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Abstract

Background: The NCI-60 is a panel of 60 diverse human cancer cell lines used by the U.S. National Cancer Institute to screen
compounds for anticancer activity. We recently clustered genes based on correlation of expression profiles across the NCI-
60. Many of the resulting clusters were characterized by cancer-associated biological functions. The set of curated
glioblastoma (GBM) gene expression data from the Cancer Genome Atlas (TCGA) initiative has recently become available.
Thus, we are now able to determine which of the processes are robustly shared by both the immortalized cell lines and
clinical cancers.

Results: Our central observation is that some sets of highly correlated genes in the NCI-60 expression data are also highly
correlated in the GBM expression data. Furthermore, a ‘‘double fishing’’ strategy identified many sets of genes that show
Pearson correlation $0.60 in both the NCI-60 and the GBM data sets relative to a given ‘‘bait’’ gene. The number of such
gene sets far exceeds the number expected by chance.

Conclusion: Many of the gene-gene correlations found in the NCI-60 do not reflect just the conditions of cell lines in culture;
rather, they reflect processes and gene networks that also function in vivo. A number of gene network correlations co-occur
in the NCI-60 and GBM data sets, but there are others that occur only in NCI-60 or only in GBM. In sum, this analysis provides
an additional perspective on both the utility and the limitations of the NCI-60 in furthering our understanding of cancers in
vivo.
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Introduction

The NCI-60 [1] is a panel of 60 human cancer cell lines used by

the Developmental Therapeutics Program (DTP) of the U.S.

National Cancer Institute to screen .100,000 compounds plus

natural products since 1990. The NCI-60 panel includes cancers

of colorectal (CO), renal (RE), ovarian (OV), prostate (PR), lung

(LC), breast (BR), and central nervous system (CNS) origin, as well

as leukemias (LE) and melanomas (ME). We and our many

colleagues around the world have profiled the NCI-60 more

comprehensively at the DNA, RNA, protein, mutation, functional,

and pharmacological levels than any other panel of diverse cell

types in existence. The NCI-60 data have been widely used in

cancer research and bioinformatics, but the multiple datasets may

be most informative for the recognition of complex ‘biosignatures’

(a ‘biosignature’ involves an ensemble of genes whose features are

predictive). Analysis of such biosignatures has led to increased

understanding of cell phenotypes and pathway relationships.

When we recently clustered genes based on correlation of

expression profiles across the NCI-60 [2], many of the clusters

were associated with cancer-related biological functions. The

number of such clusters far exceeded what would be expected by

chance. One of the clusters, designated as ‘‘cluster 52 of the 160-

cut,’’ was comprised of significant categories that generally

reflected neuron development, immune response, and epithelial

to mesenchymal transition (EMT) in addition to cell migration. In

contrast, cluster 68 of the 160-cut was focused strongly on a single

biological process, namely immune function.

A previous study [3] compared the gene expression profiles

between cell lines and breast tumor tissue samples. The authors

noted that: ‘‘cell lines and tumors share many aspects of their gene

expression patterns that can be related to the normal and
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pathological physiology that distinguishes breast cell types in vivo.

These gene sets include 1) the basal epithelial cluster, 2) the

luminal epithelial/ER+ cluster, 3) the ERBB2+ amplicon cluster,

4) the proliferation cluster, and 5) the interferon cluster.’’

Cancer cells in culture are subject to very different conditions

than tumor cells in the host. They have been removed from their

physiological milieu of other cell types, tissue architecture,

hormonal influences, and autocrine/paracrine signals. So the

question remained: ‘‘What does such a pattern of association in

cell culture tell us about cancer cells in vivo?’’.

To explore that question, we analyzed the highly curated

glioblastoma (GBM) transcript expression data set generated by

the The Cancer Genome Atlas (TCGA) initiative [4]. TCGA was

established to build a comprehensive catalogue of genomic and

phenotypic abnormalities that drive carcinogenesis and potentially

affect therapy in .20 different tumor types. In particular, TCGA

has now provided a detailed view of genomic aberrations in a

GBM cohort consisting of 206 patient samples. Verhaak and

Hoadley et al. [5] recently described a gene expression-based

molecular classification of GBM into Proneural, Neural, Classical

and Mesenchymal subtypes and integrated multiple types of

genomic data to establish patterns of somatic mutation, DNA copy

number change, and gene expression.

In the present analysis, we tested whether sets of genes that we

previously found to be (1) highly co-expressed across the NCI-60,

and (2) functionally coherent were also highly co-expressed across

the GBM samples. We then extended that basic analysis by a

‘‘double fishing’’ strategy. That is, we identified sets of genes that

showed correlation $0.60 in both the NCI-60 and GBM data sets

relative to a given ‘‘bait’’ gene. We found that the number of such

gene sets far exceeded the number expected by chance. That

analysis does not mean that cancer cells in culture share all, or

even most, of their characteristics with cells in vivo, but it does

indicate similarities.

Methods

Datasets
For GBM expression data, the files unifiedScaled.txt (which

contains a complete set of expression data, referred to as

TCGA.GBM.complete) TCGA_unified_CORE_ClaNC840.txt (which in-

cludes the subtype tags of each sample) were downloaded from the

Figure 1. Thumbnails of gene correlation clustering for Cluster 52 genes across (A) NCI-60 cell lines and (B) TCGA GBM samples. The
full size figures are available as Figures S1 and S2. The numbers appended after the gene name refer to the NCI-60 cluster in which that gene
appeared.
doi:10.1371/journal.pone.0040062.g001

Table 1. Contingency table for cluster 52 re-clustered across
NCI-60 and across GBM.

GBM CLUSTER MARGINALS

1 2 3

NCI-60
CLUSTER

1 9 1 5 15

2 12 34 18 64

MARGINALS 21 35 23 79

The Fisher Exact p-value corresponding to this contingency table was 0.00039.
doi:10.1371/journal.pone.0040062.t001

Table 2. Fisher Exact p-values for concordance of re-
clustering cluster 52 across NCI-60 and across GBM.

NUMBER OF CLUSTERS (parameter ‘‘k’’ of cutree())

2 3 4 5 6 7 8

0.00254 0.00039 0.00103 0.00093 0.00167 0.00157 0.00189

The Fisher’s Exact p-value for 100 randomizations corresponding to k = 3 was
0.46460.279. The bold value indicates the lowest p-value model for the reals.
This was the model used for the remainder of the cluster 52 analysis.
doi:10.1371/journal.pone.0040062.t002

Gene Expression/Function across NCI60 and TCGA GBM
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TCGA web site http://tcga-data.nci.nih.gov/docs/publications/

gbm_exp/.

We used all 202 GBM samples that are available, representing

roughly comparable numbers of samples of each subtype. Since

the calculated correlation values will be more accurate if they

come from a more diverse sampling population, we wanted to

retain as much diversity as possible by looking at all subtypes

together, so we did not report co-expression within or between

subtypes.

NCI-60 expression data were obtained from CellMiner [6].

Determination of composite expression levels for each gene was

performed as described previously [7–9]. A special request was

made to the system administrator for the complete set of gene

expression profiles (referred to as NCI-60.complete). That download

would have been too large to perform through the standard web

interface. Further details are provided in [2]). Briefly, NCI-

60.complete was pre-processed by selecting only those genes that

have both an HGNC symbol and annotation in the GO Biological

Process ontology. Each gene profile vector was scaled to zero

mean and unit variance. That reduced dataset is referred to here

as NCI-60.BP.

As mentioned above for the GBM samples, we are trying to

achieve as high a degree of diversity as possible in the cell lines, so

that the highly heterogeneous mixture of cell lines represented by

the NCI-60 is ideal. For illustration, consider two genes. We are

looking to see if the expression levels of those two genes go up and

down together as we traverse the 60 cell lines. If all of the cells lines

were essentially identical to one another, there would be no

variation and we could not see how the two genes relate in

different conditions.

For most of the studies reported here, the expression data for

GBM and for NCI-60 were restricted to those genes that were

present in both TCGA.GBM.complete and NCI-60.BP.

Table 3. Concordance of cluster 52 genes in NCI-60 and GBM
clusters.

GBM CLUSTER

1 2 3

NCI-60
CLUSTER

1 ACCN2 FOS GALK2

ALDOC MCAT

EPB41 MRPS30

FOXO4 SCO2

MUTYH SLC43A1

OXSM

PDE3B

PRMT7

SORD

2 AGER ACTB ACTN3

ALCAM ADAM9 CDH2

DBN1 AXL CDH4

DDAH1 CAV1 CHST3

DYNLL1 CAV2 DKK3

GLRB CLIC4 EGFR

MYBL1 CNN2 FADS3

NMT2 DLC1 FEZ2

ROBO3 DSE FGF2

SYNE1 DUSP1 KCNMA1

TRPC1 FGFR1 MGLL

ZNF281 FOSL2 MT1X

GADD45A MYL6

GAS6 SOCS5

IL6 SORBS3

INHBA TGFB2

ITGB1 TUFT1

JUN VCAN

KLF7

LOXL2

MYH9

MYLK

PDGFC

PDLIM7

PTRF

PVR

QSOX1

RRAS

TGFB1I1

THBS1

TNFRSF12A

TRAM1

VCL

ZYX

doi:10.1371/journal.pone.0040062.t003

Table 4. Contingency table for cluster 68 re-clustered across
NCI-60 and across GBM.

GBM CLUSTER MARGINALS

1 2 3 4

NCI-60
CLUSTER

1 8 11 0 5 24

2 11 12 38 14 75

MARGINALS 19 23 38 19 99

The Fisher Exact p-value corresponding to this contingency table was 0.00001.
doi:10.1371/journal.pone.0040062.t004

Table 5. Fisher Exact p-values for concordance of re-
clustering cluster 68 across NCI-60 and across GBM.

NUMBER OF CLUSTERS (parameter ‘‘k’’ of cutree())

2 3 4 5 6 7 8

0.09162 0.10917 0.00001 0.00001 0.00001 0.00001 0.00001

The Fisher’s Exact p-value for 100 randomizations corresponding to k = 3 was
0.52960.283. The bold value indicates the lowest p-value model for the reals.
This was the model used for the remainder of the cluster 68 analysis.
doi:10.1371/journal.pone.0040062.t005

Gene Expression/Function across NCI60 and TCGA GBM
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R Language
R language code [10] was developed to read and integrate the

data in the two downloaded files, as well as to provide support for

both basic and more complex queries [e.g., automatically find sets

of genes meeting certain conditions with respect to both NCI-60

and GBM and then generate a relevant series of expression or

correlation clustered image maps (CIMs)]. Historically, CIMs were

first introduced in [11,12].

Studies Predicated on Pre-existing Correlations Across
the NCI-60

The key question we addressed here was whether genes that co-

clustered with respect to their expression profiles across the NCI-

60 cells also co-clustered with respect to their expression profiles

across the GBM samples. To facilitate that analysis, we took

advantage of the R language function cutree(). A key parameter in

cutree() is ‘‘k’’ the number of clusters into which the cluster tree is to

be divided. In the cluster 52 and cluster 68 studies (i.e., sets of genes

reported in [2]), preliminary studies showed that k = 2 was optimal

for NCI-60 expression clusters. Each such gene set had been

derived from a clustering study using an absolute correlation

metric, and therefore had two major partitionings (e.g., Figures 1A,

S1). The two partitionings are designated as ‘‘cluster 1’’ and

‘‘cluster 2,’’ and are delineated by the number appended to each

gene name on the right of the CIM. The genes within a single

partitioning are mutually positively-correlated, and all genes in

cluster 1 are negatively-correlated with all genes in cluster 2. We

colloquially refer to the larger cluster (in the case of Figures 1A, S1,

this would be cluster 2) as the ‘‘positively-correlated’’ genes and the

smaller cluster as the ‘‘negatively-correlated’’ genes. In contrast to

k = 2 for NCI-60, there was no a priori basis for selecting a

particular value of k for the clustering across GBM, so we allowed

k for GBM to range from 2 through 8.

To determine the optimal value of k, we constructed a 26k

contingency table (e.g., Table 1), each celli,j of which contains the

number of genes that are both in the ith cluster of the NCI-60

clustering and the jth cluster of the GBM clustering. We computed

a Fisher’s exact p-value for the null hypothesis that a distribution

as extreme as the observed distribution could have occurred by

chance. In addition, we randomized the gene names between

performing the NCI-60 and GBM clusterings, to determine if the

observed Fisher’s exact p-value could be achieved for a random

gene set.

De novo Identification of Sets of Genes with Correlation
$0.60 Across both NCI-60 and GBM

Without reference to any prior clustering analysis, the program

constructed de novo a list of all pairs of genes having correlation

$0.60 with respect to both NCI-60 and GBM expression profiles.

The threshold of 0.60 was chosen for the calculations because it

had been used in an earlier study of gene-gene correlations to

minimize the number of false positives. Genes were ranked with

Table 6. Concordance of cluster 68 genes in NCI-60 and GBM
clusters.

GBM CLUSTER

1 2 3 4

NCI-60
CLUSTER

1 ACVR2A ADAM15 APP

CSNK1G3 AGPAT3 DOCK1

CTBP2 AHNAK MLF1

MAP3K13 DUSP3 NOL3

SMAD5 EMP2 OAT

YES1 GRN

ZNF205 LMNA

ZNF35 MGAT4B

PLP2

SPR

ZFHX3

2 CHRNA3 ADA AIF1 C9

CYFIP2 ALDH1A2 ARHGDIB CD1A

ELOVL4 CD1E CCR4 GDF10

GNB1L CD79A CCR7 GRAP

GRIK5 GP5 CD1D LY6H

MYB IGLL1 CD27 NKX2-5

NFKBIL1 KRT1 CD3D PRKCQ

SLIT1 LAX1 CD3E RAG2

SMPD3 LTA CD3G RASGRP2

TSPAN7 PTGDR CD4 RORB

USP20 RAG1 CD5 SLC15A2

SEPT6 CD52 SLC18A2

CD7 TAL1

CD84 VPREB1

CD96

CECR1

CTSW

FLI1

FYB

GFI1

GMFG

GNA15

GRAP2

IL12RB1

IL2RG

ITGAL

ITGB2

ITK

LST1

MAP4K1

RHOH

SELL

SH2D1A

SIT1

SPN

TRAT1

Table 6. Cont.

GBM CLUSTER

1 2 3 4

TREML2

ZAP70

doi:10.1371/journal.pone.0040062.t006
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respect to frequency of appearance in that list. Each gene ‘‘G’’

with frequency $5 was then used to ‘‘represent’’ the set of genes

that showed correlation $0.60 with G. The top-ranking G gene

was WAS (49 genes had correlation $0.60 with WAS). Many of

the gene lists constructed by that method were highly redundant

with respect to one another (i.e., pairs of lists may have many gene

in common). To alleviate the redundancy problem, we computed

the Jaccard similarity metric (the Jaccard coefficient measures

similarity between sample sets, and is defined as the size of the

intersection divided by the size of the union of the sample sets [13])

we eliminated highly redundant (Jaccard value $0.90; 0.90 was

determined to be optimal in preliminary studies not shown here)

gene sets from further analysis. Thus, we used a less-redundant set

of 68 gene sets (from an initial selection of the top (possibly

redundant) 100 gene sets) for the analysis.

We wished to determine if the number of pairs of genes having

correlation $0.60 with respect to both NCI-60 and GBM

expression profiles exceeded the number expected by chance.

We therefore performed a set of 10 studies in which we

randomized the gene names in the GBM expression profiles.

The number of such pairs obtained in the real study was 2708. In

contrast, the number in the randomization studies was small in

comparison (193614).

Functional Categorization
Functional categorization of gene lists was performed using the

High-Throughput GoMiner (HTGM) program [14]. The param-

eters used in running HTGM are tabulated in Table S1.

Clustered Image Maps
We used either the Genesis clustering program [15] or our own

in-house R language code to construct CIMs presented here.

Results and Discussion

Studies Predicated on Existing Correlations Across the
NCI-60

We recently clustered genes based on correlation of expression

profiles across the NCI-60 [2]. Many of those clusters were

characterized by cancer-associated biological functions.

Using the expression profiles for the cluster 52 genes across the

NCI-60 cell lines and also across the GBM samples, we were able

to generate expression correlation CIMs across both of those sets

of expression profiles (Figures 1A, S1, 1B, S2). The distinct

patterns of red and green in the NCI-60 correlation CIM

(Figures 1A, S1) results from the fact that cluster 52 had been

derived by clustering the expression profiles in the NCI-60 cell

lines using an absolute correlation metric. Thus, cluster 52 is

composed of ‘‘negatively’’ and ‘‘positively’’ correlated subgroups.

Not surprisingly, the patterns of red and green are less distinct in

the GBM correlation CIM (Figures 1B, S2), since cluster 52 had

been defined relative to NCI-60, not GBM, expression patterns.

Although less distinct than for NCI-60, the GBM pattern is highly

correlated with the pattern for NCI-60. That relationship is

obvious by visual inspection. The quantitative analysis below

confirms the visual impression.

In the correlation CIMs, we appended a number (1 or 2) to the

gene names, corresponding to membership in the two major

clusters in the NCI-60 CIM. Those same numbers were retained

in the gene names for the GBM CIM to allow identification of the

cluster to which that gene belonged in the NCI-60 CIM. The

pattern of clustering in the GBM correlation CIM (Figures 1B, S2)

is markedly similar to that in the NCI-60 CIM. That observation

shows that some gene co-expression patterns in the NCI-60

human tumor cell line panel are preserved in clinical glioblastoma,

and supports our conjecture that NCI-60 gene expression

Figure 2. Thumbnails of gene correlation clustering for Cluster 68 genes across (A) the NCI-60 cell lines and GBM samples (B). The
full size figures are available as Figures S3 and S4. The numbers appended after the gene name refer to the NCI-60 cluster in which that gene
appeared.
doi:10.1371/journal.pone.0040062.g002

Gene Expression/Function across NCI60 and TCGA GBM
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correlations can indicate widely applicable gene-gene relation-

ships.

More precisely, Table 1 shows that there are 15 genes in cluster

1 and 64 genes in cluster 2, relative to the NCI-60 expression

profile. Thirty-four of the 64 cluster 2 genes are the predominant

members of GBM cluster 2. The remaining NCI-60 cluster 2

genes are distributed across GBM clusters 1 and 3. The

concordance between the clustering patterns in NCI-60 and

GBM is highly significant (Table 2). The Fisher’s exact p-value for

k = 3 (0.00039) is strikingly lower than for the randomized controls

(0.4660.28). Furthermore, the large majority of the genes that

were mutually correlated or anti-correlated in the NCI-60

preserved that relationship in the GBM tissue samples. The

identities of the relevant genes are shown in Table 3.

A notable finding is that nearly half of the genes in GBM cluster

2 (Figures 1B, S2) are genes that were previously found to be

involved in cell adhesion/migration and to form a mutually-high

correlation subset of the cluster 52 genes [16]. Moreover, those

genes were found to function coherently in a particular aspect of

the cell migration process. With the exception of ALCAM and

EGFR, the cell adhesion/migration tight cluster genes fall within

GBM cluster 2. Sixteen of twenty-four genes of that tight cluster

fall into GBM cluster 2. Thus, a set of genes previously found to be

closely related in both gene expression and function in the NCI-60

cell lines [2,16] are now found to be co-expressed also in clinical

glioblastoma samples.

To investigate other potential examples of coherence between

gene expression clusters in NCI-60 cell lines and GBM samples,

we repeated that analysis with the immune system-related cluster

68 genes [2] (Tables 4–6; Figures 2A, S3, 2B, S4). Again, the

Fisher’s exact p-value (0.00001) (Table 5) validates the visual

impression that there is a significant concordance between the

NCI-60 and the GBM clustering.

De novo Identification of Sets of Genes with Correlation
$0.60 Across both NCI-60 and TCGA GBM

There were 34,865 gene pairs with correlation $0.60 in the

NCI-60 data set but not in GBM, 87,556 in GBM but not in the

NCI-60, and 2,708 in both the NCI-60 and GBM. The highest-

ranking gene of the 2,708 was WAS; 49 genes showed correlation

$0.60 with WAS. Of the top 100 genes (i.e., genes with the highest

number of correlations $0.60), 68 were non-redundant (i.e., the

lists of correlating genes had Jaccard value #0.90). Functional

categorization of those 68 gene lists by High-Throughput

GoMiner (HTGM) revealed a complex set of significant categories

(Figures 3, S5). The number of genes and the generalized

functional correlations for the top 68 non-redundant gene sets

are listed in Table 7. As is evident from Table 7, immune

Figure 3. Thumbnail of GO category versus gene list CIM for sets of genes with correlation $0.60 across both the NCI-60 and GBM
samples. The full size CIM is available as Figure S5. The gene name given as the column header is the representative of a list of genes. The full list of
genes is available in the HTGM Download S1.
doi:10.1371/journal.pone.0040062.g003

Gene Expression/Function across NCI60 and TCGA GBM
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Table 7. Summary of high ranking genes with correlation $0.60 across both NCI-60 and GBM.

rank Designated gene (G)
number of genes with
correlation $0.60

generalized functional
correlation

number of genes in
common with cluster 52

Number of genes in
common with cluster 68

1 WAS 50 immune 0 21

2 IL2RG 37 immune 0 23

3 CD4 37 immune 0 9

4 CD48 36 immune 0 13

5 PTPRC 35 immune 0 15

6 PTPN7 35 immune 0 12

7 HCLS1 35 immune 0 12

8 CORO1A 35 immune 0 11

9 CD37 34 immune 0 8

10 PLCB2 33 immune 0 12

11 RHOH 32 immune 0 16

12 LILRA2 31 immune 0 4

13 LRMP 29 immune 0 9

14 RNASE6 28 immune 0 3

15 NCF4 28 immune 0 0

16 CD3D 28 immune 0 20

17 CSF3R 27 immune 0 4

18 CYBB 26 immune 0 0

19 SIT1 23 immune 0 19

20 DOCK2 23 immune 0 9

21 CD1D 23 immune 0 14

22 MYH9 21 angiogenesis 7 0

23 CD2 21 immune 0 15

24 SERPINE1 20 angiogenesis 4 0

25 LOXL2 20 angiogenesis 4 0

26 CYR61 20 angiogenesis 6 0

27 SH2D1A 19 immune 0 14

28 GNA15 19 immune 0 10

29 COL5A1 19 extracellular matrix 2 0

30 BTK 19 immune 0 2

31 LY86 18 immune 0 0

32 LOX 18 angiogenesis 2 0

33 FLNA 18 cell-cell junciton 6 0

34 CD52 18 immune 0 13

35 S100A8 17 immune 0 2

36 RNASE3 17 immune 0 2

37 LGALS9 17 immune 0 8

38 CSF2RB 17 immune 0 0

39 CD5 17 immune 0 13

40 TNFRSF12A 16 chemotaxis 5 0

41 ST8SIA4 16 tyrosine phosphorylation 0 5

42 PLK4 16 mitosis 0 0

43 OAS2 16 immune 0 0

44 MCM3 16 DNA repair 0 0

45 LSP1 16 immune 0 2

46 ITGB2 16 immune 0 10

47 CD96 16 immune 0 14

48 CD7 16 immune 0 11

49 ATP2A3 16 immune 0 12

Gene Expression/Function across NCI60 and TCGA GBM
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categories dominated, but Table 7 and Figure S5 reveal that there

were also categories representing e.g. apoptosis, chemotaxis, DNA

repair, chromatin assembly, angiogenesis, and adhesion.

The genes in cluster 52 or cluster 68 had been obtained by prior

clustering of the gene expression profiles across NCI-60 cell lines,

but not across TCGA GBM samples. We expect to find that some

of the do novo gene lists derived from simultaneous consideration of

both NCI-60 cell lines and TCGA GBM samples might overlap

with genes in the cluster 52 or cluster 68 gene lists. In fact, Table 7

shows that the genes in certain of the de novo gene lists overlapped

with the genes in NCI-60 clusters 52 (cell migration) and 68

(immune). Such overlap is particularly strong for cluster 68.

This analysis shows ways in which strong gene-gene correlations

and functional categorization (ie., GO assignments) obtained for

the NCI-60 cell lines across tumor types can reflect in vivo

relationships. It also shows the limitations of such similarity. The

two types of sample sets represent major initiatives of the National

Cancer Institute (NCI), in terms of both expense and research

investment. Hence, a delineation of the similarities and differences

remains a subject of considerable practical importance.
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TCGA GBM.

(PNG)
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Number of genes in
common with cluster 68

50 COL1A2 15 extracellular matrix 0 0

51 CCR7 15 immune 0 13

52 ADAM12 15 extracellular matrix 1 0

53 MED6 14 NA 0 0

54 LGALS1 14 NA 0 0

55 LCK 14 immune 0 10

56 FOSL2 14 angiogenesis 4 0

57 DSE 14 immune 4 0

58 COL6A3 14 extracellular matrix 0 0

59 COL1A1 14 extracellular matrix 1 0

60 CLCF1 14 tyrosine phosphorylation 7 0

61 ANXA2 14 NA 3 0

62 PTPN22 13 NA 0 4

63 PLAUR 13 immune 1 0

64 LTB 13 immune 0 11

65 CTSW 13 immune 0 13

66 IRAK3 12 immune 0 0

67 GRB7 12 NA 0 0

68 CTCF 12 chromatin assembly 0 0

The designated gene (G) appearing in the gene column is the representative of a group of genes that correlate strongly with G.
‘‘NA’’ indicates that the gene set did not map to any statistically significant GO categories.
The complete High-Throughput GoMiner (HTGM) download is provided in file Download S1. The files in the subdirectory work2026406846/inputFileDir are named
according to each gene G. Each such file contains the complete list of genes correlating with G.
doi:10.1371/journal.pone.0040062.t007
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