach, in which we embrace the enormous
diversity of images of mirror and glass materials
that confront the visual system. In particular, using
computer graphics we sought to create a data set of
hundreds of thousands of images, to encourage our
human observers, and our model to use general purpose
cues rather than image differences that apply only to
a restricted, parametrically varying stimulus set. We
used highly accurate state-of-the-art physics-based
light-transport simulations to generate the images. To
develop an image-computable model that distinguishes
mirror from glass, we turned to deep learning methods.

In recent years, artificial neural networks (Cun et
al., 1990; Lecun, Bottou, Bengio, & Haffner, 1998)
have demonstrated significant potential as models

of biological vision (e.g., Cichy, Khosla, Pantazis,
Torralba, & Oliva, 2016; Guclu & van Gerven,
2015; Jozwik, Kriegeskorte, Storrs, & Mur, 2017;
Khaligh-Razavi & Kriegeskorte, 2014; Kheradpisheh,
Ghodrati, Ganjtabesh, & Masquelier, 2016b; Yamins et
al., 2014; see also reviews from Kietzmann, McClure,
& Kriegeskorte, 2019; Kriegeskorte & Douglas, 2018;
LeCun, Bengio, & Hinton, 2015; Majaj & Pelli, 2018;
and Yamins & DiCarlo, 2016). We set out to leverage
these advances to approximate human visual processes
underlying the challenging material perception task of
distinguish mirror from glass. Comparisons between
human vision and computational models typically
use randomly selected images (Ghodrati, Farzmahdi,
Rajaei, Ebrahimpour, & Khaligh-Razavi, 2014;
Kheradpisheh, Ghodrati, Ganjtabesh, & Masquelier,
2016a, 2016b; Yamins et al., 2014), for which both
humans and models achieve high performance. In
contrast, our goal was to develop a model that could
not only predict the successes of human judgments, but
also systematic errors (Geirhos, Meding, & Wichmann,
2020; Golan, Raju, & Kriegeskorte, 2020; Macke &
Wichmann, 2010), which are presumably the hallmarks
of the processes unique to human visual computations.
To do this, we created a diagnostic image set that
yielded systematic and consistent visual errors as
well as correct percepts. We show that, although
conventional neural networks and hand-engineered
models fail to predict the pattern of human judgments,
neural networks with similar architectures exist that
perform much more like humans. As an initial baseline
measure of overall performance, we started by testing
humans (Human experiment 1) and a variety of
computational models on random our computer
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Figure 2. Random renderings by human observers. (A) Example renderings from the data set. Top row: glass; bottom row: mirror. Note
that these example images were rated as glass and mirror, respectively, by all observers unanimously with a five-point scale (see
Human experiment 1). (B) Results of rating experiment with randomly selected images. The horizontal axis indicates rating score from
glass to mirror normalized between zero and one. The vertical axis indicates frequency of ratings in each bin across 10 observers. We
treated values of less than 0.5 as glass and of 0.5 or greater as mirror. This criterion was also used for the classifiers (mentioned
below).

graphics data set (convolutional neural network [CNN]
experiment 1). We then performed a sequence of lab
and crowd-sourced experiments to identify a set of
images in which human performance was systematically
decoupled from ground truth (Human experiment 2).
We then used this data set to select between thousands
of neural networks, trained to distinguish mirror and
glass, to identify those that behaved most similarly to
humans (CNN experiment 2).

Data set generation

Images were rendered usingMitsuba renderer (Jakob,
2010). We selected 1,583 objects from Evermotion
(https://evermotion.org) and 253 high dynamic range
light fields for the illumination from the Southampton-
York Natural Scenes data set (Adams et al., 2016),
the illumination data set (Debevec, 1998; Debevec et
al., 2000), and other sources (see the Supplementary
Information for complete list). To simulate different
optical appearances for mirror and glass, we used
Mitsuba’s different bidirectional scattering distribution
function models to capture the different ways that
light interacts with surfaces and media. For the
mirror objects, the bidirectional scattering distribution
function was a conductor model with 100% specular
reflectance. For the glass material, the bidirectional
scattering distribution function was dielectric, with an
internal refractive index of 1.5. Objects were uniformly
scaled to fit within the unit sphere, and placed at

the origin. The camera was randomly located at a
position between 30° and 60° of elevation angle and
any azimuth, with a constant distance of 2 units in
Mitsuba. Mirror and glass images were generated
in pairs using the same object and illumination but
with different camera locations to avoid the classifiers
simply learning a pixel difference between mirror and
glass images. No explicit information was provided to
humans or the models about which images belonged
to the same pair. The sampling count was 512 per
pixel with the Sobol Quasi-Monte Carlo sampler. The
reconstruction filter was set as Gaussian. The renderer
generated the final image, at 256 × 256 pixel resolution
with gamma correction (Reinhard, Stark, Shirley, &
Ferwerda, 2002). Then, they were resized to 64 ×
64 to enable efficient training and test for the neural
networks (see Figure 2A for examples). We screened all
images and excluded a small number of images with
rendering artifacts. The final data set contains 753,696
images, and is available for download from Zenodo
[10.5281/zenodo.3229000].

Human experiment 1: Random
renderings by human observers

Methods

Observers
Ten observers were students of Justus Liebig

University Giessen with normal or corrected-to-normal

https://evermotion.org
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vision (7 women; age range, 19–38 years; average
25.1 ± 5.2 years) in this experiment. All experimental
protocols were approved by the Ethics board at Justus
Liebig University Giessen and were conducted in
accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).
Informed consent was obtained from all observers.

Apparatus
Stimuli were displayed on a 27-inch liquid crystal

display (Eizo CG277) using factory default settings
with a resolution of 1920 × 1200 pixels and a 60-Hz
refresh rate. Stimulus presentation was controlled by
MATLAB using Psychtoolbox 3.0 (Brainard, 1997;
Kleiner et al., 2007; Pelli, 1997).

Stimuli
We randomly selected 1,000 images from the 64 ×

64 pixel resolution data set (500 mirror and 500 glass
images) as stimuli in Experiment 1. These were selected
independently for the two classes (i.e., images were not
paired with the same shape and lighting in both sets).

Procedure and task
Stimuli were presented in random order to each

observer (i.e., each image was rated by all 10 observers).
The images subtended a 2.2° visual angle. They were
presented on a uniform gray background with a fixation
cross in the center of the screen. The observers were
asked to rate each stimulus on a 5-point scaling, where
1 indicated that the object looked compellingly like
glass and 5 indicated that it looked compellingly like
a polished metal, and intervening values indicated
different degrees of ambiguous appearance (glass to
mirror). We used the 5-point scale rating because 1)
this provides more precise estimates on a per trial
basis than a binary task, and 2) we compare more
directly the rating score of the humans and models after
normalization (Dropped). Responses were given by
pressing the corresponding key on the keyboard. The
observers could respond at any time, but the stimulus
disappeared after 1 second. The experiment consisted
of one session, approximately 30 minutes long, per
participant including instructions. We did not explicitly
include any breaks during the session, but they could
take breaks anytime.

Results and discussion

We first computed a frequency of the ratings averaged
across all observers for each of the stimuli. Figure 2B
shows a clear bimodal distribution of ratings, with
mean ratings of 0.66 for mirror images and 0.19

for glass, and an average accuracy of 77.9 ± 3.3%
standard deviation. This performance is comparable to
the accuracy obtained with higher resolution stimuli
(256 × 256) in a previous study (Tamura et al., 2018).
Experiment 1, therefore, confirms that observers are
capable of distinguishing mirror from glass for our data
set. We next compared the human judgments with a
variety of image-computable models to test whether
they could also distinguish mirror from glass in our
diverse computer graphics image set.

CNN experiment 1: Random
renderings by classifiers

Before investigating deep learning models in depth,
we measured the extent to which relatively simple image
measurements could predict perceptual mirror/glass
judgments. The motivation for this was to test a number
of controversial hypotheses about the kinds of features
that may underlie material perception judgments
(Anderson & Kim, 2009; Kim, Marlow, & Anderson,
2011; Motoyoshi, Nishida, Sharan, & Adelson, 2007;
Sharan, Li, Motoyoshi, Nishida, & Adelson, 2008).
Despite the similarities of mirror and glass, it might
be possible to distinguish them reliably just using the
raw marginal distributions of color values across pixels
(e.g., if mirrors are on average higher contrast, or more
strongly saturated than glass objects). Although there
are strong grounds for doubting that humans only rely
on such simple pixel histogram features (Anderson &
Kim, 2009; Beck & Prazdny, 1981; Kim & Anderson,
2010; Todd, Norman, & Mingolla, 2004), this provides
a useful baseline against which to compare less trivial
models. Other work suggests that many aspects of
perception may rely on mid-level texture-like image
representations that capture joint image features across
colors, scales, and orientations (Balas, Nakano, &
Rosenholtz, 2009; Freeman & Simoncelli, 2011; Harvey
& Smithson, 2021; Hiramatsu, Goda, & Komatsu,
2011; Rosenholtz, 2011). We, therefore, sought to test
the extent to which such texture-like representations
could predict human judgments of mirror versus glass.

Methods

“Hand-engineered” and CNN classifiers
We developed three different classifiers (see

Figure S1A for details): Color-Hist, Port-Sim, and a
CNN with manually selected hyperparameters. All of
the classifiers were presented with the entire image,
including the background (i.e., the object of interest was
not segmented from the background). The Color-Hist
classifier used eight features: mean, variance, skewness,
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Figure 3. Results of randomly selected renderings. (A) Accuracy of human and model classifier responses for the test stimuli in
experiment (mean of 10 repetitions in each classifier or 10 observers). Error bars represent standard error of the mean (error bar of
Color-Hist is too small to see at this scale). Gray area indicates mean ± 2 SD of all human observers. (B) Correlation coefficient
between human and model classifiers for the test stimuli. Human-to-human correlation was defined as the average of 10 correlations
between each observer and the mean of the remaining observers.

and kurtosis of intensity and color saturation from
a 64 × 64 RGB image. The features of Color-Hist
were z-scored across all images. To get the features of
Port-Sim, we first used the texture analysis algorithm
of Portilla and Simoncelli (Portilla & Simoncelli, 2000)
to extract 3,381 higher-order image features. These
were z-scored and the number of dimensions decreased
to 1,052 by principal component analysis (cumulative
explained variance of complete image set of >99%).
For both the Color-Hist and the Port-Sim classifiers,
a logistic regression was trained to distinguish mirror
from glass based on the ground truth labels.

The CNN was defined as a three-layer convolutional
neural network with 64 × 64 RGB image input and
the binary (mirror vs. glass) classification output. The
network architecture and training hyperparameters are
shown in Figure S1B.

All classifiers were trained and tested with two-fold
cross-validation, which was repeated 10 times with
different randomly selected training and test sets. Each
instance of the network was trained from a different
initial random state. Note that the random images for
human psychophysics (Figure 2B) were not used in this
training. The final output—a prediction score ranging
from 0 (as glass) to 1 (as mirror)—was averaged across
training repetitions.

Results and discussion

Classifiers’ performance
Surprisingly, although based on quite simple image

measurements, both the Color-Hist and Port-Sim
classifiers achieved accuracies that almost rivaled
human performance on the 1,000 randomly chosen

images rated by our observers (Figure 3A). This finding
suggests that, despite the complex optics of reflection
and refraction, there are many potential cues that
would suffice to perform significantly above chance
at distinguishing the two kinds of materials. A more
precise test of how well such cues emulate human
judgments is the correlation between the Color-Hist and
Port-Sim models and humans on an image-by-image
basis. Although the models did correlate significantly
with human performance, they did so significantly less
well than individual humans do, Color-Hist versus
humans: t(18) = 6.056, p < 0.001; Port-Sim vs humans:
t(18) = 2.356, p < 0.05, t-test, suggesting that humans
do not rely on the same cues as these simple classifiers
(Figure 3B).

On the same random images as before, the CNNs
achieved an accuracy that superseded humans and
correlated with mean human responses within the same
range as individual humans did, thus outperforming the
two hand-engineered classifiers (Figures 3A and 3B).
This finding suggests that CNNs learn features that
are inherently superior to the simple color and texture
features.

This finding in itself is unsurprising, because the
CNNs learn many more features (99,410), and thus
perform the classification in a higher-dimensional space.
However, for the purposes of understanding biological
vision, the key question is whether the features learnt
by the CNNs lead to performance that more closely
resembles human judgments on an image-by-image
basis.

Representational similarity analysis
To gain further insights into the nature of the

internal representations of the classifiers, we performed
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Figure 4. Representational similarity analysis (RSA) of randomly selected renderings. (A) RDMs for ground truth, each classifier and
human judgments. The rows/columns of each matrix represent 1,000 images, ordered into two blocks by their true class (mirror vs.
glass) and within a block by their mean human ratings from most mirror-like to most glass-like. Individual entries represent the
dissimilarity between the corresponding pair of images in terms of the perceived or predicted mirror vs. glass ratings. Darker entries
indicate that the corresponding images are estimated to be highly similar, whereas brighter entries indicate they are more dissimilar.
Note that the blocks corresponding to mirror include some images that humans incorrectly classify as glass and vice versa. (B) A
classifier dissimilarity matrix (CDM) between models/humans. Each row/column indicates a different classifier, human, and random
RDM as a control. Each entry contains the mean correlation distance (1 – correlation) between the RDMs for the corresponding pair
of observers/models (intensity code as in A). (C) A three-dimensional visualization of the relationship between models/humans by
applying multidimensional scaling (MDS) to the CDM. The three axes indicate the first three dimensions obtained by MDS with 95%
cumulative explained variance.

representational similarity analysis (Kriegeskorte,
Mur, & Bandettini, 2008) using the images that had
been rated by humans. We defined two different
representational dissimilarity matrices (RDM), a
first-stage RDM to identify dissimilarity relationships
between images in humans and each classifier; and a
second-stage RDM (classifier dissimilarity matrix),
characterizing how similar the first-stage RDMs are
across different humans and classifiers, allowing us to
compare their internal representations. The first-stage
RDM was defined as Euclidean distance of prediction
scores (final output) from each classifier or average of
observers’ response from human. The second-stage
RDM was defined as a dissimilarity, which was one
minus Pearson’s correlation between each first-stage
RDMs. Note that each entry in the first-stage RDM
is synonymous with a subtraction between two scalar

values. We use the expression RDM to maintain
consistency.

Figure 4A shows the first-stage RDMs for each
of the classifiers, as well as ground truth. The
rows/columns of the matrix represent the different
images, ordered into two blocks by their true class
(mirror vs. glass) and within a block by their mean
human ratings (from most mirror-like to most
glass-like). Individual entries represent the dissimilarity
between the corresponding pair of images in terms
of the perceived or predicted mirror versus glass
ratings. Thus, low values indicate the corresponding
pair of images are represented as highly similar, while
higher values indicate they are more dissimilar. The
patterns in the matrices suggest that, for these randomly
selected images, humans and classifiers broadly
agree.
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We can summarize the relationships between the
RDMs in second-stage RDMs (classifier dissimilarity
matrix; see Figure 4B), in which each row/column
indicates a different observer or computational
classifier, and each entry contains the mean correlation
distance (1 – correlation) between the RDMs for the
corresponding pair of observers/models (Figure 4B).
For comparison, we also included 10 random RDMs,
to characterize how much more dissimilar the classifiers
are to humans than would occur by chance. The
dissimilarity between each classifier and humans
were 0.699 (Color-Hist), 0.686 (Port-Sim), and 0.418
(CNN), respectively, suggesting that the Color-Hist and
Port-Sim use more different representations than the
CNN to humans.

Applying multidimensional scaling to the classifier
dissimilarity matrix allows us to visualize the
relationships in three dimensions (Figure 4C).
This process reveals that all three classifier types
learn interimage relations that are significantly and
substantially closer to humans than occurs by chance
(Random), and of all classifier types, the CNNs
seem to acquire the most similar representation to
humans. These results tend to suggest that feedforward
convolution neural networks have significant potential
as models of human visual judgments of mirror and
glass materials.

Human experiment 2: Creating a
data set of images diagnostic of
human vision

Based on the significant correlations between
observers and the computational models, it could be
tempting to conclude that the models simulate human
visual processes. However, there are several reasons
for caution. First, the main purpose of comparing
models based on different features is to identify which
features best predict human material perception. Yet,
for randomly selected images, even the most primitive
models appear to match human perception quite well.
Given what we know about early vision and material
perception (Anderson & Kim, 2009; Kim & Anderson,
2010; Marlow, Kim, & Anderson, 2012), it seems highly
unlikely that visual perception of mirror versus glass
is based on raw luminance and color distributions,
which are entirely insensitive to the spatial structure of
the image. Second, and more important, it is possible
that the high correlations simply result from the fact
that both humans and classifiers achieve quite high
accuracies. If all models correctly assign most images to
one of the two distinct modes (mirror or glass), then it
follows that they will tend to correlate with one another.
Indeed, in Figure 4A, 58% of the variance in the human

judgments is accounted for by the ground truth. A good
model should be able to predict not only the successes
of human vision, but also the specific pattern of errors,
on an image-by-image basis. To test this, we sought a
set of diagnostic images that decouples accuracy from
human judgments.

Creating such a data set is nontrivial; most images
are perceived correctly. It is not sufficient to identify
images for which participants are inconsistent in
their interpretation, because a deterministic, image-
computable model cannot even in principle account
for variations between observers when presented with
the same image. Our goal is to predict that proportion
of the variance in judgments that is consistent across
observers; therefore, we need an image set that includes
images that are consistently misperceived. Specifically,
the goal was to identify a benchmark set of images
in which each image was consistently judged across
observers, but across the data set as a whole, there
was a flat distribution across the five bins ranging
from mirror to glass ratings, for both mirror and glass
images (in contrast with the skewed distributions for
random images in Figure 2B). Such a data set would
thereby decorrelate the true material class from the
perceived class. We set as our criterion of consistency
that 10 of 10 naïve observers should rate each image
in the same bin of the 5-point rating scale. To create
the diagnostic image set, we used a series of laboratory
and crowdsourcing experiments to filter through a large
number of images (see Figure 5A for an overview).

Methods

Observers
Lab experiments (i.e., not crowdsourcing): Fifty
observers were students of Justus Liebig University
Giessen and Toyohashi University of Technology with
normal or corrected-to-normal vision (see Procedure
and Task for details). All experimental protocols were
the same as in Experiment 1.
Crowdsourcing: We recruited 247 participants were
recruited via the Clickworker platform and were paid
1.2 Euro each. Before the beginning of the experiment,
participants were presented with an online consent
form that explained the purpose and procedure of the
experiment, as well as the uses and benefits of their
participation. All participants that took part in the
experiment agreed to these conditions and that their
data be recorded and stored anonymously for research
and publication in scientific journals.

Apparatus
The apparatus for the laboratory experiment

was the same as in Experiment 1, except using
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Figure 5. Creating a data set of images diagnostic of human vision. (A) Flowchart describing creation of diagnostic image set, which
consists of three different image types: “veridical” renderings (human judgments match ground truth), “illusory” renderings (humans
consistently misjudge material class), and “GAN” images. Red indicates renderings depicting mirror materials; blue indicates
renderings of glass materials; green indicates images generated using GANs. Each stage represents a different experiment used to
select images for the subsequent stage in the corresponding sequence (Round A and B). See Methods for details of selection process.
(B) RDM of diagnostic image set. The format is the same as Figure 4A except adding GANs as the third class. The panel shows six
example images (a–f) with extremely high or low rating score in each class.

the LCD (Eizo CG276 at Toyohashi University of
Technology and CG277 at Justus Liebig University
Giessen).

Stimuli
Renderings: We randomly selected another 30,000
images from the data set and started a series of
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experiment (series A1–3; central path in Figure 5A).
Note that these new images did not include the 1,000
images already set aside as the random set.
GAN images: Because rendering were rarely
misclassified, we sought a method to increase the
number of diagnostic images. To do this, we trained
a generative adversarial network (GAN; Goodfellow
et al., 2014; Radford, Metz, & Chintala, 2015) on our
renderings. GANs consist of a generator network, G,
that is trained to produce images, which a discriminator
network, D, has to distinguish from a given data set.
During training, D improves at distinguishing the
synthesized images from the training data, and G learns
to create images that are hard to discriminate from the
training data. In this study, two GANs were trained to
synthesize images based on mirror and glass training
sets, which includes all 376,848 images in each class
from the data set. Once trained, new images could be
synthesized by feeding G random input vectors. We
defined images produced by the network trained on
mirror images as having mirror ground-truth label,
and likewise images produced by the network trained
on glass images as having glass ground-truth label.
However, the resulting images frequently had a more
ambiguous, intermediate appearance than renderings
did, leading to a greater number of misclassifications
and allowing us to increase the number of images
in the diagnostic set. The network architecture and
hyperparameters were the same as a previous network
(Radford et al., 2015), except for minor modifications
in the standard Tensorflow DCGAN implementation
that avoid the discriminator network converging too
fast (Kim, 2017). After 20 epochs training, we then
generated 700 images from each GAN by inputting
random noise vectors to create a total of 1,400 images,
which were then rated by humans (see right-hand path
in Figure 5A).

Procedure and task
The purpose of this experiment was to create a

benchmark set of diagnostic images, with 1) a uniform
distribution of appearances ranging from mirror to
glass, 2) perceptual appearance that is decorrelated from
the true material class (ground truth), and 3) consistent
judgments across observers. Identifying images that
positively correlate with ground truth (example image
(a) and (b) in Figure 5B) is straightforward, as humans
are generally good at distinguishing mirror versus
glass for our renderings. Thus, most of the procedure
revolves around finding images that systematically yield
errors (i.e., example image (c) and (d) in Figure 5B). To
achieve this, we ran two parallel series of experiments
using renderings (series A) and images generated
by GANs (series B), respectively. Each series starts
with a large number of images, with images being
progressively excluded in each round, to arrive at a

much smaller final set covering the desired distribution
(see also Figure 5A).
Round A1 (rendering ratings): Twenty observers (all
men; age range, 21–26 years; average 23.1 ± 1.4 years)
participated in the laboratory. We randomly selected
30,000 renderings from the data set (50% mirror, 50%
glass) and distributed 1,500 images to each observer.
The procedure was the same as in Experiment 1, except
that the task was a three-way judgment (mirror, glass,
or hard to recognize). The observers were instructed to
use the last option if it was difficult to recognize the
stimulus. Only 2.9% of the images fitted into this and
they were excluded to avoid contaminating rendering
artifacts for further rounds here. Figure S2A shows
results of this round. In total, 10,976 images moved
ahead to round A2. Specifically, 2,744 images were
selected randomly from each of the four bins other than
the hard to recognize images (i.e., mirror that looks like
either mirror or glass and glass that looks like either
mirror or glass).
Round A2 (rendering ratings): Next, 247 crowdsourced
participants observed the stimuli selected by round A1
and were asked to rate them on a 5-point scale (glass
to mirror). They were each shown 100 images—98
randomly chosen test images from the output of
round A1 and two catch trial images, consisting of
photographs with a clear mirror or glass appearance. If
they responded incorrectly in either of these catch trial
images, the participant was rejected for further rounds.
Only the 5,586 images that were rated by at least three
crowd-workers were analyzed further. Figure S2B shows
rating results of this round. Based on the responses,
we selected 522 images, in which the ratings conflicted
with the ground truth material, by selecting from the
two outermost bins of the distribution for each class.
Specifically, 261 mirror images with a rating score of
0.0–0.4 (i.e., seen as glass) and 261 glass images with
a rating score of 0.6–1.0 (i.e., seen as mirror). These
images progressed to round A3.
Round A3 (Rendering ratings): Ten observers
participated in the laboratory (9 women; age range,
21–30 years; average 24.8 ± 2.8 years). The procedure
was the same as in Experiment 1 (a five-bin rating
task). The experiment consisted of 1,566 trials (three
trials × 522 images from round A2), and all trials were
randomly ordered. Figure S2C shows results of this
round. From these, a total 102 images were selected for
the diagnostic image set, by selecting from the three
outermost bins from each class. Specifically, 51 mirror
images with ratings of 0.0–0.6 (i.e., seen as glass or
ambiguous) and 51 glass images with ratings of 0.4–1.0
(i.e., seen as mirror or ambiguous). These selected
images were included in the diagnostic image set.
Round B1 (GAN image screening): Some GAN-
generated images resemble textures rather than objects
with distinct material properties. The purpose of
Round B1 was to exclude such images from subsequent
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Figure 6. Example images from the diagnostic image set. Each row indicates different ground truth (mirror, glass, and GANs). Each
column indicates average rating score of 10 observers.

rounds. Ten observers participated in the lab (8
women; age range, 20–32 years; average 24.8 ± 4.1
years). The stimuli were 1,400 images generated by
GANs (see GAN images). The procedure was the
same as in Experiment 1, except that the task was to
indicate in a binary decision whether the object shape
and material were recognizable or not. Figure S3A
shows results of this round. Based on the responses,
500 images that were judged to be recognizable by
at least 6 out of 10 observers were moved ahead to
Round B2.
Round B2 (GAN image ratings): Ten observers
participated in the laboratory (all women; age range,
21–34 years; average 25.1 ± 3.8 years). The stimuli were
560 images including 500 GAN images from Round B1
and 60 renderings (30 mirror and 30 glass images) from
round A2, which had received ratings that were highly
consistent with ground truth. The procedure was the
same as in Experiment 1 (rating task). The experiment
was composed of 1,680 trials (3 trial × 560 images
from Rounds B1 and A2), and all trials were randomly
ordered. Figure S3B shows result of this round. We
selected 95 images (19 images from each bin) to add
to the diagnostic image set in order to satisfy the flat

distribution for the GAN images in the same manner as
for the mirror and glass renderings.
Final diagnostic image set: The two streams of
experiments resulted in a final diagnostic image
set of 265 images including both mirror and glass
renderings, along with GAN images with prediction
score uniformly distributed from 0.0 to 1.0 (Figure 5B
and Figure 6). These are composed of 68 veridical
images (from Experiment 1), 102 illusory images (from
Rounds A1 to A3), and 95 GAN images (from Rounds
B1 and B2) (see Figure 5A in detail).

Results and discussion

From the responses in rounds A1–A3, we ended up
with a set of 170 renderings, that is, 34 images in each
of the 5 bins from perceived mirror to perceived glass,
one-half of which were actually mirror and one-half
glass. This practice allowed us to decorrelate images
consistently seen as one category by humans from the
true category of the images.

To increase the number of images for further use, we
also trained two GANs to synthesize images with many
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of the visual characteristics of the renderings from each
class. We find that such images include many cases
that are more ambiguous than renderings, appearing
somewhere between mirror and glass. In rounds B1 and
B2, we identified 95 images (out a set of 1,400), which
were consistently rated by 10 observers as belonging to
specific bins. Combining the selected GAN images with
the renderings yielded a total 265 diagnostic images, in
which human judgments were perfectly decorrelated
from ground truth that, for the GAN images, was
defined by the class of images the GANs were trained
on (Figure 5B). Some examples are shown in Figure 6.
Interestingly, although it is possible to distinguish GAN
images from renderings, those in the diagnostic image
set (the bottom row in Figure 6) tend to seem to have
a coherent object shape and appearance, somewhat
similar to the renderings. This approach is not without
limitations. All models have inductive biases, including
GANs, and the fact that observers can distinguish
between GAN images and rendering implies that they
may contain cues that renderings do not, or lack cues
that renderings possess. Nevertheless, our goal is not
to model ideal material discrimination, but rather
human judgments. By selecting images that 10 out
of 10 observers agreed upon, we can ensure that the
GAN images considered here yield consistent subjective
impressions along the mirror–glass continuum even if
they are not physically accurate renditions of objects.
Although 265 images in total is small relative to the set
of possible images of mirror or glass, these images are
not used for training models, only for testing them.

CNN experiment 2: Systematic
exploration of the space of
feedforward networks

With the diagnostic image set in hand, we next sought
neural network models that would positively correlate
strongly with humans for these diagnostic images.
It is important to note that the space of potential
convolution network models is very large: they can vary
widely in terms of their architectures, hyperparameters
and training schedules. We reasoned that within the
space of feedforward neural networks, some networks
are likely to approximate human visual processing
better than others. We therefore ran a large-scale
search through a space of feedforward networks with
the general form depicted in Figure 7A, varying the
network depth systematically (see also Figure S4A).

Methods

Network architecture
All networks consisted of an input layer followed

by a basic block of layers composed of convolution,
batch normalization (Ioffe & Szegedy, 2015), ReLU
(Glorot, Bordes, & Bengio, 2011), and max pooling
layers, which were repeated several times, followed by
dropout (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014), fully connected and softmax

Figure 7. Development of OptCNN. (A) General form of the feedforward network architecture in this study (see also Figure S1B). (B)
Results of the Bayesian hyperparameter search (BHS). The horizontal axis indicates the number of iterations of the BHS. The vertical
axis indicates correlation between human to each model with different network depth (indicated by color, from 1 to 12). Thick black
line represents mean of all 12 depths.
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layers, and ending with a two-unit classification output
(mirror vs. glass); see Figure 7A.

Identifying optimal CNN models through Bayesian
hyperparameter search

We used a Bayesian hyperparameter search through
a space of feedforward architectures to identify which
CNNs correlated best with humans (using MATLAB
R2017b with Neural Network Toolbox and Statistics
and Machine Learning Toolbox) (see Figure S4A). The
objective was to maximize the correlation coefficient
between CNN and human on the diagnostic image set.
The network architectures were basically the same as the
CNN in Experiment 1, except that we parametrically
varied the depth, that is, the number of layers from
1 to 12, by repeating a block of layers consisting of
convolution, batch normalization, rectified linear unit,
and max pooling layers before the first fully connected
layer (Figure 7A). Note that the maximum pooling
layers were only used up to three layers (the last three
layers) because of the size constraints of the filters.

For each depth, we ran 200 iterations of the Bayesian
hyperparameter search to identify the values of 11
hyperparameters controlling the network architecture
and training (e.g., number of filters per layer, initial
learning rate, momentum; see Figure S4B) in an
optimization stage (i.e., 200 CNNs were generated with
different hyperparameters, in search of the optimal
values for each depth). Each CNN was trained and
tested with two-fold cross-validation using same
training and test set, in which randomly chosen 400,000
renderings (200,000 images in each class) to converge
the network quickly. Note that we did not use the
images from the random set (1,000 images) for training
the OptCNN.

Having identified promising hyperparameters for
each architecture depth, in the validation stage, we
then trained 30 instances of each of the resulting
neural networks (differing only in the initial random
state), again using the same number of renderings,
with half for training and the other half for testing
(see Figure S4B). Importantly, these networks were
never trained on the diagnostic images, and training
proceeded until the validation accuracy had not
improved for at least three validations, independently
for each architecture depth.

Results and discussion

The mean correlations between the networks
and humans on the diagnostic image set is shown
in Figure 8C. Of all depths, the three-layer network
architecture was the one that correlated best with
human judgments, which we refer to as optimal CNN
(OptCNN), although this does not imply that it
represents a global optimum across all possible neural

networks, only the best of those we tested. The layer
depth of OptCNN was relatively shallow even though
we systematically searched through 1- to 12-layer
networks. We considered this network class for further
analysis.

Figures 8A and 8B compare the highest of the
OptCNN networks with humans and the other
classifiers on the diagnostic image set. By design,
humans perform at chance on these images (Figure 8A).
All classifiers outperform humans in terms of accuracy,
yet OptCNN is the closest, making the most errors
on these images, even though it was trained with the
same objective function and a very similar training
set to the original CNN, which performs too well
to resemble humans. In terms of image-by-image
correlations to human judgments (Figure 8B), none of
the classifiers reaches the noise ceiling, but OptCNN
significantly outperformed all other classifiers,
Color-Hist versus OptCNN: t(9) = 4.79 × 1013, p
< 0.001; Port-Sim vs OptCNN: t(9) = 5.19, p <
0.001; CNN versus OptCNN: t(9) = 20.23, p < 0.001,
t test.

However, despite OptCNN behaving a lot more
like humans than any of the other models, it is
still not a perfect model. Indeed, none of the
thousands of networks trained throughout the
Bayesian hyperparameter search or the final validation
exceeded a correlation with humans of 0.54 whereas
human-to-human correlations was between 0.61 and
0.81. In other words, although the OptCNN was the
closest of all models we considered, it still failed to
capture average human performance as well as even the
most unrepresentative of the individual humans did.
This finding suggests that more caution should be taken
in comparisons between artificial neural networks and
biological neural systems. Previous work has used much
slacker criteria for the comparison and may have drawn
erroneously positive conclusions.

The performance of OptCNN for the random set
was 72% accuracy and 0.45 correlation to humans
on average. This accuracy reached the human noise
ceiling but the correlation did not, suggesting that while
OptCNN avoided an overperformance like the CNN,
it still failed to match human judgments on arbitrary
images.

Figure 8C shows the correlations between humans
and the CNNs with different numbers of convolution
layers. To the extent that OptCNN approximates human
visual processes, the finding that it has only three layers
tends to suggest that distinguishing mirror from glass
does not involve as many stages of processing as object
recognition, for example, which typically requires seven
or more layers to approximate human performance
(Jozwik et al., 2017; Kheradpisheh et al., 2016b;
Kubilius, Bracci, & op de Beeck, 2016). It suggests the
particular involvement of mid-level computations, one
or two stages beyond simple local filter representations.
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Figure 8. Results of the diagnostic image set. (A) Accuracy of humans and model classifiers for diagnostic image set. (B) Correlation
coefficient between human and classifiers for diagnostic stimuli (symbols are the same as in Figures 2A and 2B). OptCNN represents
the highest correlation of 30 instances of three-layer CNN from Bayesian hyperparameter search. (C) Correlation to humans for each
network depth. The horizontal axis indicates correlation coefficient. The vertical axis indicates the number of convolution layers (i.e.,
the number of repeating blocks) in the networks. Red line and gray area indicate mean ± 2 SD of all human observers. (D) A
three-dimensional visualization of the relationship between the models via multidimensional scaling (MDS) with 73% cumulative
explained variance (as in Figure 4C, but based on diagnostic image set).

To compare the nature of the representations in
the different classifiers and humans in greater detail,
we performed a representational similarity analysis.
To do this, we measured the similarity between all
images in the diagnostic image set according to the
final classification output of each classifier. To visualize
the relationships between the different classifiers, we
computed the mean correlation dissimilarity between
the different classifier types, and then performed
multidimensional scaling (as in Figure 4C). Figure 8D
shows the different classifier types arranged in
the first three resulting dimensions. This analysis
reveals that OptCNN was the most similar to
humans, although there remains a substantial residual
difference.

The greater similarity between OptCNN and the
default CNN is also revealed by a more detailed view
into the representations at different processing stages of
the networks. We applied a representational similarity
analysis using the diagnostic image set, to the input
stage, the three ReLU stages after each convolution
layer, the fully connected layer and the final output
in both the original CNN and OptCNN. We then
computed a dissimilarity to humans as 1 – correlations
between human performance and each of the resulting
RDMs (layer correlation matrix). Figure 9A shows
how this dissimilarity varies as a function of layer
for CNN and OptCNN (as well as ground truth for
comparison). At the input stages of the network,
images that are perceived by humans as mirror and glass
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Figure 9. Comparing CNN and OptCNN in terms of dissimilarity to human and robustness to noise. (A) Dissimilarity to humans at each
layer in CNN and OptCNN. The horizontal axis indicates the network layer from input to output, along with the ground truth
(rightmost point), and the vertical axis indicates dissimilarity to humans. (B) Robustness to noise. The horizontal axis indicates sigma
of Gaussian noise (i.e., the amount of image perturbation). Four images show examples with different sigma (10−3, 10−2, 10−1, and
100). The vertical axis indicates the correlation to humans. Error bars represent standard error of the mean across all 10 classifiers
(CNN). Note that OptCNN represents the highest correlation of 30 instances (same as OptCNN in A).

materials are thoroughly entangled, such that further
processing is required to separate them. As we proceed
through network layers, we see that the dissimilarity to
human in CNN and OptCNN both decrease. However,
from ReLU2 onward, all layers of the OptCNN
have more similar representations to humans than
the corresponding layer in CNN. It is interesting to
note that the dissimilarity in the original CNN’s fully
connected layer is actually closer to humans than its
final output. In other words, a read-out from the late
and intermediate stages of the original CNN could
also approximate human performance. At this stage
of the network, glass and mirror are still substantially
entangled—it is only in the final output that the
network applies the last transformations that deliver
high objective accuracy. Paradoxically, this increase in
accuracy is associated also with a decrease in similarity
to humans. In contrast, OptCNN’s representations
continuously approximate human judgments more
closely with each layer. This finding suggests that
human judgments are not optimal given the data
available in the images for distinguishing mirror from
glass. Instead, they resemble incompletely disentangled
representations (as found in CNN’s fully connected
layer or OptCNNs output layer). This finding further
reinforces the idea that general purpose mid-level
image measurements—not specifically optimized for
distinguishing mirror from glass—underlie human
judgments.

Robustness to noise is another key characteristic
of human vision (Geirhos et al., 2017). We find that
the OptCNN outperforms the original CNN in terms
of the effects of noise on the correlation with human
performance. If we perturb the input images with
noise, the networks’ predictions about the material
tend to change (Figure 9B). Importantly, we find that
while the correlation between CNN’s predictions and
the human judgments of the unperturbed images
falls precipitously as noise is added, for OptCNN,
not only is the correlation higher across all noise
levels, the decline is also gentler. Our findings also
suggests that, by identifying networks that more closely
resemble humans in terms of their solution to the
objective function, we also identify representations
that capture other aspects of human perception,
such as robustness to noise. Interestingly, previous
work has shown that human discrimination of mirror
versus glass is surprisingly robust across certain kinds
of atypical viewing conditions, such as when the
illumination consists of binary noise (Tamura et al.,
2018). Under these conditions, the human visual system
can nevertheless extract meaningful material percepts
from other cues (e.g., motion).

Finally, we examined whether any of the features
learnt by the OptCNN resemble those used by humans.
To do this, we performed an analysis into the image
features that drive the OptCNN network’s decisions.
We visualized activations of units in OptCNN, using
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Figure 10. Class activation maps (CAM) and pixel intensity
reveal systematic differences between mirror and glass images
along the vertical direction. (A) Example CAMs for an individual
mirror image (left) and glass image (right). (B) Top row: Mean
CAM across all mirror images (left) and glass images (middle)
from the ‘random’ set, along with the difference between the
mean CAMs for the two classes (right). Bottom row: mean CAM
intensity along the vertical direction for the corresponding
CAM. The dashed line indicates the center of the image in the
vertical direction. The circle in the bottom right graph indicates
the peak of the CAM difference. (C) Same as B, except for pixel
intensity instead of CAM. (D) Correlation between the CAM
difference (the bottom right of B) and the pixel difference (the
bottom right of C). They were significantly correlated (r = 0.93,
p < 0.001).

class activation mapping (Zhou, Khosla, Lapedriza,
Oliva, & Torralba, 2016). This method identifies which
image locations are most responsible for the activation
of mirror and glass units—here from a stage before
the softmax layer (see example class activation maps
for specific images in Figure 10A). Applying this
method to all images in the random set revealed an
intriguing regularity. We found systematically stronger
activity in the upper one-half of the image driving
mirror classifications, and stronger activity in the lower
one-half of the image driving glass classifications
(Figure 10B). This is most clearly indicated when
we subtract the average class activation mapping for
glass from that of mirror, to reveal the differences that
drive the network’s decisions (see Figure 10B right
column; note the peak in the graph above the midline).
The analysis suggests that the network is sensitive
to a systematic spatial difference (along the vertical
direction) between mirror and glass images in our data
set. This prompted us to test whether such vertical
bias was observed in the pixel intensity of the images
(Figure 10C). We found that vertical variations in
activation and average pixel intensities indeed correlated
strongly (r = 0.93; Figure 10D).

The regularity in the images presumably results
from the following environmental and physical
considerations: 1) in natural illumination light comes
more strongly from above than below; 2) convex
mirror-like objects tend to have upwards-facing surface
normals in the upper one-half of the image, reflecting
the brighter sky; and 3) in contrast, convex refractive
objects tend to invert the image, leading to greater
brightness in the lower one-half of the image.

If this regularity influences network decisions, then
presenting upside-down (vertically flipped), images
should decrease network accuracy. As predicted, when
we tested OptCNN with upside-down images, the
overall classification accuracy decreased by 7% in the
random set and 6% in the diagnostic set. Interestingly,
we had previously found that humans exhibit a
qualitatively similar decrease in performance with
inverted images (Tamura et al., 2018). Thus, we suggest
that the models depend on the vertical composition of
the images in a similar way to humans.

General discussion

Because many materials that we can easily recognize
did not exist until the last few centuries—or even
decades—our ability to recognize them must be learned
rather than evolved. How the visual system acquires
the visual computations and internal representations
that allow us to succeed at material perception
remains poorly understood. Here, we investigated the
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extent to which supervised deep learning can reveal
representations that resemble human judgments.

Studies comparing humans with machine learning
models often focus on overall performance at a task or
correlation on arbitrary images (Ghodrati et al., 2014;
Hong, Yamins, Majaj, & DiCarlo, 2016; Kheradpisheh
et al., 2016a, 2016b; Kubilius et al., 2016; Majaj, Hong,
Solomon, & DiCarlo, 2015) for which both humans
and successful machine vision system tend to perform
well. Here, by contrast, we applied a different criterion
for comparing neural networks with human judgments,
by creating a diagnostic set of images in which human
performance is decorrelated from the ground truth.
This process allows us to search for networks that
capture the characteristic eccentricities of human
vision, reproducing the tell-tale errors that humans
tend to make as a first step toward identifying the
specific cues and processes the human visual system
uses. Although identifying such an image set is time
consuming and effortful, it provides a benchmark
against which all future models of human vision can be
tested. Here, we created one such set for a challenging
material perception task: the discrimination of mirror
and glass materials.

We suggest that variance in performance across
images can broadly be divided into two classes. First,
there is variance that is strictly stimulus related,
such that practically any successful classifier would
be susceptible to it. For example, in the limit it is
possible to make images of glass and mirror objects
that are pixel-for-pixel identical by carefully tweaking
illumination and shape (or, for example, choose
conditions that yield images that are entirely uniform).
No classifier could in principle distinguish degenerate
cases such as these. But even where there are detectable
differences between images, there are still some images
that more strongly or reliably indicate the class than
others. For example, when glass surfaces exhibit total
internal reflection, the resulting patterns may be highly
similar to those that would be created by a mirrored
surface. This source of variance, which is likely to
be substantial, may be useful for defining an ideal
observer model, but does little to help us distinguish
between models. It is also likely a subset of this variance
that the Color-Hist and Port-Sim classifiers captured:
essentially, projecting onto arbitrary features can enable
at least some statistical success at distinguishing mirror
from glass. One potential feature driving the success
of the simple classifiers could be statistical aspects of
natural illumination (Adams, Kucukoglu, Landy, &
Mantiuk, 2018). For example, mirror objects in our
data set tend to reflect more of the sky, leading to
slightly higher average luminance and contrast than
glass. Interestingly, humans also seem to exploit some
of these differences. When illumination colors are
inverted, human accuracy for distinguishing mirror
from glass decreases (Tamura et al., 2018).

Second, there is variance in performance between
images that is a hallmark of the specific computations
in the system. For example, one classifier might be
exquisitely sensitive to one kind of subtle image
difference, but relatively insensitive to the other,
whereas a different model, based on different image
measurements, would respond differently to the
same images. It is this latter source of variance that
is of particular interest for computational biology
because it reveals the fundamental working of the
visual system, rather than a basic characteristic of the
input. Future studies should seek to normalize the
first source of variance and focus on the second. The
purpose of the diagnostic image set was to facilitate this
work.

By comparing human performance on the diagnostic
image set against an array of models, we were able
to show that neither simple color features, nor more
sophisticated texture features can predict human
judgments of mirror versus glass. More important, we
also showed that an arbitrarily defined CNN, which
seemed to resemble humans when tested on arbitrary
images, did not resemble humans very closely at all
when evaluated on the diagnostic image set. The use of
arbitrary design decisions is widespread in the literature
comparing neural networks with brain activity or
human behavior. Our findings suggest that more care
should be taking in explicitly searching for, or fitting,
neural network models to biological data.

To do this, we then performed a large-scale, systematic
search through the space of feedforward networks
trained to distinguish mirror from glass objects, in
search of a neural network that more closely resembled
human performance. The network architecture that
performed most similarly to humans (OptCNN) was a
three-layer network, which for arbitrary images was not
especially good at distinguishing mirror from glass in
terms of the true physical labels (at least compared to
rival models).

The existence of a set of images that yields systematic
errors in humans yet which can be identified correctly
by a machine suggests that humans are not optimal
at the task in general. If humans were optimal, then
images in the diagnostic set that humans misperceive
would also lead to errors in any other ideal observer
model. Yet, many artificial neural networks can
outperform humans, including the default three-layer
CNN. It is perhaps not entirely surprising that the
human visual system is not optimized for distinguishing
mirror from glass, given their infrequency in the
natural environment. However, despite many attempts
to understand human perceptual processes through
normative ideal observer models (Burge, 2020; Geisler,
2011), we suggest that in general, many aspects of
material appearance, and perhaps perception more
generally, might be better understood as fulfilling
objective functions other than optimal estimation
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of specific distal physical properties (Fleming &
Storrs, 2019; Storrs et al., 2021; Storrs & Fleming,
2021).

Despite its poor objective performance at the task
of discriminating mirror from glass, OptCNN is the
first image-computable model of human perception
in this task. Nevertheless, even the optimized model
did not reproduce average human behavior on the
diagnostic image set as well as individual humans do.
Although previous studies have claimed that neural
networks reach the noise ceiling of human-to-human
performance (Kheradpisheh et al., 2016b; Kubilius et
al., 2016), we find that, when tested on a test set that
is truly diagnostic of human vision, such conclusions
might not in fact be warranted and that further
research is required to find good models of human
vision.

Why did the OptCNN fail to match human
performance? There are at least three important
respects in which the models differ from humans and
the human brain. First, one of the most striking aspects
of human visual cortical processing is the massive
amount of feedback (Budd, 1998; Felleman & van
Essen, 1991; Mückli & Petro, 2013). It is widely believed
that feedforward processing is responsible for many of
our visual abilities. For example, high-level visual tasks,
such as animal detection (Thorpe, Fize, & Marlot,
1996), can be completed successfully too rapidly for
feedback to contribute substantially. Nevertheless,
given its anatomical extent, feedback presumably plays
an important role in visual processing, potentially
in selective visual attention, visual imagery, and the
learning process that establishes the representations in
the first place. Here, we considered only feedforward
architectures. It could be that a key missing ingredient
in OptCNN is recurrent processing and that adding
feedback signal flow could make up some of the
shortfall in correlation with humans. Feedback might,
for example, be necessary for performing long-range
spatial computations, such as comparing the structures
within the region of the object with those of the
background, or for example, pooling the disparate
local signals into a global sense that glass objects are
see-through.

A second important difference is the nature of
the training objective. Here—as in almost all neural
network-based putative models of human vision
(Kriegeskorte, 2015; Majaj & Pelli, 2018; Yamins &
DiCarlo, 2016)—we used supervised learning, in which
the network is trained on hundreds of thousands of
accurately labelled images. Human vision cannot be
trained this way, because labelled data are rare (Fleming
& Storrs, 2019; Storrs & Fleming, 2021), and the scale
of the training set almost certainly exceeds human
visual experience with mirror and glass objects. In
particular, we very rarely get to see mirror and glass
versions of the same objects, and we presumably also

exploit the fact that vision unfolds continuously over
time, rather than in independent static snapshots, as
CNNs are typically trained (Karpathy et al., 2014; van
Assen, Nishida, & Fleming, 2020). It is much more
likely that visual representations are learned through
unsupervised processes, and this may have a critical
effect on the internal representations that the visual
system learns (Storrs et al., 2021). Neither the networks
nor our observers were given feedback on the images
they were tested on.

A third important difference between the artificial
neural networks and humans lies in the nature of the
task that the networks are trained on. Human vision
is not tailored solely to the task of distinguishing
mirror from glass objects, whereas here, we trained
the networks on a binary classification, effectively
separating the entire world into two possible states. The
representations that optimize performance on this task
may well be quite general purpose, as has been found
with neural networks optimized for object recognition,
which can easily be repurposed for other tasks, such
as action recognition (Simonyan & Zisserman, 2014)
and image semantic segmentation (Dai, He, & Sun,
2016). Nevertheless, it is also possible that in being
trained on such a constrained task, the networks
learned representations that do not resemble human
visual processes. As a basic test of this, we applied
transfer training to the well-known object recognition
network AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), replacing the output classification layer with a
two-node glass versus mirror classifier. However, the
performance was approximately the same as the default
three-layer CNN and lower than the OptCNN. Despite
this, it would be interesting to test whether a more
rigorous approach to obtaining robust, human-like
object representations (Geirhos et al., 2018) can lead
to human-like performance on material perception
tasks.

It is important to emphasize that the similarities to
human perception exhibited by OptCNN are restricted
to the kinds of images in our training set: computer
graphics renditions of a single floating object with
uniform glass-like or mirror-like optical characteristics.
The networks generalized poorly to images outside
this range. For example, we tested the CNN and
OptCNN using photographs of real metal and glass
objects from the Flickr Material Database (FMD;
Sharan, Rosenholtz, & Adelson, 2014) and found
that the accuracies of the CNN and OptCNN were
43% and 49%, respectively (in other words, no better
than chance). We also observed a strong bias toward
interpreting FMD images as glass rather than mirror.
One possible reason for the low accuracy is that,
unlike our training sets, most of the FMD images are
texture-like close-ups and do not have a clear boundary
between the object and background. Another possible
reason is that the ground truth classes are not identical
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(mirror and glass in our training set vs. metal and glass
in the FMD). Very few of the metal images in the FMD
are as specular as the mirror images in our data set. An
important direction for future research is to increase
generalization by expanding the diversity of the data
set.

We suggest that future work should use a
combination of unsupervised learning and more
naturalistic objective functions and training sets, as well
as network architectures that resemble more closely
the primate cortex to tease these possibilities apart.
We have shown that, for most images, even arbitrarily
designed artificial neural networks outperform more
conventional hand-engineered models, and thus have
substantial potential as models of human visual
processes. Nevertheless, when their similarity to humans
is investigated with a stricter criterion, they still have
important shortcomings. Although neural networks
can be found or fitted to the brain or human behavior,
out of the box, they should not yet be seen so much as
an accurate model of human brain processes, but rather
as an experimental platform for further research, much
as animal models of neurological disorders are. To
make the most of such a platform a crucial additional
direction is better tools for probing the inner workings
of networks so that further insights can be derived
about the specific cues and processes that drive their
performance.

Keywords: material perception, neural networks,
transparent material, gloss perception
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