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Abstract

Objective: To explore stable and functional microRNA (miRNA)–disease relationships using a

genome-wide expression profile pattern matching strategy.

Methods: We applied the ranked microarray pattern matching strategy Gene Set Enrichment

Analysis to identify miRNA permutations with similar expression patterns to diseases. We also

used quantitative reverse transcription PCR to validate the predicted expression levels of miRNAs

in three diseases: inflammatory bowel disease (IBD), oesophageal cancer, and colorectal cancer.

Results: We found that hsa-miR-200 c was upregulated more than 40-fold in oesophageal cancer.

The expression of miR-16 and miR-124 was not consistently upregulated in IBD or colorectal

cancer.

Conclusions: Our results suggest that this expression profile matching strategy can be used to

identify functional miRNA–disease relationships.
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Introduction

MicroRNAs (miRNAs) are a class of single-
stranded small noncoding RNAs (�22
nucleotides long) that negatively regulate
messenger RNA (mRNA) expression at the
post-transcriptional level.1,2 miRNAs bind
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to the 30-untranslated region of target genes
through base-pairing, resulting in mRNA
degradation and/or translational inhib-
ition.3 Accumulating evidence shows that
miRNAs are involved in multiple biological
processes and cellular signalling path-
ways,4,5 and that mutations or the dysregu-
lation of miRNAs can cause various
diseases. Recently, several studies have
identified close relationships between
miRNAs and disease,4,6–9 leading to the
construction of dozens of miRNA-related
databases. For example, miR2Disease, a
resource of miRNAs that are dysregulated
in human diseases, currently includes 3273
miRNA–disease relationship entries.10

A common strategy to explore potential
disease-related miRNAs is to identify
miRNAs that are differentially expressed in
a disease state using technologies such as
quantitative reverse transcription (qRT)-
PCR, miRNA microarray analysis, or
small RNA deep sequencing. Alternatively,
cell transcriptional responses to various
treatments or perturbations can be com-
pared using algorithms such as Gene Set
Enrichment Analysis (GSEA)11 and large
gene expression profiling datasets to quan-
titatively calculate the relevance of different
perturbations. The first large-scale effort to
apply this principle was the Connectivity
Map project, which aimed to find potential
connections among molecule treatments,
disease states, and other bioprocesses by
querying large-scale expression profiling
data and validated gene sets.12 Since then,
several studies have also demonstrated the
feasibility of this approach in drug repos-
ition studies.13–15

Hypothetically, because miRNAs are
integrated into regulatory networks that
influence target and other downstream
genes, cell transcriptional responses against
miRNA perturbations (either overexpres-
sion or knockdown) may reflect the tran-
scriptional response of the related disease
state to some extent. Thus, miRNA–disease

relationships can be identified using this
transcriptional response comparison strat-
egy. Previously, Jiang et al. suggested that it
might be possible to determine miRNA–
drug links by integrating miRNA targets
with the expression profiles of cancers
and cell responses to small molecules.16

However, to the best of our knowledge, no
investigation has directly compared the
transcriptional responses induced by both
miRNA genotype variation and disease.
Recently, our group developed the
ExpTreeDB database, which allows users
to mine relationships among manually
curated perturbations such as agent treat-
ment, genotype variation, disease state,
stress, and infection.17 In this study, we
explored miRNA–disease relationships
using this methodology and datasets from
the Gene Expression Omnibus (GEO). We
collected global transcriptional response
datasets representing 40 human diseases
and 30 miRNA variation treatments. Pair-
wise similarities were calculated to identify
putative miRNA–disease links for a litera-
ture investigation and experimental valid-
ation in three diseases: inflammatory bowel
disease (IBD), oesophageal cancer, and
colorectal cancer. We found that miR-200 c
was significantly overexpressed in oesopha-
geal cancer. However, we did not observe
the consistently upregulated expression of
miR-16 or miR-124 in IBD or colorectal
cancer.

Methods

Specimens

Subjects in this study were recruited by
Zhejiang Provincial People’s Hospital, and
included five oesophageal cancer patients
(four men and one woman; average age,
67 years), five colorectal cancer patients
(three men and two women; average age, 62
years), and five IBD patients (two Crohn’s
disease cases and three ulcerative colitis cases;
four women and one man; average age,
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38 years). The diagnosis of all patients had
been confirmed by pathology. Patients with
cancer were free of other malignant neo-
plasms, and had not undergone radiother-
apy or chemotherapy.

This work was approved by the Ethics
Committee of Zhejiang Provincial People’s
Hospital (approval number: 2014KY059).
Informed consent was obtained from all
subjects prior to their participation.

Two 1�1 cm tissue samples and the 5 cm
margin of each carcinoma sample were
obtained during surgical resection. All sam-
ples were washed with saline solution then
immediately placed into 2ml RNAlater
solution and stored at 4�C overnight
(>16h). The tissues were then stored at
�80�C until required for analysis. Tissue
samples from IBD and corresponding
normal tissues were collected during pre-
treatment endoscopic biopsies and prepared
as described above.

RNA isolation from clinical tissues

Total RNA was isolated using TRIzol
reagent (Invitrogen, Waltham, MA, USA).
Tissues were centrifuged at 2000 rpm, speed
500 xg for 5min, then cell pellets were
homogenized in 1.0ml TRIzol reagent and
incubated at room temperature for 5min.
Each sample was treated with 200 ml of
chloroform, repeatedly inverted for 15 s,
then incubated at room temperature for
10min. Samples were then centrifuged at
12,800 rpm for 10min at 4�C, and the col-
ourless supernatant was transferred to a
fresh tube and treated with the same
volume of isopropyl alcohol. After incuba-
tion at 4�C for 10min, samples were again
centrifuged at 12,800 rpm for 10min at 4�C,
the supernatant was removed, and the pellet
was washed with 75% ethanol. Samples
were centrifuged twice at 11,800 rpm for
5min at 4�C, with removal of the super-
natant after the first centrifugation, then the
pellet was dried at room temperature and

dissolved in RNase-free water. The RNA
concentration was quantified by a
Nanodrop 2000 Spectrophotometer
(Thermo Scientific, Waltham, MA, USA).

qRT-PCR

cDNA was synthesized according to the
manufacturer’s protocol (Promega).
Briefly, 10 -ml reverse transcription reactions
contained 2 nM miRNA RT primers,
500 mM dNTPs, 0.2 ml M-MLV reverse tran-
scriptase, and 1 mg total RNA. Conditions
were as follows: 16�C for 30min followed by
42�C for 1 h and 75�C for 10min. The real-
time PCR system contained 10 ml SYBR
Premix Ex Taq, 0.5 ml upstream primer,
0.5 ml downstream primer (2.5 mM), 1 ml
cDNA, and 8 ml RNase-free H2O. The reac-
tion was incubated at 95�C for 30 s, followed
by 45 cycles of 95�C for 5 s, then 60�C for
30 s. miRNA expression was analysed using
the 2���Ct method, and U6 was selected as
the control gene. Primer sequences are
shown in Table S1. SPSS 17.0 software was
used to perform statistical analysis. Data
were shown as the mean�SD. The t-test
was used for analysis between cancer tissue
and adjacent normal tissue or between
disease and control group. Significance was
defined as P value< 0.05.

Gene expression profiling data collection

We downloaded human global gene expres-
sion profiles representing transcriptional
responses to miRNA perturbations and
disease states from GEO dataset (GDS)
records produced by two platforms, the
Affymetrix human genome U133 plus 2.0
array (GPL570) and the Affymetrix human
genome U133A array (GPL96). These two
human microarray platforms are the most
frequently used in GEO and include over
20,000 genes, which is favourable for use
with the GSEA algorithm.12,13,18,19 Human
GDS records with a ‘‘disease state’’ subtype
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description were downloaded as disease
state datasets and were manually examined
in ExpTreeDB.17 Datasets related to
miRNA perturbations were downloaded
from GEO series (GSE) resources, and
detailed treatments as well as miRNA
entries were manually extracted. A similar
approach was used to obtain small RNA
silencing datasets. We required that one
gene expression profile related to a given
perturbation must include a blank control
group so that transcriptional responses to
perturbations could be clearly defined.

Generating a ranked gene list

Within each GEO dataset, we manually
selected the experimental group of a par-
ticular perturbation. The experimental
groups were then manually matched to
normal control groups. Specific genotype
variations and disease states were defined
as ‘‘perturbations’’ to cells that induce
transcriptional responses. Following the
approach used in ExpTreeDB,17 we gener-
ated a phenotype ranked list (PRL) to
denote the transcriptional response to a
perturbation such as miRNA overexpres-
sion, gene silencing, or disease state. In
brief, pair-wise global gene expression
fold-changes were calculated, and all
fold-change lists under a certain perturb-
ation were merged into a PRL using a
hierarchical majority voting scheme to pre-
vent poor representation of heterogeneous
experimental settings.20 Thus, the genes
showing the highest level of up/down-
regulation (presented as microarray probe
names) under each permutation were placed
at the top/bottom of the corresponding
PRL.

For the disease state, two perturbations
were defined to a different extent: a descrip-
tion of the disease, such as IBD, and the
provision of more detailed information about
stage or subtype, such as ulcerative colitis
(UC) or Crohn’s disease (CD). We generated

PRLs for both definitions, and correlation
calculations showed that the two PRLs had
high correlation coefficients (Enrichment
Score¼ 0.662, Figure 1). Therefore, in this
study we employed a general description of
disease states and perturbation definitions
(Table 1 and Figure 1).

Similarity determinations based on
the GSEA algorithm

We quantified pair-wise similarities among
PRLs as correlation scores based on GSEA.
Following the strategy used by Iorio
et al,13,20 we extracted the top 250 and the
bottom 250 probes as gene signatures. The R
package Gene Expression Signature with
integrated GSEA was used for the similarity
calculations.21 In brief, the enrichment of a
signature in a PRL is estimated by the
Kolmogorov–Smirnov test for uniform dis-
tributions. The signature of permutation A
is represented as (upA, downA), with upA
representing the top 250 probe sets and
downA representing the bottom 250 ones.
The final similarity score of PRLs between
perturbation A and B (SA, B) is defined as the
average enrichment score:

SA,B ¼
ES

upB
A þ ES

upA
B � ESdownB

A � ESdownA
A

4

ESs
p is the enrichment score of signature s

(up- and down-regulated parts separated)
with respect to the PRL p. Thus, positive
similarity scores represent similar regulation
tendencies, while negative correlation scores
represent opposite regulation tendencies.

Results

Overview of miRNA–disease similarities

From GSE records, we obtained transcrip-
tional responses including genotype
variation of 30 miRNAs for nine knock-
down and 21 overexpression treatments.
Variations in Drosha, importin 8 (IPO8),
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and DGCR8 were also included for
their functions in miRNA biogenesis.
Transcriptional responses representing 42
distinct disease states were collected from
GDS records. Based on a GSEA-centred
pipeline, we calculated the pair-wise simila-
rities between the transcriptional responses
of miRNA variations and disease states
(Figure 2(a)). We found that the overall
miRNA–disease similarity values followed a

normal distribution (mean¼�0.002, vari-
ance¼ 0.074, Figure 2(b)). However, we also
observed some outliers with extreme simi-
larity scores.

Correlated miRNA–disease links

We next focused on highly correlated tran-
scriptional responses to miRNA variation
and disease states. The top 5% of miRNA–

Figure 1. A heat map of classified disease correlation scores. Each permutation is represented by a

phenotype ranked list where the genes showing the most up-regulation are placed at the top while the most

down-regulated genes are at the bottom. The correlation scores were computed by measuring gene

regulation in correspondence with the GSEA method to obtain a score from�1 toþ1. The color scale shows

positive correlations in red and negative correlations in blue.
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Table 1. Data sets used in this study.

Type Term Accession no. Cell type or disease state pair

Disease state Adenocarcinoma

(oesophagus)

GDS1321 Barrett’s oesophagus/normal

adenocarcinoma/normal

Alzheimer’s disease GDS810 moderate AD/control

severe AD/control

incipient AD/control

Bipolar disorder GDS2190 bipolar disorder/control

GDS2191 bipolar disorder/control

Breast cancer GDS2250 basal-like cancer/normal

GDS2617 non-basal-like cancer/normal

BRCA1-associated cancer/normal

tumorigenic cancer cell/normal

GDS2635 invasive lobular carcinoma/lobular

control

invasive ductal carcinoma/lobular

control

Carious pulpal GDS1850 carious/healthy

Chronic

lymphocytic leukaemia

GDS2643 Waldenstrom’s macroglobulinaemia/

normal

chronic lymphocytic leukaemia/normal

multiple myeloma/normal

Chronic obstructive

pulmonary disease

GDS289 chronic obstructive pulmonary disease/

control

Colorectal cancer GDS2609 early onset colorectal cancer/healthy

control

Cushing’s syndrome GDS2374 ACTH-dependent Cushing’s syndrome/

control

GIP-dependent Cushing’s syndrome/

control

GIP-dependent nodule/control

GIP-dependent adenoma/control

Dermatomyositis GDS2153 dermatomyositis/normal

Emphysema GDS737 severe emphysema/no or mild

emphysema

Endometriosis GDS2737 endometriosis/normal

Essential

thrombocythaemia

GDS1376 thrombocythaemia/normal

GDS552 ET/normal

GDS761 malignant/normal

Familial combined

hyperlipidaemia

GDS946 familial combined hyperlipidaemia/

normal

Heart failure GDS1362 ischaemic cardiomyopathy/non-failing

heart

non-ischaemic cardiomyopathy/non-

failing heart

GDS2154 inflammatory dilated cardiomyopathy/

healthy

GDS2205 dilated cardiomyopathy/non-failing

(continued)
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Table 1. Continued.

Type Term Accession no. Cell type or disease state pair

GDS651 idiopathic dilated/normal

ischaemic/normal

Hereditary gingival

fibromatosis

GDS1685 hereditary gingival fibromatosis/normal

HIV infection GDS2649 non-progressive HIV infection/uninfected

early HIV infection/uninfected

chronic HIV infection/uninfected

Huntington’s disease GDS1331 presymptomatic/normal

symptomatic/normal

Idiopathic myelofibrosis GDS2397 idiopathic myelofibrosis/normal

Inflammatory bowel disease GDS1615 ulcerative colitis/normal

Crohn’s disease/normal

GDS559 Crohn’s disease/control

ulcerative colitis/control

Kidney sarcoma GDS1282 clear cell sarcoma of the kidney/control

Wilms’ tumour/control

GDS505 RCC/normal

Leiomyoma GDS484 leiomyoma/normal

Lethal congenital

contracture syndrome

GDS1295 LCCS/control

Lung disease GDS2142 severe cystic fibrosis/normal

mild cystic fibrosis/normal

Malignant pleural

mesothelioma

GDS1220 malignant pleural mesothelioma/normal

Melanoma GDS1375 malignant melanoma/benign nevi

GDS1989 lymph node metastasis/normal

vertical growth phase melanoma/

normal

melanoma in situ/normal

atypical nevus/normal

metastatic growth phase melanoma/

normal

Muscle diseases GDS1956 juvenile dermatomyositis/normal

Emery–Dreifuss muscular dystrophy/

normal

calpain 3 mutation/normal

Duchenne muscular dystrophy/normal

FKRP mutation/normal

amyotophic lateral sclerosis/normal

Becker muscular dystrophy/normal

acute quadriplegic myopathy/normal

fascioscapulohumeral muscular

dystrophy/normal

dysferlin mutation/normal

spastic paraplegia/normal

Myelodysplastic syndrome GDS1392 myelodysplastic syndrome/normal

rheumatoid arthritis, off treatment/

normal

(continued)
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Table 1. Continued.

Type Term Accession no. Cell type or disease state pair

folate deficiency/normal

vitamin B12 deficiency/normal

rheumatoid arthritis, on methotrexate/

normal

GDS2118 refractory anaemia with excess blasts/

normal

refractory anaemia/normal

refractory anaemia with ringed side-

roblasts/normal

Non-melanoma skin cancer GDS2200 squamous cell carcinoma/normal

actinic keratosis/normal

Obesity GDS268 morbidly obese/non-obese

Papillary thyroid carcinoma GDS1665 papillary thyroid carcinoma/normal

GDS1732 papillary thyroid cancer/normal

Pituitary adenoma GDS1253 GH-secreting adenoma/normal

PRL-secreting adenoma/normal

non-functioning adenoma/normal

ACTH-secreting adenoma/normal

GDS2432 pituitary adenoma predisposition/

control

Polycystic ovary syndrome GDS1050 polycystic ovary syndrome/normal

GDS2084 polycystic ovary syndrome/control

Prostate cancer GDS1423 cancer/normal

GDS1439 metastatic/benign

primary/benign

GDS1746 metastatic/benign hyperplasia

basaloid/benign hyperplasia

Schizophrenia GDS1917 schizophrenia/control

Severe combined

immunodeficiency

GDS420 SCID/control

Sickle cell plasma effect

on pulmonary artery

endothelial cells

GDS1257 SCD with acute chest syndrome/normal

SCD steady state/normal

Squamous lung cancer GDS1312 cancer/normal

Teratozoospermia GDS2697 teratozoospermia/normal

Vulvar intraepithelial neoplasia GDS2418 vulvar intraepithelial neoplasia/control

MicroRNA

permutation

or related

gene silencing

DGCR8 GSE13639 HeLa cells

DROSHA GSE13639 HeLa cells

GSE6767 HeLa cells

IPO8 GSE14054 HeLa cells

KSHV microRNA (OE) GSE16355 LEC cells

miR-1 (OE) GSE22002 HeLa cells

miR-124 (OE) GSE6207 HepG2 cell line

miR-125b (KD) GSE19680 M07 cells

miR-130b (OE) GSE17386 PLC8024 CD133- HCC cells

(continued)
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disease links (n¼ 69) involving 23 miRNAs
and 28 diseases, which are referred to as
correlated, are shown in Table 2. The correl-
ations were also illustrated by network to
exhibit hubs of miRNA variations and dis-
eases. Among these correlations, we observed
both ‘‘hub’’ miRNAs and diseases. Four
diseases were linked to four miRNA vari-
ations, including Cushing’s syndrome, IBD,
multiple myeloma, and carious pulp. The
overexpression of miR-210 was correlated

with eight disease states, with endometriosis
found at the 0.43% percentile. The co-
overexpression of miR-338-3 p and miR-451
was also correlated with seven diseases.
Interestingly, we found that silencing of
IPO8 was correlated with five diseases, and
that Drosha or DGCR8, also functional
during miRNA biogenesis, were within the
top 5% of associations.

We found that the overexpression of
miR-210 was most strongly correlated with

Table 1. Continued.

Type Term Accession no. Cell type or disease state pair

miR-145 (OE) GSE18625 DLD-1 cells

GSE19737 MDA-MB-231 cells

miR-146a (KD) GSE21132 Jurkat T cells

miR-146a (OE) GSE21132 Jurkat T cells

miR-155 (KD) GSE13296 dendritic cells

miR-155 (OE) GSE22002 HeLa cells

GSE9264 HEK293 cells

miR-15a/16-1 (OE) GSE18866 CLL-I83E95 cells

miR-16 (KD) GSE24522 MMS1 cell line

miR-16 (OE) GSE24522 MMS1 cell line

miR-182 (KD) GSE24824 human melanoma metastasis

miR-200c (OE) GSE25332 Type 2 endometrial cancer cell line,

Hec50

miR-210 (KD) GSE16962 HUVEC

miR-210 (OE) GSE16962 HUVEC

miR-210/338-3p/

33a/451 (OE)

GSE15385 T84 cells

miR-221 (KD) GSE19777 MCF7-FR

miR-222 (KD) GSE19777 MCF7-FR

miR-26a (OE) GSE12278 human BL cell lines:NAM (Ramos)

miR-30d (OE) GSE27718 5B1 melanoma cell line

miR-335 (OE) GSE9586 LM2 cell line

miR-338-3p/451 (OE) GSE15385 T84 cells

miR-34a (OE) GSE16674 K562 cells

GSE7754 HCT116 cells

miR-616 (OE) GSE20543 LNCaP prostate cells

miR-7 (OE) GSE14507 A549 cells

miR-99a (OE) GSE26332 C4-2 cells

miR-K12-11 (OE) GSE9264 HEK293 cells

top 25 miRNAs (KD) GSE21577 HEK 293 cells

AD, Alzheimer’s disease; ACTH, adrenocorticotropic hormone; GIP, gastric inhibitory polypeptide; ET, essential

thrombocythaemia; RCC, renal cell carcinoma; LCCS, lethal congenital contracture syndrome; FKRP, fukutin-related

protein; GH, growth hormone; PRL, prolactin; SCID, severe combined immunodeficiency; HCC, hepatocellular carcinoma;

OE, overexpression; KD, knockdown

604 Journal of International Medical Research 46(2)



disease state, showing a wide range of
relationships to different diseases. Of the
eight diseases linked to miR-210, four were
solid cancers, including lung cancer and
kidney sarcoma. IBD was identified as a
disease connected with the most miRNA

genotype variations, and was predicted to
share transcriptional phenotype relation-
ships with IPO8, KSHV miRNA, miR-124,
miR-16, and miR-338-3 p/451 dysregula-
tion. We also identified multiple myeloma
as a disease with five relationships, but

Figure 2. Pair-wise similarity scores between the transcriptional responses of miRNA variation and disease

states. (a) A heat map of similarity scores. miRNA variations and diseases were sorted by their correlations

with each other in the top 5%. (b) A distribution and normal probability plot of similarity scores.
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Table 2. miRNA–disease relationships within the top five percentile.

miRNA perturbation Disease CS PR

miR-182 (KD) Carious pulpal 0.3078 0.07%

IPO8 Multiple myeloma 0.2376 0.14%

miR-26a (OE) Idiopathic myelofibrosis 0.2247 0.22%

KSHV microRNA (OE) Inflammatory bowel disease 0.2246 0.29%

miR-182 (KD) Lethal congenital contracture syndrome 0.2226 0.36%

miR-210 (OE) Endometriosis 0.2026 0.43%

miR-16 (OE) Sickle cell plasma effect 0.2013 0.51%

KSHV microRNA (OE) Sickle cell plasma effect 0.1972 0.58%

miR-338-3p/451 (OE) Multiple myeloma 0.1953 0.65%

IPO8 Dermatomyositis 0.1918 0.72%

miR-210/338-3p/33a/451 (OE) Multiple myeloma 0.1909 0.79%

miR-16 (OE) Inflammatory bowel disease 0.1817 0.87%

miR-26a (OE) Sickle cell plasma effect 0.1794 0.94%

miR-1 (OE) Carious pulpal 0.1784 1.01%

miR-335 (OE) Polycystic ovary syndrome 0.1751 1.08%

miR-155 (OE) Carious pulpal 0.1747 1.15%

miR-210 (KD) Malignant pleural mesothelioma 0.1662 1.23%

IPO8 Inflammatory bowel disease 0.1655 1.30%

miR-210/338-3p/33a/451 (OE) Huntington’s disease 0.1621 1.37%

miR-338-3p/451 (OE) Huntington’s disease 0.1616 1.44%

miR-210 (OE) Kidney sarcoma 0.1579 1.52%

miR-210 (OE) Squamous lung cancer 0.1548 1.59%

miR-335 (OE) Multiple myeloma 0.1529 1.66%

miR-338-3p/451 (OE) Cushing’s syndrome 0.1503 1.73%

miR-7 (OE) Cushing’s syndrome 0.1487 1.80%

miR-335 (OE) Squamous lung cancer 0.1467 1.88%

miR-146a (KD) Cushing’s syndrome 0.1465 1.95%

miR-124 (OE) Sickle cell plasma effect 0.1465 2.02%

miR-200c (OE) Adenocarcinoma (oesophagus) 0.1463 2.09%

miR-1 (OE) Heart failure 0.1451 2.16%

miR-182 (KD) Endometriosis 0.1448 2.24%

IPO8 Cushing’s syndrome 0.1436 2.31%

miR-210/338-3p/33a/451 (OE) Cushing’s syndrome 0.1423 2.38%

miR-210 (KD) Squamous lung cancer 0.1418 2.45%

miR-338-3p/451 (OE) Vulvar intraepithelial neoplasia 0.1416 2.53%

miR-182 (KD) Heart failure 0.1412 2.60%

miR-155 (OE) Bipolar disorder 0.1405 2.67%

miR-K12-11 (OE) Carious pulpal 0.1398 2.74%

miR-16 (OE) Bipolar disorder 0.1385 2.81%

miR-338-3p/451 (OE) Idiopathic myelofibrosis 0.1381 2.89%

miR-210 (OE) Carious pulpal 0.1341 2.96%

miR-210/338-3p/33a/451 (OE) Idiopathic myelofibrosis 0.1334 3.03%

miR-124 (OE) Colorectal cancer 0.1328 3.10%

miR-155 (OE) Non-melanoma skin cancer 0.1323 3.17%

KSHV microRNA (OE) Severe combined

immunodeficiency disease

0.1323 3.25%

(continued)
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connecting with only one miRNA genotype
variation containing a single miRNA type:
miR-335.

Experimental validation of miRNA
differential expression

We selected correlated miRNA links in both
disease state samples and controls. Based
on bio-sample availability, we selected
oesophageal cancer samples to analyse
miR-200 c expression (OE), and colorectal
cancer samples to assess miR-16 (OE) and
miR-124 expression (OE). We also included
IBD samples for miR-124 expression as a
comparison with previous studies.

We observed consistently high up-regula-
tion of miR-200 c in the oesophageal cancer
samples compared with adjacent control

samples (Figure 3). Of four sample pairs,
miR-200 c was expressed >47-fold in adeno-
carcinoma, and in another pair it was
expressed 261-fold compared with controls.
This result strongly agreed with our predic-
tion that microRNA-200c highly correlated
with the development of oesophageal
cancer. We also identified six genes that
were significantly (P< 0.01) downregulated
in association with miR-200 c overexpres-
sion and in oesophageal cancer samples
using GEO2R of the GEO database. We
queried these six genes in TarBase,15 and
found that one, ELMO2, has been experi-
mentally validated as a target of miR-
200 c.22

We did not observe consistent upregu-
lated expression of miR-16 or miR-124 in
either IBD or colorectal cancer samples

Table 2. Continued.

miRNA perturbation Disease CS PR

miR-124 (OE) Polycystic ovary syndrome 0.1322 3.32%

miR-30d (OE) Lethal congenital contracture syndrome 0.1319 3.39%

miR-210 (OE) Chronic lymphocytic leukaemia 0.1319 3.46%

miR-338-3p/451 (OE) Inflammatory bowel disease 0.1304 3.54%

miR-335 (OE) Leiomyoma 0.1297 3.61%

miR-155 (OE) Heart failure 0.1294 3.68%

miR-146a (OE) Severe combined immunodeficiency disease 0.1283 3.75%

miR-335 (OE) Waldenstrom’s macroglobulinaemia 0.1282 3.82%

miR-210 (OE) Bipolar disorder 0.1279 3.90%

miR-210 (OE) Leiomyoma 0.1266 3.97%

miR-616 (OE) Huntington’s disease 0.1259 4.04%

miR-210/338-3p/33a/451 (OE) Vulvar intraepithelial neoplasia 0.1259 4.11%

miR-16(OE) Colorectal cancer 0.1236 4.18%

miR-124 (OE) Inflammatory bowel disease 0.1230 4.26%

miR-222 (KD) Cushing’s syndrome 0.1228 4.33%

miR-338-3p/451 (OE) Prostate cancer 0.1224 4.40%

miR-182 (KD) Papillary thyroid carcinoma 0.1224 4.47%

IPO8 Severe combined immunodeficiency disease 0.1221 4.55%

top 25 miRNAs (KD) Multiple myeloma 0.1209 4.62%

miR-210 (OE) Papillary thyroid carcinoma 0.1206 4.69%

miR-335 (OE) Melanoma 0.1202 4.76%

miR-146a (KD) Teratozoospermia 0.1201 4.83%

miR-15a/16-1 (OE) Idiopathic myelofibrosis 0.1196 4.91%

miR-16 (OE) Chronic lymphocytic leukaemia 0.1183 4.98%

KD, knockdown; OE, overexpressionl; CS, Correlation Score; PR, Percentile Rank
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compared with controls (Figure 4). In colo-
rectal tissue samples from two CD and three
UC patients, miR-124 was shown to be
upregulated in two (one CD and one UC).
The expression profiles were similar to those
of miR-16/24 in colorectal cancer samples.

Discussion

Screening results based on microarray
analysis are usually unstable and less func-
tionally related than those derived from
other assays. In this study, we connected
miRNAs with diseases to better determine
their functional relationships. We found
that hsa-miR-200 c was upregulated >47-
fold in five oesophageal cancer samples

compared with normal samples. We also
identified the experimentally validated
miRNA target ELMO2 as a potential func-
tional link connecting hsa-miR-200 c and
oesophageal cancer through a simple over-
lap analysis of significantly down-regulated
genes in hsa-miR-200 c interference and
oesophageal cancer samples.

We observed only a slight increase or no
change in miR-124 expression in IBD
patient samples compared with controls.
This is inconsistent with the findings of
Koukos et al., who reported miR-124 down-
regulation in UC samples. This difference
could be explained by individual variation in
miRNA levels even among patients with the
same disease, reflecting differences in

Figure 3. Quantitative RT-PCR assay for miR-200 c expression in paired normal and tumour tissues from

five oesophageal adenocarcinoma patients. The expression levels of normal tissues were standardized to 1,

and the fold-changes are plotted as means� SD of three replicates.
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development stage or genetic background.
Alternatively, it could be caused by the small
sample size in our study.

Relationships between IBD, miR-16, and
miR-124 have previously been reported,23,24

and the dysregulation of miR-16 has been
observed in both CD and UC.23,25 The
decreased expression of miR-124 has also
been suggested to play a role in promoting
inflammation and the pathogenesis of UC
through up-regulating signal transducer and
activator of transcription 3.23 Moreover,

miR-335 has previously been shown to
play a role in multiple myeloma,26 while
miR-210 was reported to be induced by
hypoxia in breast cancer.27 This agrees with
our observation that half of the diseases
associated with miR-210 in the present study
were solid tumours, which are known to
often be hypoxic.28,29

A large systematic collection of gene
expression changes resulting from cellular
exposure to perturbations such as small
molecules and genetic variations would

Figure 4. Quantitative RT-PCR assays for miR-16 and miR-124 expression in colorectal cancer patients and

miR-124 expression in IBD patients. The expression levels of normal tissues are standardized to 1, and the

fold-changes are plotted as means� SD of three replicates.
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help the understanding of cellular pathways
and the development of therapies and
biomarkers. The Library of Integrated
Network-Based Cellular Signatures project
founded by the National Institutes of Health
has therefore been established. This work
should increase the power of simulated
screening following the accumulation of
expression change information under vari-
ous perturbations.

The main limitation of our study is that
we only investigated a small number of
miRNAs in association with disease. In the
future, we plan to include more diseases
and miRNAs and to increase the number of
patient samples. We also aim to further
explore the relationships between miRNA
and diseases using in vivo studies.
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