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Abstract

Background: Chemical structure is a vital consideration early in the drug development process.
Its role in analysis of safety and efficacy is relatively diminished after drugs are approved for
clinical use. This interdisciplinary study explores a strategy by which readily available clinical
data may be used along with structural features of drugs to identify associations with potential
utility for both clinical decision-making and drug development.Methods: Chemical functional
groups and structural groups (SGs) of 261 drugs were manually classified in tiers, and their
incidence of gastrointestinal (GI) and central nervous system (CNS) adverse drug reactions
(ADRs) were obtained from a clinical database. Drugs with an GI or CNS ADR incidence
of at least 10% were analyzed for correlations with their functional and SGs. Results: Eight
statistically significant associations were detected by preliminary analysis: piperazine and
methylene groups were associated with higher rate of CNSADRs; while amides, secondary alco-
hols, and di-substituted phenyl groups were associated with lower rates of GI or CNS ADRs or
both. Conclusions: Although further study is necessary to understand these associations and
build upon this strategy, this exploratory analysis establishes a methodology by which chemical
properties of drugs may be used to aid in clinical decision-making when choosing between
otherwise equivalent drug therapy options, as the presence of specific groups on drugs may
be associated with increased or decreased risks of specific ADRs.

Introduction

Drug development and drug therapy require input from multiple basic and clinical scientific
disciplines. Basic sciences drive the interdisciplinary drug development process, and clinical
performance of a drug is not only the result but also provides outcomes data that is used to
optimize the drug development process [1]. The relationship of basic and clinical sciences is
therefore “two way” for the drug development process (i.e., basic sciences are used to develop
drugs that produce clinical outcomes, and clinical data may be analyzed to improve conceptual
understanding of the basic sciences used to develop the drugs). The role of basic sciences in
clinical use of drugs is generally limited to prerequisite training for clinical sciences, use of
narrow therapeutic index drugs, and retrospective analysis of unexpected outcomes of drug
therapy [2–4]. Identification of connections within available scientific and clinical drug data
is a means of developing new insights into potential roles of basic sciences in the clinical
decision-making process, analogous to their relationship in the drug development process.
This interdisciplinary relationship is visualized in Fig. 1. Functional groups (FGs) and adverse
drug reactions (ADRs) are ideal variables by which to develop and test this methodology; they
are universal, readily available basic and clinical science parameters, respectively, of drugs.
Analysis of connections between in vivo activity and structural features of drugs has contributed
to conceptual understanding in pharmacology. Lipinski’s rule of five is an example of correla-
tions of structural characteristics of drugs to their pharmacokinetics in humans, including
absorption, distribution, metabolism, and elimination [5]. FGs impart chemical and physical
characteristics of organic and organometallic substances, and they are determinants of pharma-
cophores, chemical properties of drugs, and drug interfacing with biological systems [6].
Analysis of FGs and features of drugs by Mao et al. identified and evaluated chemical criteria
including small FGs, proportion of heavy atoms, and ring systems across drugs of multiple
categories. FG associations identified included hydroxy, carboxylic acid, and ester as the most
common FGs of drugs, correlation of presence of fluorine and drugs used to treat conditions of
the central nervous system (CNS), and correlation of primary amines with antimicrobial and
antineoplastic drugs [7]. The International Union of Pure and Applied Chemistry (IUPAC)
Gold Book defines FGs as “an atom, or a group of atoms that has similar chemical properties
whenever it occurs in different compounds. It defines the characteristic physical and chemical
properties of families of organic compounds” [8]. The algorithm developed by Ertl demon-
strated broad applicability for identification of organic FGs and offers potential for comprehen-
sive, precise FG analysis of drug molecules [9].

https://www.cambridge.org/cts
https://doi.org/10.1017/cts.2022.375
mailto:daustin@lecom.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0755-9654


ADRs are important, ubiquitous clinical outcomes with
readily available data and rate of incidence. ADRs, also
known as side effects (SEs), are unintended and unwanted physio-
logical responses experienced by patients following drug adminis-
tration [10]. ADRs are a type of adverse drug event (ADE)
associated with appropriate medication use. The World Health
Organization (WHO) definition of ADR is “a response to a drug
which is noxious and unintended, and which occurs at doses
normally used in man for prophylaxis, diagnosis, or therapy of
disease or for the modification of physiologic function” [11].
ADRs fit into one of three potential categories [12]:

1. Dose-dependent augmentation of pharmacological activity
beyond the desired effect

2. Known properties of chemical moieties within drugs associated
with specific unwanted chemical or pharmacological effects
unrelated to the desired effect

3. Not well understood mechanistically in some or all situations

The role of FGs in causing toxicity to biological systems has been
studied by computational, quantitative structure–activity relation-
ship (QSAR), reaction pathways, and structural units and
fragments analyses [13,14]. Such analyses are conducted with
respect to specific modes toxicity. For example, Wang, et al. iden-
tified FGs and clusters of FGs, such as fused aromatic systems,
nitrogen heterocycles, and epoxides to be associated with mutage-
nicity [15]. The US Environmental Protection Agency (EPA) lists
FGs and structural fragments associated with various modes of
toxicity such as azides and nitroso groups (toxicity caused by
electrophiles), phenothiazines (toxicity caused by free radical
formation), amines (toxicity to the kidney), ketones (neurotox-
icity), carbamates (genetic toxicity), and many others [16].
These noted FGs or clusters of groups all occur in at least one
FDA-approved medication, which demonstrates the importance
of dose and chemical context to its role in generating toxicity.
As this study was designed to detect patterns of toxicity within
the context of commonly used medications, the top 300 drug
list was selected as an ideal sample of molecules regarding FG
exposure (i.e., average dosage ranges) and molecular scaffolding
(i.e., biologically privileged structures that met safety standards
for FDA approval).

The preclinical drug discovery process aims to produce drug
candidates that are both safe and efficacious. Advances in tech-
nology, methodology, and available data have contributed to
improvements in predicting potential safety issues with drug
candidate molecules [17,18]. Despite these advances, failure of
drug candidates due to safety-related issues is still a significant
challenge [19]. Information obtained from correlative analytical
strategies to predict incidence of ADRs has shown potential to
aid clinicians and scientists, respectively, in making therapeutic
decisions and in identifying agents more likely to succeed in drug
development [20]. Despite inability to provide definitive casual
information, correlations between basic and clinical sciences such
as FGs and ADRs can serve two important functions:

1. Provide additional tools for clinicians for drug therapy selection
and evaluation.

2. Provide information for scientists to generate or study pharma-
cological hypotheses.

ADRs were specified at a system-level, and gastrointestinal (GI)
and CNS were selected as optimal systems to establish proof of
concept. The digestive and nervous systems were identified for
analysis based on high incidence of ADRs (113 and 81 common
GI and nervous system/psychiatric disorders listed, respectively,
in addition to ADRs shared with other systems) and on potential
for enhanced FG discrimination in that these systems possess
unique biochemical environments with biological functions asso-
ciated with managing exposure to xenobiotics (e.g., gastric acid,
enzymes, and the blood–brain barrier) [21]. This study therefore
presents and utilizes this strategy to explore methodology by which
correlations may be identified from existing clinical and structural
drug data.

Materials and Methods

Medications of the 2016 top 300 drugs list, which comprise
approximately 97% of outpatient prescriptions filled in the USA,
were evaluated for initial analysis of FGs and ADRs [22,23].
Drugs containing the same active pharmaceutical ingredient
(API) with more than one formulation, medications containing
combination products already present on the list as single

Fig. 1. Relationships between basic and clinical sciences in drug development and clinical use.
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medications, electrolytes, vitamins, and medications classified as
biologics or nonsmall molecules were excluded from analysis.
These restrictions decreased the sample size to 261 eligible medica-
tions. Drugs were classified using the American Hospital Formulary
Service (AHFS) Pharmacologic-Therapeutic Classification
system into general categories and subcategories for secondary
analysis [24]. Follow-up study of significant FG-ADR associations
was conducted using medications of the US Veterans Affairs
2018 national formulary list [25]. Drugs were excluded if contained
within or met exclusion criteria of initial analysis, resulting in an
additional 231 eligible drugs. These drugs were analyzed only for
groups significantly associated with ADRs from initial study. The
protocol for initial analysis is shown in Fig. 2.

FGswere identifiedmanually for eachmedication in “tiers” using
an approach derived from the Ertl algorithm [8]. Analysis was
conducted on parent molecules only (i.e., without regard to activity
of prodrugs). Tier one FGs were nonredundant; each functionalized
atomoccurred in as few total FGs as possible (usually only one FG, at
most two), and all functionalized atoms of the drug molecule were
accounted for by the fewest possible total number of FGs. Tier two
analysis was comprehensive, and asmany FGs as possiblewere iden-
tified. Tier two therefore included all FGs of tier one, as well as
comprising groups. Polycyclic groups were labeled as the largest
possible cluster of atoms with an existing IUPAC or trivial name,
and all comprising groups of ring systems were included in tier
two. All nonfunctionalized carbons (i.e., carbons bonded only to
carbons or hydrogens), and single-carbocyclic systems were identi-
fied as structural groups (SGs). A total of 18 structural criteria were
analyzed. Figure 3 demonstrates application of this methodology for
the antidepressant drug vilazodone. A comprehensive description
of FG and SG analysis methodology and analysis of the initial
261 drugs and FGs is contained in supporting information.

An ADR was defined categorically as associated with a drug if
listed as “very common” or greater than 10% incidence by either

clinical databases, prescribing information, clinical review articles,
or meta-analyses. Drugs were excluded for minimal penetration to
systemic circulation (i.e., topical or local delivery) or if quantitative
data were not available. In addition to qualitative study, the average
daily exposure range of drugs was estimated by calculating moles
of drug delivered based on the largest and smallest daily dosing
recommendations for FDA-approved indications. All ADRs
described as “GI” and “CNS,” except toothache (GI), were included
if accordingly specified. Statistical analysis of FG associations with
ADRs was conducted by Pearson’s chi-squared test and Fisher’s
exact test. Analysis of daily exposure was conducted by indepen-
dent samples t-tests. All drugs included in analysis, results of
FG and ADR analysis, drug classification, and analysis of drug
exposure are available in supporting information.

Results

A total of 258 unique FGs were identified for 261 agents of the top
300 drugs. GI ADRs were associated with 97 of 197 drugs, and
CNS ADRs were associated with 110 of 204 drugs. The most
common categories of the top 300 medications were CNS agents,
cardiovascular drugs, anti-infective agents, autonomic drugs, and
hormones and synthetic substitutes.

The most common FGs and ADRs are shown in Fig. 4.
Comprehensive results of analysis are available in supporting
information. All tier one FGs, tier two FGs, SGs, and estimated
ranges daily exposure to drug were analyzed for associations with
GI or CNS ADRs. Associations were defined as positive if presence
of a group correlated with occurrence of ADR and were defined as
negative if presence of a group correlated with absence of ADR.
Initial analysis detected eight significant associations: three
groups for GI ADRs and five groups for CNS ADRs (p< 0.05).
Significantly associated groups are contained in Fig. 5. Of 231
additional medications, 164 were analyzed for the groups that

Fig. 2. Protocol for preliminary analysis. GI = gastrointestinal; ADRs = adverse drug reactions; CNS= central nervous system.

Journal of Clinical and Translational Science 3



demonstrated significant associations. GI and CNS ADRs were
associated with 104 and 88 drugs, respectively. Significant correla-
tions were maintained for three groups and one group for CNS and
GI ADRs, respectively. Results of follow-up analysis are contained
in Table 1.

Discussion

Concurrent chemical and clinical analysis of drugs provides an
additional means by which clinicians may use chemical structure
in clinical decision-making and may contribute to understanding
of effects of comprising structural features in vivo. The effect size
of this mode of analysis was small (e.g., the largest association

detected in this study was amide and CNS ADRs, −0.152).
A possible explanation for this observation is that the intrinsic role
of a given FG in causing an ADR is likely to be secondary to other
factors such as specific binding interactions of pharmacophores.
As drug molecules are irreducible combinations of FGs, the effects
of a given group may therefore be masked, augmented, or other-
wise confounded by the other groups of the drug molecule.
An alternative explanation is that the impacts of single FGs
are nonsignificant relative to other factors to the extent that
associations detected are largely random. To address the latter
explanation, a large quantity of drugs and clinical data obtained
from large studies and multiple sources were utilized to maximize
sample size and minimize the probability of random error. Results

Fig. 3. Functional and structural groups of vilazodone. R= carbon substituent; Z= heteroatom.
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Fig. 4. Most common functional groups and ADRs of the 2016 top 300 drugs. ADRs = adverse drug reactions.

Fig. 5. Significant associations identified in preliminary analysis (p-values). ADRs = adverse drug reactions.

Table 1. Associations determined by follow-up analysis

ADR category Functional or structural group Pearson’s correlation p-Value

CNS (n= 368) Amide −0.152 0.003

Secondary Amide −0.147 0.005

Tertiary Amide −0.108 0.038

Piperazine 0.094 0.073

Secondary Alcohol −0.120 0.022

Di-substituted Phenyl −0.043 0.407

Methylene 0.106 0.042

GI (n= 361) Amide −0.035 0.513

Secondary Amide 0.052 0.320

Tertiary Amide −0.096 0.070

Piperazine −0.001 0.989

Secondary Alcohol −0.086 0.104

Di-substituted Phenyl −0.131 0.013

Methylene 0.011 0.834

ADR= adverse drug reaction; CNS= central nervous system; GI= gastrointestinal.
Significance level < 0.05.
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suggest that CNSADR associations, which were largelymaintained
through follow-up analysis, may be attributed to the former
explanation, while the majority of groups initially associated with
GI ADRs did not demonstrate significance in follow-up analysis
and are more likely to be inconsequential results.

Relationships between structure and clinical effects yet undis-
covered are therefore likely to be subtle and context-dependent,
and the chemical environment experienced by drugs and clinical
effects they produce are complex, multifaceted, and composite
outcomes with substantial potential for confounding. This mode
of analysis, with its large sample size and comprehensive, hierar-
chical chemical group analysis, is designed to detect such relation-
ships. For example, the detection of effects due to an unknown
pharmacophore, masked by the effects of another frequently
occurring pharmacophore (e.g., the former being structurally
nested within the latter), could be detected through this method-
ology. Variance within clinical data due to inherent subjectivity
and imprecision may be larger than effect size and increases prob-
ability of false-positive results. Therefore, the clinical parameter
(ADRs in this case) must be set at a high threshold. This study
defined an ADR as 10% or greater to optimize the “size of the
net” in detecting associations. This high threshold decreases
probability of detecting associations overall but increases the
probability of associations being nonrandom and clinically
relevant if detected.

Amajor determinant of the generalizability of thismethodology
is availability of data, and most of the ADR information was
obtained from a clinical database (Lexicomp®) [26]. Clinical data-
bases feature readily accessible data that is derived from pooling of
multiple sources and studies, and the large sample sizes decrease
confounding [27]. The extensive usage and prior clinical study
of the top 300 drugs maximized availability and generalizability
of clinical data. Common, system defined ADRs of preferably
idiopathic nature and of general clinical significance were desired
for analysis of FG correlation to increase the probability of iden-
tifying useful associations. To conduct comprehensive and repro-
ducible chemical analysis, FGs were identified in tiers, and SGs
were included in analysis. Tier one groups were less prevalent
and less redundant; each functionalized atom was contained in
as few FGs as possible (usually only one, at most two), and tier
two included all FGs of tier one, as well as comprising groups.

A notable discovery of this work is negative correlation of
amides with CNS ADRs. The EPA lists chemical groups,
classes, and elements as potential neurotoxins [16]. Several
groups listed, such as ketones and nitriles, are present on drug
molecules and were not significantly associated with CNS
ADRs. Additionally, aryl- and acrylamides are listed, and amides
in general were negatively correlated with CNS ADRs in this study.
These findings demonstrate the complexity of the role of chemical
structure, and the importance of chemical context and dose, in
determining toxicity. Although further study is required to
corroborate and explain these results, exploration of application
to medication therapy management demonstrates the utility of
this methodology. A clinician selecting, for example, between
two otherwise equivalent medications (i.e., both first-line options
recommended by pertinent guidelines, similar cost and availability,
identical dosing schedule, similar ADR profile, etc.) could use the
structures of the drugs themselves along with this information to
identify a patient-specific therapy based on the presence or absence
of FGs or SGs associated with the presence or absence of ADRs.
For example, the atypical antipsychotics ziprasidone and quetia-
pine have similar ADR profiles, including multiple CNS ADRs.

Ziprasidone features a secondary amide, which suggests lower
overall risk of CNS ADRs and is corroborated by listed frequency
of incidence less than 10%.

Limitations and Future Research

There are limitations to this mode of analysis. Fundamental issues
with this FG and SG analysis include dichotomous listing
(i.e., present or not present), which may not account for potential
effects due to multiple occurrences of a FG on the same drug
molecule. A limitation of construct is that pharmacophores
comprised of clusters of FGs are the smallest chemical units asso-
ciated with many biological effects produced by molecules, and
their biological activities in such situations cannot be decon-
structed (i.e., all comprising FGs must occur concurrently for
effects associated with specific pharmacophores). Additionally,
rare FGs are reasonably expected to occur in clusters of pharma-
cophores and toxicophores within medication classes. These limi-
tations were factored into the rationale of the design of this study,
in that FGs themselves may be viewed as the simplest possible
pharmacophores, and analysis is necessarily hierarchical (e.g., an
unknown pharmacophore may be contained within the structure
of a larger pharmacophore). A significant limitation of this study is
attrition due to insufficient data or exclusion. Most medications
lacking quantitative data are agents that were approved prior to
implementation of modern protocols, with the availability of
clinical information therefore relegated to reviews, case reports,
and results of their uses as comparator drugs. This limitation
may be addressed by identifying additional modern agents
possessing relevant clinical data to increase the initial pool of drugs
for analysis. This study, which relies upon many samples with
normal distribution of pharmacological parameters, intentionally
does not account for pharmacodynamics, pharmacokinetics, or
any effects due to sterics or clustering patterns of multiple FGs
as the effects of individual FGs are anticipated to be smaller than
these covariates. These challenges and limitations present signifi-
cant potential for confounding, which may be addressed by future
analysis through the use of technology, prudent study design,
increased specificity of outcomes, and increased sample size.

Conclusion

The role of basic sciences is vital during the drug development
process but diminishes as the drug moves through clinical study
and post-marketing analysis. Once approved for clinical use, asso-
ciations between physicochemical properties and clinical effects
may not be considered by clinicians. This study explores method-
ology by which basic sciences may be applied to clinical situations
(i.e., specific structural and FGs within drug molecules correlated
with adverse reactions (ADRs) of drugs) and provides the basis for
further research to determine how to best obtain and use this
information for both drug development and drug use in practice.
Key considerations for further development of this methodology
include determination of clinical parameters to study, how to
use associations to develop or build upon paradigms in pharma-
cology and medicinal chemistry, and how to use this information
to optimize drug therapy outcomes for patients.
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