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Targeting interleukin‑17 receptor B 
enhances gemcitabine sensitivity 
through downregulation of mucins 
in pancreatic cancer
Lung‑Hung Tsai1,2,9, Kai‑Wen Hsu1,2,3,9, Cheng‑Ming Chiang4, Hsiu‑Ju Yang1, Yu‑Huei Liu5, 
Shun‑Fa Yang6, Pei‑Hua Peng7, Wei‑Chung Cheng1,2,8 & Heng‑Hsiung Wu1,2,8*

Pancreatic cancer is the fourth leading cause of death worldwide due to its poorest prognoses with 
a 7% 5‑year survival rate. Eighty percent of pancreatic cancer patients relapse after chemotherapy 
and develop early metastasis and drug resistance. Resistance to nucleoside analog gemcitabine 
frequently used in first‑line therapy is an urgent issue in pancreatic cancer treatment. Expression of 
mucin (MUC) glycoproteins has been shown to enhance chemoresistance via increased cell stemness. 
Here we show interlukine‑17 receptor B (IL‑17RB) expression is positively correlated with MUC1 and 
MUC4 expression in pancreatic cancer cells and tumor tissue. Moreover, IL‑17RB transcriptionally 
up‑regulates expression of MUC1 and MUC4 to enhance cancer stem‑like properties and resistance to 
gemcitabine. These results suggest IL‑17RB can be a potential target for pancreatic cancer therapy. 
Indeed, treatment with IL‑17RB‑neutralizing antibody has a synergistic effect in combination with 
gemcitabine for killing pancreatic cancer cells. Altogether, these findings provide feasible applications 
for IL‑17RB‑targeting therapy in pancreatic cancer treatment.

Abbreviations
5-FU  5-Fluorouracil
EMT  Epithelial–mesenchymal transition
IHC  Immunohistochemistry
IL17-RB  Interleukin-17 receptor B
MUC  Mucin
PanIN  Pancreatic intraepithelial neoplasia
PDAC  Pancreatic ductal adenocarcinoma
RT-qPCR  Quantitative real-time RT-PCR

Pancreatic cancer is the fourth leading cause of death worldwide, about 85% of pancreatic cancer patients being 
diagnosed with  adenocarcinoma1,2. In Taiwan, the incidence and mortality of pancreatic cancer has rapidly 
increased from 1999 to 2012, with indication of a further 20% increase in incidence and 10% in mortality by 
 20273. Up to 80% of pancreatic cancer are un-resectable by its highly malignant and early  metastasis2. Chemo-
therapy is the standard treatment of pancreatic cancer. Moreover, pancreatic cancer cells in most patients leads to 
resistance to  chemotherapy4,5. In the past few decades, 5-fluorouracil (5-FU) and Gemcitabine are the standard 
of care for the treatment of advanced pancreatic  cancer6. However, the survival benefits of 5-FU and Gemcit-
abine are still limited with median survival durations of 4.41 and 5.65 months,  respectively7. Therefore, effective 
targeted therapies are urgently needed.
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Interleukin-17 receptor B (IL-17RB) is a cytokine receptor, which is activated by IL17B and IL17E ligands. 
IL-17RB can promote Th2 reaction in CD4+ T helper cells in response to  asthmatics8. In our preliminary stud-
ies, overexpression of IL-17RB strongly correlated with post-operative metastasis and inversely correlated with 
progression-free survival in pancreatic cancer  patients9–11. Activated IL17B/IL-17RB signaling, which increases 
chemokine expression via the NF-κB and ERK1/2 pathway, promotes cancer cell invasion, macrophage and 
endothelial cell recruitment to the primary sites, and cancer cell survival at distant  organs10–12. Importantly, 
treatment with monoclonal antibody against the native form of IL-17RB delays the malignancy of pancreatic 
cancer cells expressing IL-17RB and significantly extends animal survival. Taken together, these results suggest 
that IL17B/IL-17RB signaling not only emerges as an important regulator of pancreatic cancer growth and 
metastasis, but is a feasible target for pancreatic cancer treatment.

MUC1 and MUC4 are transmembrane mucins, which are overexpressed during pancreatic intraepithelial 
neoplasia (PanIN)  progression13. MUC1 and MUC4 both are high-molecular-weight glycoproteins related to 
poor prognosis in thyroid papillary  carcinoma14, oral squamous cell  carcinoma15, and pancreatic ductal adeno-
carcinoma (PDAC)16,17. Rod-like structures formed around tumor cells by mucins enhances tumor progression 
and blocks chemotherapy drugs targeting the cancer  cells17.

In this study, we demonstrate that IL-17RB promotes MUC1 and MUC4 expression at transcriptional level. 
MUC1 and MUC4 induced by IL-17RB upregulate expression of cancer stemness-related genes, such as SOX2, 
Nanog, Oct-4, and surface CD44 to facilitate sphere formation. Furthermore, it was observed that MUC1 and 
MUC4 are involved in IL-17RB-mediated resistance to gemcitabine in pancreatic cancer cells. Inhibition of IL-
17RB by neutralization antibody D9 suppresses the cancer-stemness activity and enhances gemcitabine sensitivity 
in pancreatic cancer cells. Consistently, IHC results from tissue array showed expression of IL-17RB is positively 
correlated with MUC1 and MUC4. These findings demonstrate IL-17RB can induce gemcitabine resistance and 
stemness activity via upregulation of MUC1 and MUC4. Moreover, targeting IL-17RB is a feasible therapeutic 
strategy for pancreatic cancer.

Results
Expression of MUC1 and MUC4 correlates with that of IL‑17RB in pancreatic cancer cell. Sev-
eral membrane receptors associated with pivotal cellular processes are aberrantly overexpressed in cancer cells 
and have thus emerged as potential targets for receptor-mediated therapeutic strategies. To verify whether IL-
17RB upregulates membrane proteins to mediate drug resistance, cDNA microarray data from IL-17RB-knock-
down pancreatic cancer cells was  used11. The oncogenes downregulated by IL-17RB knockdown were selected 
and validated by immunoblot and qPCR. The results showed 528 genes were downregulated (greater than an 
0.5-fold change) by IL-17RB knockdown when compared to the control cells. There are 49 cancer-related genes 
(from NCG 5.0 analysis identified), including 13 implicated in drug resistance. Only two surface-associated pro-
teins, MUC1 and MUC4, were found in this drug-resistant group (Fig. 1A). To evaluate the correlation between 
IL-17RB, MUC1 and MUC4, we examined the expression of these genes in a panel of human pancreatic cancer 
cell lines (Fig. 1B). As expected, the IL-17RB-high-expressed cells, HPAF-II, BxPC3, Capan2, and CFPAC-1, 
were predicted to have MUC1 and MUC4 expression. In contrast, cells with low expression of IL-17RB, such as 
HPAC, SU.86.86 and MIA-PaCa-2, showed low MUC1 and MUC4 expression (Fig. 1B). A similar pattern of IL-
17RB, MUC1 and MUC4 correlation was also observed at the mRNA level in these cells (Supplementary Fig. 2). 
These results showed a positive correlation between expression of IL-17RB, MUC1 and MUC4.

To examine whether IL-17RB could regulate MUC1 and MUC4 expression, we knocked down IL-17RB by 
shRNA in BxPC3 and CFPAC-1 cells, which were feasible for IL-17RB shRNA transduction. Both MUC1 and 
MUC4 protein levels were decreased in IL-17RB-knockdown cells (Fig. 1C). Downregulation of MUC1 and 
MUC4 mRNA was also observed in BxPC3 and CFPAC-1 cells by quantitative real-time RT-PCR (RT-qPCR, 
Fig. 1D,E). Ectopic expression of wild-type IL-17RB upregulated MUC1 and MUC4 expression in SU.86.86 and 
HPAC cells (Fig. 1F–H). In contrast, ectopic expression of IL-17RB lacking a ligand-binding domain (delLBD), 
had no effect on the expression of MUC1 and MUC4 (Fig. 1F–H). Together, these results indicate IL17B/IL-17RB 
signaling is potentially involved in transcriptional regulation of MUC1 and MUC4 expression in pancreatic 
cancer cells.

IL‑17RB enhances stemness via MUC1 and MUC4. MUC1 and MUC4 are reported to be involved in 
stemness which confers drug resistance in cancer cells, implicating that overexpression of IL-17RB may lead to 
enhancement of chemotherapy resistance through upregulation of these genes in pancreatic cancer cells. MUC1 
and MUC4 have been implicated in stem-like features in ovarian  cancer18. To explore the role of IL-17RB in 
the cancer stem-like property, we knocked down IL-17RB by lentivirus-based shRNA in BxPC3 cells. Not only 
MUC1 and MUC4 were suppressed, but the expression of stemness markers, such as SOX2, Nanog and Oct-4, 
were also decreased in IL-17RB-knockdown cells (Fig. 2A). A decrease of the CD44-positive population was also 
observed in IL-17RB-knockdown cells (Fig. 2B,C), and downregulation of cancer stemness activity of IL-17RB-
knockdown cells was also shown by the sphere formation assay (Fig. 2D). These results indicate endogenous 
IL-17RB promotes stemness gene expression and stem cell-like sphere formation.

To examine the roles of MUC1 and MUC4 in IL-17RB-mediated stemness in the pancreatic cancer cells, we 
overexpressed FLAG-tagged IL-17RB, followed by knockdown of MUC1 and MUC4 by lentivirus-based shRNA 
in SU.86.86 cells. In SU.86.86 cells overexpressing IL-17RB, MUC1 and MUC4 protein levels were increased, and 
expression of those stemness markers also increased (Fig. 2E). Increased surface CD44 (Fig. 2F,G) and stemness 
activity were observed (Fig. 2H and Supplementary Fig. 3A). An increase of stemness activity by IL-17RB was 
also observed in HPAC cells (Supplementary Fig. 3B). Notably, expression of those stemness markers induced by 
IL-17RB were suppressed by knockdown of MUC1 and MUC4 (Fig. 2E). CD44 expression induced by IL-17RB 
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overexpression was significantly suppressed by MUC1 and MUC4 knockdown (Fig. 2F,G), implicating a criti-
cal role of MUC1 and MUC4 in IL-17RB-mediated stemness control. The sphere size and number were also 
suppressed by MUC1 and MUC4 knockdown in IL-17RB-overexpressing cells (Fig. 2H). Furthermore, sphere 
formation activity was not increased by delLBD-IL-17RB transfection in SU.86.86 and HPAC cells (Supplemen-
tary Fig. 3A,B). It suggested that IL-17RB promotes stemness in ligand-dependent mechanism. Taken together, 
these results demonstrate IL-17RB enhances stemness-associated gene expression and sphere formation via 
MUC1 and MUC4 regulation.

IL‑17RB confers gemcitabine sensitivity through MUC1 and MUC4 expression. Overexpres-
sion of mucins and enhanced stemness activity were well-known to confer drug resistance in pancreatic cancer 
 treatment19,20. To examine the association between IL-17RB and gemcitabine sensitivity in pancreatic cancer 
cells, the toxicity of gemcitabine was measured by MTT assay in a panel of pancreatic cancer cells. It was observed 
that pancreatic cancer cells with higher IL-17RB expression (HPAF-II, BxPC3, Capan-2, and CFPAC-1) were 
more resistant to gemcitabine treatment, and were pancreatic cancer cells with lower IL-17RB level (SU.86.86 
and MIA-PaCa2) are more sensitive to gemcitabine treatment (Supplementary Fig. 4). To verify whether IL-
17RB could enhance gemcitabine resistance, we measured the toxicity of gemcitabine in IL-17RB-knockdown 
BxPC3 cells and IL-17RB-overexpressing SU.86.86 cells, respectively. Cell viability after gemcitabine treatment 
was shown in Fig. 3A–C. The IC50 of gemcitabine was significantly decreased in IL-17RB-knockdown BxPC3 
cells (Fig. 3A,B). In contrast, overexpression of IL-17RB could elevate gemcitabine resistance (Fig. 3C,D).

To examine whether MUC1 and MUC4 are involved in IL-17RB-mediated gemcitabine resistance, we 
knocked down MUC1 and MUC4 in IL-17RB-overexpressing SU.86.86 cells. Cell viability after gemcitabine 
treatment was shown in Fig. 3C. Overexpression of IL-17RB indeed enhanced gemcitabine resistance in SU.86.86 
cells, and knockdown of MUC1 and MUC4 could rescue gemcitabine sensitivity in IL-17RB-overpressing cells. 
Consistently, treatment of MUC1 inhibitor (Go-201) could suppress IL-17RB-mediated gemcitabine resistance 
in BxPC3 and IL-17RB-overexpressing SU.86.68 cells (Fig. 3E). Collectively, these results suggest IL-17RB could 
enhance gemcitabine resistance through upregulation of MUC1 and MUC4 in pancreatic cancer cells.

Figure 1.  IL-17RB upregulates MUC1 and MUC4 expression in pancreatic cancer cells. (A) Pie chart of down-
regulated genes (528 genes decreased in more than 50%, a, b and c) analyzed in IL-17RB-knockdown CFPAC1 
cells. Cancer-related genes are listed by NCG5.0, n = 49, b and c. Resistance to chemotherapeutic drugs was 
listed in c. (B) Expression of IL-17RB (~ 65KD due to glycosylation), MUC1 (~ 140 KD due to glycosylation), 
and MUC4 (~ 130 KD due to glycosylation) in pancreatic cancer cell lines was evaluated by immunoblotting 
with α-tubulin (52 KD) used as a loading control. (C–E) IL-17RB was knocked down by lentivirus-based shRNA 
in BxPC3 and CFPAC1 cells. Protein levels of IL-17RB, MUC1, and MUC4 were evaluated by immunoblotting 
(C). mRNA levels of MUC1 (D) and MUC4 (E) were analyzed by real-time RT-PCR. (F–H), ectopic wildtype or 
ΔLBD of IL-17RB was overexpressed in SU.86.86 and HPAC cells. Protein levels of IL-17RB, MUC1, and MUC4 
were evaluated by immunoblotting (F). mRNA levels of MUC1 (G) and MUC4 (H) were analyzed by real-time 
RT-PCR. The asterisk (*) represents a statistical significance with P value less than 0.05. The full blotting images 
were showed in Supplementary Figure 1.
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Figure 2.  IL-17RB enhances cancer stem cell-like phenotype via upregulation of MUC1 and MUC4. (A) 
Expression of IL-17RB, MUC1, MUC4 and stemness markers SOX2 (40 KD), Nanog (42 KD), Oct-4 (45 KD) 
in IL-17RB-knockdown BxPC3 cells was measured by immunoblotting. GAPDH (36 KD) was included as a 
loading control. (B, C) CD44 expression was measured by flow cytometry, and the MFI (mean fluorescence 
intensity) was calculated by FlowJo 7.6, and presented in (C). (D) Sphere formation activity was evaluated by 
sphere formation assay and the diameter more than 100 µm was calculated. (E) Expression of IL-17RB, MUC1, 
MUC4 and stemness markers SOX2, Nanog, Oct-4 in IL-17RB-overexpressing SU.86.86 cells after transduction 
with shRNAs of MUC1 and MUC4. GAPDH was served as a loading control. (F, G) CD44 expression in 
IL-17RB-overexpressing SU.86.86 cells was measured by flow cytometry, and the MFI (mean fluorescence 
intensity) was calculated by FlowJo 7.6, and presented in (G). (H) IL-17RB-overexpressing SU.86.86 cells 
were transduced with shRNAs of MUC1 and MUC4. Colony formation activity was evaluated by sphere 
formation assay and the diameter more than 100 µm was calculated. The full blotting images were showed in 
Supplementary Figure 1.
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Neutralizing antibody of IL‑17RB enhances gemcitabine toxicity and suppresses stemness 
activity. Anti-IL-17RB neutralization antibody was reported to be capable of suppressing IL-17RB-mediated 
pancreatic tumor  progression11. To examine the therapeutic potential of anti-IL-17RB antibody (D9) to syner-
gize with gemcitabine for pancreatic cancer treatment, the stemness properties of pancreatic cancer cells after 
anti-IL-17RB (D9) treatment were revealed. Expression of MUC1, MUC4, and stemness associated protein, 
Sox2, Nanog, and Oct-4, were suppressed after anti-IL-17RB (D9) treatment in BxPC3 cells (Fig. 4A). The sur-
face CD44 was also reduced after D9 treatment (Fig. 4B,C). Furthermore, the size and number of the pancreatic 
tumor spheres were significantly reduced after anti-IL-17RB (D9) treatment, indicating that targeting-IL-17RB 
could inhibit cancer stemness activity (Fig. 4D). Therefore, the effect of anti-IL-17RB (D9) combination with 
chemotherapy was further examined, and it was observed that abrogation of IL-17RB oncogenic signaling by 
D9 dramatically enhances the cytotoxicity of doxorubicin, gemcitabine, and etoposide in BxPC3 cells (Fig. 4E). 
To evaluate the combination effect of D9 and gemcitabine on cytotoxicity in pancreatic cancer cells, BxPC3 was 
treated with combination of D9 (2.5, 5, 10 μg/ml) and gemcitabine (0.5, 1, 2.5, 5, 10 μM) for 24 h. The dose-
cytotoxicity effect following D9/gemcitabine treatment was measured by MTS assay and shown in Fig. 4F. D9 
treatment dramatically enhanced the cytotoxicity of gemcitabine in a dose-dependent manner. For example, 
cell viability was reduced from 36.23 to 6.66% with 10 μg/ml D9 treatment and in 5 μM gemcitabine-treated 
cells also reduced from 13.65 to 1.69% upon 10 μM gemcitabine treatment. Normalized isobologram shows the 
points with antagonistic or synergistic effects in Fig. 4G. Combination index (CI) (Fig. 4G) was calculated by 
 CompuSyn21. The points with synergistic effect were observed under the hypotenuse by D9/gemcitabine com-
bination treatment, especially the points of 5 or 10 μg/ml D9 with 10 μM gemcitabine treatment showed strong 
synergism (CI < 0.3). These results indicate D9 could reduce gemcitabine usage and be a more effective regi-
men. Altogether, these results demonstrated a synergistic effect of IL-17RB-targeting therapy with conventional 
chemotherapy and overcoming gemcitabine resistance.

IL‑17RB expression positively associates with MUC1 and MUC4 expression in pancreatic 
tumors. To investigate the correlation among IL-17RB, MUC1 and MUC4 expression in pancreatic tumors, 
immunohistochemistry (IHC) was performed to analyze the expression of IL-17RB, MUC1 and MUC4 in 91 
pancreatic cancer tumors. The representative results of IL-17RB, MUC1 and MUC4 are shown in Fig. 5. Images 
of high-expressed, low expressed, and normal tissue were acquired by using a 5× objective lens. Images of the 

Figure 3.  IL-17RB enhances gemcitabine resistance via MUC1 and MUC4. (A) cell viability was measured 
by MTT assay in parental, scramble, and IL-17RB-knockdown BxPC3 cells treated with gemcitabine for 48 h. 
Statistical significance was calculated by comparison of shIL-17RB-1 or shIL-17RB-2 compared to Scramble. 
(B) The IC50 of gemcitabine toxicity was shown in mean ± SD. (C) Cell viability was measured by MTT assay in 
ectopic IL-17RB-overexpressed, MUC1-knockdown, MUC4-knockdown SU.86.86 cells. Statistical significance 
was calculated by comparison of IL-17RB OE with P. Ct., and OE/shMUC1 or OE/shMUC4 with OE/Scramble. 
The IC50 of gemcitabine toxicity was estimated in (D). Synergistic effect of MUC1 inhibitor Go-201 (5 μM) and 
gemcitabine (0.25 µM) on cell viability measured by MTT assay in BxPC3 and ectopic IL-17RB-overexpressing 
SU.86.86 cells (E). Asterisks (*, **, ***) indicated the statistical significance of P value less than 0.05, 0.01, or 
0.001, respectively.
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high expressing pattern are enlarged by using a 20× objective lens. IL-17RB, MUC1, and MUC4 are mainly 
expressed on the surface membrane of pancreatic cancer cells (Fig. 5). Based on the proportion of IL-17RB-
expressing cancer cells, the cases can be divided into two groups: Low expression group: negative (0%) and low 
positive (< 10%); High expression group: high positive (≥ 10%). The clinical parameters including age, gender, 
tumor subtype, T value, N value, tumor stage and grade are not significantly correlated with IL-17RB, MUC1, 
or MUC4 expression (Supplementary Table 1). Moreover, the correlation among IL-17RB, MUC1, and MUC4 
was presented in Table 1. High expression of IL-17RB strongly correlates with high expression of MUC1 (64%, 
P = 0.020), and high expression of MUC4 (82%, P = 0.002).

Discussion
High IL-17RB expression was correlates with poor prognosis of pancreatic cancer, and targeting IL-17RB pro-
vides a therapeutic potential for pancreatic cancer  treatment11. The present work demonstrates that activation 
of IL-17RB signaling confers pancreatic cancer cells with enhanced cancer stem-like property and resistance 
to gemcitabine treatment via enhanced MUC1 and MUC4 expression. Lacking the ligand-binding domain of 
IL-17RB (ΔLBD) had no effect on regulation of MUC1 and MUC4 (Fig. 1G,H). Inhibitors of NF-κB could sup-
press IL-17RB-mediated MUC1 and MUC4 mRNA expression. Knockdown of IL-17RB, MUC1 and/or MUC4 
also suppresses expression of stemness-related markers, such as SOX2, Nanog, Oct-4, and CD44, and inhibited 
tumor sphere formation. Furthermore, the IHC data show clinical relevance of IL-17RB with MUC1 and MUC4. 

Figure 4.  Inhibition of IL-17RB by neutralizing antibody suppresses stemness activity and gemcitabine 
resistance. (A) BxPC3 cells were treated with IgG or neutralizing antibody (D9) with indicated dosages for 48 h 
and harvested for protein extraction. The expression of MUC1, MUC4, sox2, nanog, and oct-4 was measured 
by immunoblotting. (B) Surface CD44 expression was measured by flow cytometry in BxPC3 with 10 µg/
ml IgG or D9 for 48 h. MFI was calculated by FlowJo in (C). (D) Sphere formation activity was evaluated by 
sphere formation assay in BxPC3 with 10 µg/ml IgG or D9. (E) Cell viability was estimated by MTT following 
treatment with 0.1 µM doxorubicin, 0.25 µM gemcitabine, or 25 µM etoposide for 48 h in IgG or D9-treated 
BxPC3. F, cell viability curves were plotted and measured by MTS assay with indicated dosages of D9 and 
gemcitabine treatment for 24 h in BxPC3 cells. Each cell viability (%) of combined D9 and gemcitabine was 
shown in the Table. (G) normalized isobologram for combination of D9 and gemcitabine treatment in a non-
constant ratio was plotted by CompuSyn. The point on the upper-right or lower-left of the line of additivity 
indicates an antagonistic or synergistic effect, respectively. Combination index (CI) values were calculated by 
CompuSyn. The full blotting images were showed in Supplementary Figure 1.
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These findings suggest activation of IL-17RB oncogenic signaling is critical for pancreatic cancer resistance to 
gemcitabine treatment via MUC1 and MUC4 upregulation.

The underlying mechanisms of gemcitabine resistance in pancreatic cancer cells had been reported in epithe-
lial–mesenchymal transition (EMT)22, HMGA1/Akt  pathway23, and ERK  signaling24. MUC1 has been reported 
to be involved in upregulation of MDR genes to facilitate gemcitabine resistance in pancreatic cancer  cells25. 
Another mechanism of MUC1 involved in gemcitabine resistance had been reported by stabilization of HIF-1α 
to increase glucose uptake and pyrimidine  biosynthesis26. Increase of progenitor cells and gemcitabine resist-
ance by MUC4 overexpression has been observed in pancreatic cancer  cells27,28. NF-κB pathway is important 
for MUC4-mediated gemcitabine  resistance28. In this work, we found IL-17RB upregulates MUC1 and MUC4 
through NF-κB pathway (Supplementary Fig. 4) to confer cancer cells resistance to gemcitabine. These findings 
not only verify the association between IL-17RB overexpression with high expression of MUC1 and MUC4, but 
also implicate the role of IL-17RB in initiation of oncogenic signaling in pancreatic cancer cells.

Cancer stem cells involved in cancer therapy and drug treatment has been well defined with specific 
 biomarkers29. Stemness markers promote cancer stem cell-like formation, such as SOX2, Nanog, Oct-4, CD44, 
c-Myc, and KLF4, are linked to drug  resistance30–33. MUC4 regulates CD44 and c-Myc expression via β-catenin in 
pancreatic cancer  cells34. In this study, we found stemness activity was elevated by IL-17RB-mediated MUC1 and 
MUC4, which regulate expression of the stemness formation genes, and lead to gemcitabine resistance (Figs. 2 

Figure 5.  Expression of IL-17RB, MUC1, and MUC4 in pancreatic cancers. Representative IHC staining 
images of membrane-bound IL-17RB, MUC1, and MUC4 were shown in high expressed tumors at 5× or 20× 
objective lens, in low expressed tumors at 5× objective lens, and in normal tissues at 5× objective lens.

Table 1.  Correlation between MUC1, MUC4, and IL-17RB expression in pancreatic cancers. The P value was 
tested by Chi-square.

n = 91

MUC1 protein

P value

MUC4 protein

P valueLow (n = 55) High (n = 36) Low (n = 74) High (n = 17)

IL-17RB protein 0.020 0.002

Low 47 34 (72%) 13 (28%) 44 (94%) 3 (6%)

High 44 21 (48%) 23 (52%) 30 (68%) 14 (32%)
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and 3). Knockdown of MUC1 or MUC4 dramatically enhances stemness via stemness-related genes regulation 
such as Sox2, Oct4, and Nanog (Fig. 2). But these genes were more significantly down-regulated by knockdown 
of MUC1 than MUC4, it was suggested other stemness-related genes such as c-Myc and KLF4 might be involved 
in MUC4-mediated stemness.

Altogether, this study reveals attenuation of the stem-like property by targeting IL-17RB and provide a thera-
peutic strategy for pancreatic cancer treatment.

Materials and methods
Cell lines and inhibitors. Seven human pancreatic cancer cell lines, HPAF-II, BxPC3, Capan2, CFPAC-1, 
HPAC, SU.86.86, and MIA PaCa-2 cells were obtained from American Type Culture Collection (ATCC). These 
cell lines are cultured in complete growth medium as the previous  study11. HPAF-II was maintained in MEM. 
BxPC3 and SU.86.86 were maintained in RPMI-1640. Capan2 was maintained in MyCoy’s 5A. CFPAC-1 was 
maintained in IMDM. HPAC was maintained in DMEN/F12. All the media were supplied with 10% FBS. MIA 
PaCa-2 was maintained in DMEM with 5% horse serum. And the cells were incubated at 37 °C with 5%  CO2 sup-
plement. All medium supplements were purchased from ThermoFisher (Waltham, MA, US). MEK kinase inhib-
itor U0126 and PD98059 were purchased from LC Laboratories (Woburn, MA, US). MUC1 inhibitor Go-201 
and NF-κB inhibitor BAY11-7082 were purchased from Sigma-Aldrich (St. Louis, MI, US).

Human pancreatic cancer tissue array. Human pancreatic tissue microarray (PA961e) was purchased 
from US Biomax, Rockville, MD, US. This tissue microarray contains 78 cases of pancreas adenocarcinoma, one 
each of carcinoma sarcomatodes, pancreas mixed acinar-neuroendocrine carcinoma, squamous cell carcinoma, 
neuroendocrine carcinoma and acinic cell carcinoma, three each of pancreas adenosquamous carcinoma and 
carcinoid, two pancreas solid pseudo-papillary carcinoma, plus five normal pancreatic tissue, single core per 
case.

shRNA vectors and transfection. The lentivirus-based shRNA vectors of pLKO.1-shLacZ, IL-17RB 
(TRCN0000058814, 0000058815), MUC1 (TRCN0000122938), and MUC4 (TRCN0000123299) were purchased 
from the National RNAi Core Facility (Taipei, Taiwan). Plasmid transfection was performed according to the 
manufacturer’s protocol of Lipofectamine 3000 reagent (ThermoFisher, Waltham, MA, US). Virus particles were 
packaged in 293 T cells following the manufacturer’s protocol of National RNAi Core Facility (Taipei, Taiwan).

RNA isolation, and real‑time reverse transcription PCR assay. Total RNA from cultured cell was 
isolated using TRIzol reagent (Invitrogen, Waltham, MA, US) and reverse-transcribed with SuperScript IV 
Reverse Transcriptase (ThermoFisher, Waltham, MA, US) for gene expression analysis according to instruc-
tions from the manufacturers. Quantitative real-time RT-PCR was performed using KAPA SYBR FAST qPCR 
kit (Kapa Biosystems, Wilmington, MA, US) for gene expression according to the manufacturer’s instruction 
and analyzed on a StepOnePlus Real-Time PCR system (Applied Biosystems, Waltham, MA, US). GAPDH 
mRNA was used as an internal control for mRNA expression. Expression levels were calculated according to 
the relative ΔCt method. Primer used for detecting on MUC1-forward: 5′-CTC CTT TCT TCC TGC TGC TG-3′; 
MUC1 reverse: 5′-CTG GAG AGT ACG CTG CTG GT-3′; MUC4 forward: 5′-CAT CAC CAC CCC CCA CAA -3′; 
MUC4 reverse: 5′-GAA ACT CCT CTC TCA GGC AGGAT-3′; GAPDH forward: 5′-GCA TTG CCC TCA ACGAC-
3′; GAPDH reverse: 5′-GTC TCT CTC TTC CTC TTG TGC-3′.

Gene expression analysis in microarray data. The data of gene expression was analyzed by using 
Affymetrix U133 Plus 2.0 human oligonucleotide microarrays (Phalanx Biotech Group) in IL-17RB-depleted 
CFPAC-1 cells as  previously11. Briefly, a ratio less than 0.5 were selected as candidates while comparison the gene 
expression in IL-17RB-depleted CFPAC-1 with control. We first obtained 528 genes down-regulated in IL-17RB-
depleted cells. To narrow down the range of candidates, we used NCG5.0 (https ://ncg.kcl.ac.uk) to identify the 
cancer-related genes. Out of 13 in 49 cancer-related genes are reported with drug resistance function. And finally 
the membrane-bound proteins, MUC1 and MUC4, were selected for investigation the mechanism of IL-17RB 
in drug resistance.

Immunoblotting. Immunoblotting analysis was performed after electrophoresis using the Gradient Magic 
SDS-PAGE system (BioEast, Taipei, Taiwan) and transfer to PVDF membrane by Trans-Blot SD Semi-Dry Trans-
fer Cell (Bio-Rad Laboratories, Hercules, Ca, US) at 20 V for 40 min as well as blocking in 5% skim-milk buffer, 
with overnight incubation of 1:000× dilution of primary antibody, followed by a 1:5000× dilution of horseradish 
peroxidase-conjugated anti-rabbit or anti-mouse antibody (GeneTex, Hsinchu, Taiwan). Signals were detected 
by using Clarity Western ECL blotting Substrate (Bio-Rad Laboratories, Hercules, CA, US). The homemade 
antibody (A81) against IL-17RB was used. Antibodies against MUC1 (VU4H5) and Oct-4 were purchased from 
Cell Signaling Technology (Danvers, MA, US). Antibodies against MUC4, α-tubulin (GT114), Nanog (N3C3), 
and Sox2 (N1C3) were purchased from GeneTex (Hsinchu, Taiwan). Antibody against GAPDH was purchased 
from Proteintech (Rosemont, IL, US). Protein concentration was determined by the Bradford assay (Bio-Rad 
Laboratories, Hercules, Ca, US) before loading and verified by α-tubulin or GAPDH level at 1:100,000 dilution. 
The images were acquired by ChemiDoc MP Imaging System (Bio-Rad Laboratories, Hercules, Ca, US), and 
processed by Image Lab software (Version 5.2.1, Bio-Rad Laboratories, Hercules, Ca, US; https ://www.bio-rad.
com/en-us/produ ct/image -lab-softw are?ID=KRE6P 5E8Z).

https://ncg.kcl.ac.uk
https://www.bio-rad.com/en-us/product/image-lab-software?ID=KRE6P5E8Z
https://www.bio-rad.com/en-us/product/image-lab-software?ID=KRE6P5E8Z
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Surface CD44 staining. Cells were detached by Accutase (Sigma Aldrich, St. Louis, MI, US), and cal-
culated in 1 × 106 cells to be processed for CD44 staining. Cells were washed with chilled PBS twice and then 
incubated with blocking buffer (0.5% BSA, 2%FBS in PBS) for 30 min at room temperature. After wash with 
PBS twice, cells were incubated with anti-CD44 antibody (1:100 dilution) for 30 min at room temperature and 
protected from light. Cells were then washed with washing buffer (1% FBS and 1 mM EDTA in PBS) three times, 
and filtered with 40 µm mesh into tubes. The cells were ready for flow cytometry analysis (BD FACSCalibur). 
PE mouse anti-human CD44 (G44-26) and PE mouse IgG2b ĸ isotype (27–35) were purchased from BD Bio-
sciences (San Jose, CA, US).

Spheres formation assay. Cells were seeding at 1000 cells/well density in 96-well ultra-low attachment 
microplate (Corning, Corning, NY, US) in DMEM/F12 medium supplied with 1× B27 plus supplement, 1× N-2 
supplement, 2 ng/ml bFGF, and 2 ng/ml EGF, all supplements were purchased from ThermoFisher (Waltham, 
MA, US). Cells was incubated at 37 °C for 14 days for estimation of sphere (> 100 nm) formation.

MTT and MTS assay. Pancreatic cancer cells were seeded in a 96-well plate at 5000 cell density, incubated 
overnight. Cells were then treated with gemcitabine or other drugs for 48 h. Removed the medium and added 
0.5 mg/ml MTT (Sigma Aldrich, St. Louis, MI, US) to each well and incubated for 3 h. Formazan was dissolved 
in DMSO and used for detection with absorbance at OD 570 nm. For MTS, 20 μl MTS (Abcam, Cambridge, 
UK) was added to wells and incubated for 3 h following gemcitabine treatment and detected by absorbance at 
OD 490 nm.

Immunohistochemistry staining (IHC). IHC assay was performed as previously  described11. Antibodies 
used in IHC against IL-17RB (A81) were homemade. MUC1 (EP85) and MUC4 (EP256) were purchased from 
Bio SB (Santa Barbara, CA US). Results were grouped into low (< 10%) and high (> 10%).

Statistical analysis. All data are presented as means ± SD, and Student’s t test was applied for comparison 
with the control group and other group. Significant statistic results are presented as *, **, and *** with P < 0.05, 
P < 0.01, and P < 0,001, respectively. Chi-squire test is performed by SPSS software (https ://www.ibm.com/produ 
cts/spss-stati stics , version 18) and used for examining correlation among expression of IL-17RB, MUC1, MUC4, 
and clinical parameters in human subjects with pancreatic cancers.

Data availability
All data to support the conclusions of this manuscript are included in the main text and supplementary materi-
als. All materials are available upon request, including chemical compounds as supplies permit, and subject to 
a standard materials transfer agreement.
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