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Abstract: This research examined the effects of the supplementary or night-interrupting (NI) blue
(B) light supplied at a low intensity on the flowering, gene expression, and morphogenesis of
chrysanthemum, a qualitative short-day plant. White (W) light-emitting diodes (LEDs) were used
to provide light with a photosynthetic photon flux density (PPFD) of 180 µmol·m−2

·s−1 during the
photoperiod to grow the plants in a plant factory. The control group was constructed with plants
that were exposed to a 10-h short day (SD10) treatment without any blue light. The B light in
this research was used for 4 h to either (1) extend the photoperiod for plants at the end of a 9-h
short day (SD) treatment as the sole light source (SD9 + 4B), (2) provide night interruption (NI) to
plants in the 13-h long-day (LD) treatment (LD13 + NI − 4B), (3) provide NI to plants in the 10-h
SD treatment (SD10 + NI − 4B), or (4) supplement the W LEDs at the end of a 13-h LD treatment
(LD13 + 4B). Blue LEDs were used to provide the supplementary/NI light at 10 µmol·m−2

·s−1 PPFD.
The LD13 + NI − 4B treatment resulted in the greatest plant height, followed by LD13 + 4B. Plants in
all treatments flowered. It is noteworthy that despite the fact that chrysanthemum is a qualitative
SD plant, chrysanthemum plants flowered when grown in the LD13 + 4B and LD13 + NI − 4B
treatments. Plants grown in the LD13 + 4B had the greatest number of flowers. Plants grown in
the LD13 + 4B treatment had the highest expression levels of the cryptochrome 1, phytochrome A,
and phytochrome B genes. The results of this study indicate that a 4-h supplementation of B light
during the photoperiod increases flower bud formation and promotes flowering, and presents a
possibility as an alternative method to using blackout curtains in LD seasons to practically induce
flowering. The B light application methods to induce flowering in SD plants requires further research.

Keywords: blue LED; flower bud formation; number of flowers; photoperiod

1. Introduction

Plants adapt to the signals, such as the light quality, they perceive from the environment and
accordingly modify their biological cycles [1]. Different types of photoreceptors, such as cryptochromes
and phytochromes, enable plants to perceive changes in the light quality [2,3]. Throughout their
lifecycle, the growth and development of plants are influenced by the photoreceptors. Photoreceptors
monitor the light environment and also help plants time key developmental transitions, such as
flowering and seed germination [4]. Phytochrome is a photoreceptor that primarily absorbs red (R) and
far-red (Fr) lights, while cryptochrome is a photoreceptor that primarily absorbs ultraviolet-A (UV-A)
and blue (B) lights, both of which help regulate flowering [5]. Multiple cryptochrome (CRY1 and
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CRY2) and phytochrome (PHYA, PHYB, PHYC, PHYD, and PHYE) varieties can exist, depending on
the species [6,7].

Light supplementation is often utilized for enhancing the quality of seedlings and rooted cuttings [8].
Photoperiod manipulation can reduce the production time and improve the overall crop quality to
reduce production costs [9]. Light supplementation may take the form of supplementary light in a
background of natural light, or additional light that extends the day length [8]. Night interruption (NI)
interrupts a length of dark period with lighting, thus creating modified long-day (LD) conditions [10,11].

Studies have reported that B light negatively affects stem elongation and leads to a reduced leaf
area [12–16]. Senger [17] found that blue light played a pivotal role in chloroplast development and
formation, as well as the stomatal opening. It has been suggested that photoreceptors related to B
light played a part in the flowering process [18,19]. Jeong et al. [20] reported that supplementary
blue light at least in part promotes the elongation of stems and internodes without inhibiting the
flower bud formation. In the short-day (SD) plant chrysanthemum, NI with B light did not effectively
inhibit flowering, although B light is part of visible light [21,22]. Our previous study [11] split the
traditional 4-h NI into two 2-h periods and shifted the NI light quality to examine how these changes
affect the flowering and morphogenesis of chrysanthemum. They found out that B, Fr, R, and white
(W) lights used in the first 2 h of the NI did not affect the morphogenesis nor flowering, while the
same lights used in the last 2 h of the NI significantly impacted the morphogenesis and flowering.
In addition, they discovered that flowering was induced in all NI treatments concluding with a
blue light. Hence, we hypothesized that blue light at a low intensity supplemented to either LD
or SD conditions may induce flowering in SD plants. Therefore, this study examined the effects of
low-intensity (10 µmol m−2 s−1 PPFD) blue light used as supplementary or NI light on the flowering,
gene expression, and morphogenesis in chrysanthemum ‘Gaya Yellow’ (a qualitative SD plant).

2. Materials and Methods

2.1. Growth Conditions and Plant Materials

Chrysanthemum (Dendranthema grandiflorum ‘Gaya Yellow’) spray-type cuttings were stuck in
plug trays with 50 cells each filled with a commercial Tosilee Medium (Shinan Grow Company,
Jinju, Korea). The cuttings were subsequently put on a glasshouse bench to root. The cuttings were
relocated 12 days after they were stuck, when they have rooted, to a closed walk-in growth chamber
that is 7700 cm by 2500 cm by 2695 cm in size. There, the plants were acclimatized to 20 ± 1 ◦C,
60% ± 10% RH, and 140 µmol·m−2

·s−1 PPFD supplied with F48T12-CW-VHO fluorescent lamps
(Philips Co., Ltd., Eindhoven, The Netherlands). The closed walk-in growth chamber was constructed
such that numerous uniformly distributed holes allowed conditioned air to blow horizontally into
the growing spaces. CO2 was supplemented from a compressed gas tank to maintain an atmospheric
concentration of 350 ± 50 µmol·mol−1. The plants, after 11 days of acclimatization (the 16-h LD) in
the growth chamber, were approximately 7.0 cm in height and were subjected to the photoperiodic
light treatments. After being planted, the chrysanthemums were fertigated once a day (from 9:00 a.m.
to 10:0 a.m.) throughout the experiment with a greenhouse multipurpose nutrient solution [11].
A 3-replication randomized complete block design was employed with a total of 6 plants for each
treatment, with 2 plants in each replication. Within a controlled environment, the photoperiodic
light treatments were randomly located in between replications to minimize the effects of the light
treatment positioning.

2.2. Photoperiodic Light Treatments

Plants were grown with light at an intensity of 180 µmol m−2 s−1 PPFD provided by white
MEF50120 LEDs (More Electronics Co. Ltd., Changwon, Korea) (Figure 1A). The different photoperiods
used in this experiment, as well as the lighted period during the NI (referred to as ‘photoperiod’
hereafter) were as follows: B light with a wavelength of 450 nm was used for 4 h to either (1) extend
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the photoperiod at the end of a 9-h SD as the sole light source (SD9 + 4B), (2) provide NI following
the 13-h LD (LD13 + NI − 4B), (3) provide NI after the 10-h SD (SD10 + NI − 4B), or (4) supplement
W LEDs at the end of a 13-h LD (LD13 + 4B) (Figures 1B and 2). The control was constructed by
exposing the plants to a 10-h short-day treatment (SD10) without B light. B light at an intensity of
10 ± 3 µmol·m−2

·s−1 PPFD was provided by LEDs for the photoperiodic light treatments. A HD2102.1
digital photometer (Delta OHM, Padova, Italy) measured the average PPFD 20 cm above the bench
top, for each light treatment. The lighting was adjusted such that the same PPFD levels were provided
to the plants regardless of the light treatment. A USB 2000 Fiber Optic Spectrometer (Ocean Optics Inc.,
Dunedin, FL, USA; detects wavelengths between 200 to 1000 nm) scanned the spectral distribution in
1-nm wavelength intervals 25 cm above the bench top.
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Figure 2. Supplementary and night-interrupting blue (B) light schemes employed in this study. B light
was used for 4 h to either (1) extend the photoperiod at the end of a 9-h SD as the sole light source
(SD9 + 4B), (2) provide NI following a 13-h LD (LD13 + NI − 4B), (3) provide NI after a 10-h SD
(SD10 + NI − 4B), or (4) supplement the W light at the end of a 13-h LD (LD13 + 4B). Plants in the
control were grown with a 10- hour SD treatment (SD10) without any B light.
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2.3. Data Collection and Statistical Analysis

The dry mass, number of leaves per plant, number of nodes per plant, number of flowers per
plant, plant height, leaf area, chlorophyll content, percent flowering, days of treatment needed to
visible flower bud or days to visible buds (DVB), flower width, and photoreceptor gene expressions
were measured after 41 days of the photoperiodic light treatments. All leaves with a length greater
than 1 cm in were counted to determine the number of leaves per plant. Divided samples of the shoot
and root were dried at 70 ◦C for 72 h in a Venticell-222 drying oven (MMM Medcenter Einrichtungen
GmbH., Munich, Germany) before the dry mass measurements were taken with an EW 220-3NM
electronic scale (Kern and Sohn GmbH., Balingen, Germany). Leaf area measurements were taken
with a LI-3000 leaf area meter (LI-COR Inc., Lincoln, NE, USA). The chlorophyll concentration was
estimated from 10-mg samples of fresh, young, and fully developed leaves. Chlorophyll was extracted
with 80% acetone at 4 ◦C. A Biochrom Libra S22 spectrophotometer (Biochrom Co. Ltd., Holliston, MA,
USA) measured the absorbance of the supernatant at 645 and 663 nm, after the extracted chlorophyll
was centrifuged at 3000 rpm. Calculations were performed according to the method described by Dere
et al. [23]. The statistical analysis was performed with the SAS 9.1 software (SAS Institute Inc., Cary,
NC, USA). An analysis of variance (ANOVA) and Tukey’s multiple range test were performed with the
results of this study. SigmaPlot 12.0 (Systat Software Inc., San Jose, CA, USA) was used for graphing.

2.4. Total RNA Isolation, cDNA Synthesis, and Real-Time Polymerase Chain Reaction (PCR) of Selected Genes

After 20 days of the photoperiodic light treatments, plants started displaying visible flower
buds and the most recently matured 10 leaves per plant were collected for total RNA extraction.
The latest leaf to be matured was collected an hour after the daily photoperiodic treatments began,
at 9:00 a.m. This collection time was chosen because the photosynthetic rates are high at this time
of the day. Equal amounts of cDNA using primers of cryptochrome 1 (CRY1), phytochrome A (PHYA),
and phytochrome B (PHYB), whose sequences are shown in Table 1, were used to perform the independent
PCRs. As actin is frequently used to normalize molecular expression studies, it was used as an internal
control. The 2−∆∆Ct method [24] was used to determine the relative expression levels of each gene.
At each sampling date, the individual gene expression levels in the plants grown with the light
treatments were divided by the mean gene expression levels for plants in the control (SD10). The total
RNA isolation and real-time quantitative PCR analysis of the selected genes were performed according
to the method described in Park et al. [11].

Table 1. The primers used to quantify the gene expression levels.

Gene Accession no. Forward Primer Reverse Primer

CRY1 NM_116961 5′-CGTAAGGGATCACCGAGTAAAG-3′ 5′-CTTTTAGGTGGGAGTTGTGGAG-3′

PHYA EU915082 5′-GACAGTGTCAGGCTTCAACAAG-3′ 5′-ACCACCAGTGTGTGTTATCCTG-3′

PHYB NM_127435 5′-GTGCTAGGGAGATTACGCTTTC-3′ 5′-CCAGCTTCTGAGACTGAACAGA-3′

Actin AB205087 5′-CGTTTGGATCTTGCTGGTCG-3′ 5′-CAGGACATCTGAAACGCTCA-3′

3. Results

3.1. Morphogenesis

It was observed that the supplementary and night-interrupting blue light increased the plant
heights in this study (Figure 3A). Plants grown in LD13 + NI − 4B had the greatest height (Figure 3A),
where it was 22% greater than that of plants grown in SD10. Additionally, it was observed that even
plants in SD9 + 4B had a greater mean height than those in SD10.
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Figure 3. The effects of the supplementary and night-interrupting B light on the plant height (A),
dry mass (B), number of leaves per plant (C), leaf area per plant (D), and chlorophyll levels (E) in
D. grandiflorum ‘Gaya Yellow’. The control was constructed by exposing plants to a 10-h SD treatment
(SD10) without any B light. Data are the mean ± S.E of the 3 biological replicates. Means accompanied
by different letters significantly differ (p < 0.05) according to Tukey’s studentized range test at a 5%
significance level.

The dry mass of plants grown under all photoperiodic treatments was greater compared to that
of the plants in the SD10 control (Figure 3B). Increasing the photoperiod, as with LD13 + 4B and
LD13 + NI − 4B, significantly increased the dry mass of the plants in this study. The other treatments,
SD9 + 4B and SD10 + NI − 4B, were not as effective as the LD treatments in increasing the dry mass
(Figure 3B).

Plants in SD9 + 4B had the greatest number of leaves per plant while those in SD10 had the
lowest number of leaves per plant (Figure 3C). The average leaf area was the greatest for plants in
LD13 + NI − 4B and the smallest for plants in SD10 + NI − 4B (Figure 3D). The leaf area per plant was
12% for plants in SD10 + NI − 4B when compared to that for plants in SD10 (Figure 3D). Furthermore,
all B light treatments except for SD10 + NI − 4B increased the leaf area compared to the control
(Figure 3D). The chlorophyll levels were the lowest for plants in LD13 + 4B and the highest for plants
in LD13 + NI − 4B (Figure 3E). Plants in LD13 + 4B had 32% lower chlorophyll contents than plants in
SD10 did (Figure 3E).

3.2. Flowering and Gene Expression

The flowering percentage of plants was 100% in all treatments (Table 2 and Figure 4). The fastest
flowering induction was observed for plants in the control (SD10). It is noteworthy that plants in
LD13 + 4B and LD13 + NI − 4B flowered, despite the fact that chrysanthemum is a qualitative SD plant
(Table 2 and Figure 4).
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Table 2. The effects of the supplementary and night-interrupting 10 µmol·m−2
·s−1 PPFD B light on the

flowering characteristics of chrysanthemum (D. grandiflorum ‘Gaya Yellow’), after 41 days of exposure
to the photoperiodic light treatments.

Treatment z Flowering (%) DVB y (Day) No. of Flowers/Plant Flower width (cm)

SD9 + 4B 100 17.7 c x 11.0 c 2.6 b
LD13 + 4B 100 22.5 b 21.3 a 0.7 c

LD13 + NI − 4B 100 28.7 a 15.3 b 0.5 d
SD10 + NI − 4B 100 18.0 c 15.0 b 2.8 a

SD10 100 17.5 c 11.0 c 2.9 a
F-test *** *** ***

z See Figure 2 for details on the photoperiodic treatments with B light. y Days of treatment to visible flower bud or
days to visible buds. x Mean separation within columns by Duncan’s multiple range test at a 5% level. ***: Significant
at p ≤ 0.001.
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Figure 4. The effects of the supplementary and night-interrupting 10 µmol·m−2
·s−1 PPFD B light

on the flowering of chrysanthemum (D. grandiflorum ‘Gaya Yellow’), after 41 days of exposure to
the photoperiodic light treatments: side view (A) and top view (B) (see Figure 2 for details on the
photoperiodic treatments with B light).

Plants in SD10 had the smallest DVB whereas plants in LD13 + NI − 4B had the greatest DVB
(Table 2). The DVB was observed to increase as the photoperiod increased (Table 2). The DVB of plants
in LD13 + 4B was smaller than those of plants in LD13 + NI − 4B. Interestingly, plants in LD13 + 4B
had 93% more flowers per plant compared to plants in the SD10 control. Plants in the SD10 control
and SD9 + 4B had the lowest number of flowers (Table 2). Plants in the SD10 control had the greatest
flower width (Table 2).

The photoreceptor gene expression (PHYA, PHYB, and CRY1) in response to the B light was
also analyzed (Figure 5). Plants in LD13 + 4B had the greatest expression levels of PHYA and PHYB,
followed by plants in SD10 + NI − 4B (Figure 5). PHYA had the lowest expression levels in plants
in LD13 + NI − 4B (Figure 5). PHYB was the least expressed in plants in LD13 + NI − 4B (Figure 5).
Plants in LD13 + NI − 4B had significantly higher CRY1 expression levels compared to plants in the
other treatments (Figure 5). CRY1 was the least expressed in plants in LD13 + 4B (Figure 5).
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Figure 5. The effects of the supplementary and night-interrupting 10 µmol·m−2
·s−1 PPFD B light on

the relative gene expression levels of) D. grandiflorum ‘Gaya Yellow’ determined by real-time PCR of
PHYA (A), PHYB (B), and CRY1 (C). (Details of the NI light qualities are presented in Figure 2). At each
sampling date, the individual gene expression levels for the plants in the photoperiodic light treatments
were divided by the mean gene expression level for plants in the SD10 control. The data are presented as
the mean ± S.E of the 3 biological replicates. Means accompanied by different letters indicate significant
differences (p < 0.05), according to Tukey’s studentized range test at a 5% significance level.

4. Discussion

4.1. Plant Height

Different studies have observed that blue light acts to limit the elongation of the petiole,
stem, and hypocotyl in various horticultural species, such as chrysanthemum, lettuce, pepper,
and soybean [25–32]. Normally, increasing blue light decreases the stem length to a maximum threshold
level [32]. Schuerger et al. [30] observed that blue light for 12 h a day plays a role in changing the
stem anatomy, inhibiting the growth, and determining the morphogenetic characteristics of pepper
plants. Furthermore, Khattak and Pearson [33] found that B light during the photoperiod in low-light
environments resulted in reduced plant heights. Cryptochromes are also known to influence the stem
elongation, and various of plants exhibit suppressed shoot elongation in response to B light in a 12-h
day [26]. However, these photomorphogenic responses are different for different species. Previous studies
used B light during the photoperiod to control the morphogenesis, while the current study used B light as
a supplement or for NI to control morphogenesis and flowering.

All the photoperiodic light treatments considered in this study resulted in greater plant heights
than that observed in the SD10 control (Figure 3A). This indicates that blue light may be used in
the production of cut chrysanthemum flowers, as longer stems are considered to be of better quality.
Kong et al. [34] stated that the increased elongation growth of plants in response to B light is linked to
lower phytochrome activity, and is a shade-avoidance response, where different species have different
sensitivities. These results agree with those of Jeong et al. [20], where it was found that an extended
photoperiod with blue light promoted stem elongation of chrysanthemum. Longer photoperiods are
known to be associated with the presence of higher gibberellin levels, which enhance stem elongation
in chrysanthemums [20,35]. In many species, including salvia and marigold, B light was more effective
than R light in increasing the shoot elongation [36]. Muleo and Morini [37] reported that internode
extension on the stem leader in apple was inhibited by B LED, which determined the lowest values
among all the light qualities tested. The differing responses of different plants to B light indicates that a
species’ responses to a specific light quality cannot necessarily be predicted on the basis of responses of
other species.

4.2. Dry Mass and Leaf Growth

In this study, plants in LD13 + 4B and LD13 + NI − 4B had greater shoot and root dry
masses compared to plants in the SD10 control (Figure 3B). These results indicate that a prolonged
photoperiod contributed to the dry matter production. Moreover, B light supplementation increases



Plants 2020, 9, 1694 8 of 11

the photosynthetic carbon assimilation and may also allow greenhouse crops to accumulate a greater
biomass [38].

Plants in all the photoperiodic light treatments had a higher number of leaves per plant compared
to plants in the control, and plants in SD9 + 4B had the greatest number of leaves (Figure 3C).
Plants in SD10 + NI-4B had a smaller mean leaf area than plants in the SD10 control did (Figure 3D),
resulting from shorter leaf lengths and widths (data not shown). All other treatments with B light led
to a greater leaf area than that of plants in the SD10 control. Wang et al. [39] reported similar results,
where light treatments with weak 50 µmol·m−2

·s−1 PPFD B light lead to increases in the leaf area.
Honecke et al. [26] proposed that B light is required during the photoperiod for the normal growth of
lettuce seedlings grown under R LEDs; if the B light level was low, long, narrow leaves developed.
Iacona and Muleo [40] reported that total leaf area per plant in cherry rootstock ‘Colt’ was significantly
greater in B LED-exposed plants than other treatments. However, these photomorphogenic responses
are specific to the particular species. Dougher and Bugbee [41] reported that increasing the B light
proportion resulted in decreasing leaf area in soybean, while in lettuce, increasing the B light proportion
resulted in increasing the leaf area. Eskins [42] observed that the Arabidopsis thaliana leaf area was
negatively correlated with the B light proportion, as a high-intensity B light irradiance corresponded to
the development of small leaves.

Gang et al. [43] observed that the chlorophyll levels increased as plants transitioned from the
vegetative to the reproductive growth, and decreased during maturation. Correspondingly, the lower
chlorophyll content of plants in LD13 + 4B compared to that of plants in the other treatments in
this study (Figure 3E) may be due to the continued maturation after the plants transition from the
vegetative to reproductive growth.

4.3. Expression of Genes Related to the Morphogenesis and Flowering

The expression levels of PHYA and PHYB were the highest for plants in LD13 + 4B, and the
expression level of CRY1 was the greatest for plants in LD13 + NI − 4B. Plants in these two treatments
were also the tallest. It has been reported that cryptochromes and phytochromes affect the height
of chrysanthemums [33]. In Arabidopsis, high PHYB levels can increase the expression of AtGAox2,
which controls the synthesis of gibberellins (GAs) [35]. Furthermore, it has been verified that both
phytochromes and cryptochromes play a part in the regulation of the plant hormone GA levels [35,44].
Thus, it is speculated that the high expression levels of PHYA, PHYB, and CRY1 found in plants grown
in LD13 + 4B and LD13 + NI − 4B may promote the synthesis of GAs and eventually result in greater
plant heights.

It is well known that photoreceptors related to B light were involved in the flowering process [18,20].
The CRY1 and CRY2 both mediate the flowering promotion by B light [45]. PHYA mediates the flowering
promotion by Fr light, and PHYB mediates the flowering inhibition by R light in Arabidopsis [46–48].
Although PHYA and PHYB are R light receptors, it has also been shown that they also function under
B light in Arabidopsis [49], and it has been proven that either PHYA or PHYB, as well as cryptochromes,
were required for responses to B light [24,46,50]. In this study, the number of flowers per plant was
shown to increase with the B light treatments. This may be attributed to the high CRY1 expression
levels. Similarly, Park et al. [11] reported that a greater number of flowers per plant was observed with
light shifting from B during the NI, which may be attributed to a high light energy induction as well as
shade avoidance responses, a behavior where plants evade darkness by lengthening the internodes.
In rice, NI with B light delayed the flowering time, but this delay was not reproduced in the PHYB-1
mutant [51], which means PHYB is a negative regulator for the flowering time. It was also observed
that while chrysanthemum is a qualitative SD plant, those in the LD13 + 4B and LD13 + NI − 4B
treatments still flowered. This indicates that high PHYA and CRY1 expression levels may induce
flowering. However, further research is necessary to verify this speculation.

In summary, B light resulted in a greater height and promoted the flowering in chrysanthemum.
The results of this study illustrate that a 4-h B light supplementation during the photoperiod promoted
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flowering and increased the number of flower buds formed. Hence, B light supplementation may be
an optimal technique to induce flowering, and can be practically applied to commercial cultivation of
SD plants. This study suggests that B light supplementation is an alternative practical technique to
induce flowering in SD plants to using blackout curtains during LD seasons. Further research is still
needed to optimize B light supplementation techniques for flowering induction of SD plants.

Author Contributions: B.R.J. and Y.G.P. conceived and designed the experiments; Y.G.P. performed the
experiments; B.R.J. and Y.G.P. analyzed the data; B.R.J. and Y.G.P. contributed reagents/materials/analysis tools;
B.R.J. and Y.G.P. wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Gyeongsagn National University.

Acknowledgments: The authors express their gratitude to Sowbiya Muneer, Prabhakaran Soundararajan,
and Young Don Chin for their assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Gourrierec, J.G.-L.; Pelleschi-Travier, S.; Crespel, L.;
Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in
horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [CrossRef]
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