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Abstract

Transcription factors and the short, often degenerate DNA sequences they recognize are central regulators of gene
expression, but their regulatory code is challenging to dissect experimentally. Thus, computational approaches have long
been used to identify putative regulatory elements from the patterns in promoter sequences. Here we present a new
algorithm ‘‘POWRS’’ (POsition-sensitive WoRd Set) for identifying regulatory sequence motifs, specifically developed to
address two common shortcomings of existing algorithms. First, POWRS uses the position-specific enrichment of regulatory
elements near transcription start sites to significantly increase sensitivity, while providing new information about the
preferred localization of those elements. Second, POWRS forgoes position weight matrices for a discrete motif
representation that appears more resistant to over-generalization. We apply this algorithm to discover sequences related to
constitutive, high-level gene expression in the model plant Arabidopsis thaliana, and then experimentally validate the
importance of those elements by systematically mutating two endogenous promoters and measuring the effect on gene
expression levels. This provides a foundation for future efforts to rationally engineer gene expression in plants, a problem of
great importance in developing biotech crop varieties. Availability: BSD-licensed Python code at http://grassrootsbio.com/
papers/powrs/.
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Introduction

The binding of transcription factors (TFs) to specific DNA

binding sites (TFBS) is a key mechanism in the regulation of gene

expression. Although genome-wide binding data for some TFs is

becoming available, there are still many cases in which the TF(s)

responsible for a regulatory program are unknown. Thus,

computational prediction of TFBS motifs is a long-standing

problem in bioinformatics. Motifs are traditionally identified from

promoters of co-regulated genes, but the same algorithms apply to

ChIP-chip and ChIP-seq data, and to miRNA binding sites in 39

UTRs.

Scores of motif identification programs have been developed,

spanning a wide range of approaches and problem niches. Das

and Dai provide a comprehensive review of motif finders [1], so

below we touch on several of the issues that differentiate them.

To begin, motif finders differ in the input data they are tailored

for: few sequences or many; positive sequences only, positives and

negatives, or a continuum of scored sequences. TreeMotif is a

recent example of an algorithm tailored to extracting long,

degenerate motifs from a few tens of sequences that all share a

common TFBS [2]. By contrast, many algorithms deal with

genomic-scale data. Most, like Amadeus [3], expect sequences to

be classified as ‘‘positive’’ or ‘‘negative’’, with most positive

sequences expected to share common TFBS motif(s). Others, like

cERMIT [4], associate a score with each sequence that reflects

how likely it is to belong to the positive group.

Motif finders also differ in the ways they search for and evaluate

putative motifs. Probabilistic methods [5,6] and enumeration of

short words [3,4] are two of the most popular search strategies.

Many algorithms include greedy, stochastic, or heuristic compo-

nents, as global optimization is generally not feasible. Putative

motifs have been scored using the binomial and hypergeometric

distributions [3], mutual information [7], various types of Z-score

[4,8], Bayesian priors [9], and many other approaches. In order to

compute these statistics, many algorithms also compute a

background model. This is often a Hidden Markov model

(HMM), and can be done from positive sequences only if

necessary. Other ‘‘discriminative’’ algorithms forego a background

model and directly discriminate between real positive and negative

sequences [8].

As a consequence of the above considerations, motif finders

represent the TFBS they detect in different ways. In order of

increasing complexity, the major representations are a single

consensus sequence, a degenerate consensus sequence using

IUPAC codes, and a position weight matrix (PWM). Although

PWMs are most popular, they have limitations. Directly optimiz-

ing a PWM is computationally difficult and often gives limited

sensitivity [1]. On the other hand, clustering simpler results into a

PWM during post-processing is also hard: our experience is that

over-zealous clustering often merges biologically distinct motifs,

yielding uninformative PWMs. Note that IUPAC codes are just

PWMs constrained to have non-zero weights equal in each

column, and so have similar problems.
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Finally, motif finders pay more or less attention to the location

of motifs. Most algorithms assume that TFBS motifs are

distributed uniformly along the lengths of the sequences, and

limit analysis to an arbitrary number of bases upstream of the

transcription start site (TSS). However, recent TSS mapping plus

ChIP in Drosophila [10] shows TFBS positions often have sharp

positional constraints around the TSS. As far back as 2004,

FitzGerald et al. [11] observed that seven common human TFBS

cluster strongly near the TSS, and similar patterns have been

observed more recently in plants [12]. Genome-wide analysis also

detects preferred motif pair spacings [13]. Although a few motif

finders post-process results to look for position bias [3,7], it has not

historically been the focus of the motif discovery process. (The

position-conscious NCBI program A-GLAM was a notable early

exception [14,15], as are several recent algorithms; see Discussion.)

By contrast, we expect and observe a continuous gradient of TFBS

density that peaks near the TSS. We exploit this observation to

increase the sensitivity of our algorithm, because motifs that are

informative near the TSS (where TF binding impacts transcrip-

tion) can be uninformative far from the TSS (where TF binding

may not have functional consequences). Similar considerations

arise from the strand specificity of TFs.

Our motivation is to discover novel, functional regulatory motifs

in plant species (whose regulatory mechanisms are less character-

ized than e.g. yeast or human), and to use those motifs in

engineering transgene expression. To that end, we aim to

overcome two limitations of existing approaches. First, most motif

finders ignore position and strand effects; we characterize the

position- and strand-specificity of any discovered motif. Second,

PWMs are often problematic in motif finding. Instead, we

represent motifs as a single, non-degenerate consensus sequence,

plus some variants that differ by a single mutation. This captures a

limited but useful amount of degeneracy without the number of

free parameters (and accompanying computational cost) of a full

PWM. Identifying the consensus (and hopefully optimal) sequence,

strand, and position for each TFBS is particularly relevant for

engineering gene expression, but is also important for a general

understanding of transcriptional regulatory systems.

In this work, we describe the POWRS (POsition-sensitive

WoRd Set) motif identification algorithm. We compare its

performance to well-known and state-of-the-art algorithms on a

benchmark set of TF and miRNA data, and demonstrate the

advantages of our motif model and of position- and strand-specific

search relative to an identical algorithm without those features. We

then apply our algorithm to motif discovery in a set of co-regulated

genes from the model plant Arabidopsis thaliana, and validate our

motif predictions by systematically mutating all 10-bp segments of

two endogenous promoters.

Materials and Methods

POWRS
POWRS starts with two sets of sequences, both aligned on a

common feature (the TSS of promoters or the 59 ends of 39 UTRs

in the examples here). The first set of sequences (typically a few

hundred) are hypothesized to share one or more motifs, while the

second set (typically the rest of the genome) provide a background

distribution. Using p-values from the binomial distribution,

POWRS finds the words that are most enriched in the first set

of sequences, and for each word, the region of these sequences in

which the enrichment is most significant. Closely related words are

then greedily grouped together to form motifs.

Formally, let A be the set of sequences of interest and B be the

set of background sequences. If k is a short word of specified

length, let variants k be all words of the same length that differ

from k by at most one mutation. Let motif K be a set of words

consisting of seed k* and zero or more of variants k*. Then AijK is

the set of all sequences aijK[A that contain at least one word k[K

in the coordinate range ½i,j), and NijK is the set of all sequences

nijK[N~ A|Bð Þ that contain at least one word k[K in the

coordinate range ½i,j). We define the following scores based on the

binomial distribution (x successes, y trials, probability of success p):

pbinom x,y,pð Þ~
Xy

h~x

y!

h! y{hð Þ! ph 1{pð Þy{h

window score(K)~ max
i,j

{log10 pbinom AijK,NijK,
A

N

� �� �� �

For each possible seed word k* of a given length, POWRS then

finds its top-scoring motif K and the motif’s region of maximal

enrichment ½i,j):
for each possible seed word k* of a given length:

initialize K~fk�g:
repeat:

k
0
~ argmax

k[variants k�ð Þ
window score(k|K)

if window score k
0
|K

� �
wwindow score Kð Þ : update K~k

0
|K and repeat

else : next k�:

For each motif considered, we calculate the continuous window

of sequence positions over which the highest score is achieved (for

example, from 2300 to 275 relative to the TSS). Shorter windows

trade off potentially higher levels of enrichment against lower total

counts, and hence lower statistical significance. The scoring is

O(n2) in the length of the sequence, but by choosing an

appropriate granularity for i and j (e.g. 25 bp for 1000 bp

sequences), the total number of windows to be tested can be kept

small. That is, with 25 bp granularity, the optimal window found

could be 2300 to 275 relative to the TSS, but not 2298 to 286.

By sorting match positions of each word in each sequence, we can

efficiently fill a qL=Br|qL=Br table of counts for the binomial

test (L is maximum sequence length, B is the search granularity;

row denotes window start position i, column denotes window end

position j; upper triangle only). Scores (p-values) are not directly

corrected for multiple testing, because the tests of overlapping

windows and similar motifs are not independent. Corrected p-

values can be obtained by permutation or bootstrapping, at

additional computational cost. As a rule of thumb, scores below 10

(i.e. P.10210) are unlikely to be statistically significant.

Each seed word is then made into a motif by adding close

variant words to the motif definition, in each cycle greedily adding

the variant that most increases the score. Variant words differ from

the seed word at exactly one position (one mutation). We call this

motif model a ‘‘word set’’ to distinguish it from a PWM motif

model. Sequences are counted for scoring purposes if they match

at least one of the words in the motif, in the appropriate window.

In addition to re-assessing the optimal window at each cycle (as

above), motifs are tested against the sense strand only and against

both strands to see which gives the higher score. Iteration stops

when no variant can be added that will improve the score. Note

that only variants of the original seed motif are considered for
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inclusion, not variants of variants, although every possible word

gets an opportunity to be a seed.

Each seed word of length l has 3l variants, and so optimizing

the motif requires O(l2) cycles of window optimization in the worst

case. Although this proceeds quickly, in the interest of saving

compute time we generally choose to optimize only the most

promising words from the initial pass. In the results here, we

optimized motifs for the 800 single words (i.e., k*) with the most

significant initial p-values. We used granularities of 50 bp on the

human TFs (2000 bp sequence, GRCh37), 500 bp on the 39

UTRs (5000 bp sequence, GRCh37), and 25 bp on the Arabi-

dopsis promoters (1050 bp sequence, TAIR9). We also employ a

suffix array to speed motif searching. Run times for the TF and

miRNA data sets were 20–25 minutes per TF/miRNA on a single

Xeon processor.

Results of POWRS deliberately include similar, ‘‘redundant’’

results for each motif. We do automatically suppress any motif

whose seed is used as a variant of a higher-scoring motif, which

already sharply limits the number of duplicates. For ranking results

in the benchmark, we also group together motifs that obviously

refer to the same TFBS, i.e. those that have at least 6 contiguous

identical bases between their seeds, allowing for shifts. These

generally arise because the full motif is longer than 8 bp, but

occasionally show variants that differ from the consensus in 2 of 8

positions.

Promoter Analysis
Arabidopsis genes AT1G22840 (GR2A) and AT3G62250

(GR11A) were identified as highly expressed constitutive genes

as described in Results. Because both genes had very short 59

intergenic regions (195 bp and 141 bp, respectively), we hypoth-

esized that their promoters might be compact and ideal for

functional dissection. The intergenic regions, as well as 10 bp

sequential transversion series thereof, were generated by synthesis

(Genscript), cloned in front of a GFP reporter in a binary

expression vector (Cambia), and transformed into Arabidopsis

thaliana Col-0 by the floral dip method [16]. GFP expression in

root tissue was determined by quantitative RT- PCR on four or

five low-copy non-segregating T3 lines from each transversion

series member. Approximately 50 seedlings per line were grown

on standard MS media in 100 mm square plates for seven days at

23uC, 16 hours light, 8 hours dark, and then pooled together for

harvesting. Root tissue was homogenized in liquid nitrogen via

bead milling and total RNA and genomic DNA was extracted

using the Allprep DNA/RNA kit (Qiagen). cDNA was generated

from total RNA using Superscript VILO cDNA synthesis kit

(Invitrogen) per the manufacturer’s instructions. Multiplex qPCR

TaqMan assays were conducted on cDNA and genomic DNA

using the CFX96 Real-Time PCR Detection System (Bio-Rad)

with primers and probes specific for GFP, PDS1, and the

‘‘housekeeping’’ gene UBC9, as follows: GFP primer forward –

59CGTGCAGGAGAGGACCAT; GFP primer reverse –59TG-

TCTCCCTCAAACTTGACTTCAG; GFP probe –59/56-FAM/

AGTTCCCGT/ZEN/CGTCCTTGAAGAAG/3IABkFQ; UBC9-

primer forward –59ATGGAAGCATCTGCCTCGACATCT; UBC9

primer reverse –59AGGATCATCTGGGTTTGGATCCGT; UBC9-

probe –59/5TEX615/AGCAGTGGAGTCCTGCTCTCACAATT-

/3IAbRQSp; PDS1 primer forward –59TCACGGCTCTTGTCGT-

TCCTTCTT; PDS1 primer reverse –59TGGAGAAAGCTGACT-

CTGCGTCTT; PDS1 probe –59/5TEX615/TCGGTGTTAGAG-

CCGTTGCGATTGAA/3IAbRQSp. The amplification protocol was

95uC for 9 min, followed by 40 repeats of 95uC for 15 s, 57uC for 30 s,

72uC for 30 s, read.

Three technical qRT-PCR replicates were performed on each

biological replicate. Data were processed using CFX Manager

software (Bio-Rad). To determine relative GFP expression level and

copy number, PCR reaction efficiency was calculated using

LinRegPCR software (Ruijter). Ct and baseline threshold values

were obtained via the CFX Manager software. Data analysis was

then performed using the GenEx software package (MultiD

Analyses AB). After correcting for reaction efficiency, the Ct values

of technical replicates were averaged and the relative GFP

expression and copy number was calculated by normalizing relative

levels of GFP to UBC9 in cDNA and GFP to PDS1 in genomic DNA,

respectively. GFP expression in individual lines was normalized to

copy number and expressed relative to a CaMV 35S control.

Results

We first compare the performance of POWRS to other motif

finders on benchmark sets of transcription factors and miRNAs

from the literature, finding POWRS to be as successful as the best

existing algorithms and to provide additional data about motif

positioning. Furthermore, we show that position-specificity and the

word-set motif model contribute to POWRS’s success in finding

motifs. Finally, we apply POWRS to de novo motif discovery in the

model plant Arabidopsis thaliana. We then show that mutating the

identified motifs compromises activity of two endogenous

promoters, but mutating other regions generally does not.

TFBS Benchmark
Table 1 compares the performance of POWRS and its

variations to 7 other motif finders on a set of 9 human TFs,

using the procedures and results reported by Linhart et al. [3] and

Keilwagen et al. [17]. POWRS performs equivalently to the other

two best programs, Amadeus and Weeder, succeeding and failing

on the same targets. However, POWRS provides additional

information about the position and strand specificity of each motif

(Table 2). Although Amadeus searches for strand and location

bias, among these targets it only detects localization of CREB,

which it places at 260. Dispom also performed well and does

calculate motif positions, but these were not reported [17].

Interestingly, no TF’s optimal window extended beyond 2600.

Typical practice is to use 1–3 kb of promoter sequence, but this

result suggests using only ,500 bp may result in higher success

rates for motif discovery in co-regulated gene sets.

We note that for the CREB target (JASPAR MA0018.2), the

three top performing programs (Amadeus, Weeder, and POWRS)

all identify the consensus CTTCCG/CGGAAG as their top hit,

with the CREB motif second. That top hit matches JASPAR motif

MA0076.1, Elk4. A cursory search of the literature reveals that

Elk4 and CREB both interact with the kinase Erk during the

development of B cells, and both regulate cell expansion [18],

suggesting this result reflects biology rather than artifact. This type

of result should be expected in higher eukaryotes, where complex

transcriptional programs are regulated by many interacting

factors.

Table 2 and Table S2 show POWRS’ detailed predictions. The

pattern of degeneracy in the word set motifs in general agrees well

with that in JASPAR PWMs. As expected, POWRS automatically

determined that most TFs’ range extends all the way to the TSS

(position 0) and covers both strands. SRF is the only TF predicted to

have a strand preference, which is surprising because the literature

PWM is palindromic. However, slightly lower-scoring results for

SRF cover both strands, suggesting the asymmetry, if any, is slight.

The original comparison [3] used 29 TF datasets, but

unfortunately was referenced to the TRANSFAC database [19],

POWRS: Position-Sensitive Motif Discovery
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which is not freely available outside of academia. Since the target

motifs were not reproduced in the original comparison, we had to

limit our comparison to the 9 TFs that had motifs listed in the free

database JASPAR [20]. JASPAR has the additional advantage

that there is only one canonical motif for each TF, whereas

TRANSFAC lists up to 16 different PWMs for some TFs in the

benchmark set.

miRNA Benchmark
Table 1 also compares the performance of POWRS to other

motif finders on a set of 7 miRNAs, two of which have data from

two different teams, again as reported by Linhart et al. [3]. No data

was published for Dispom. As this benchmark was referenced to the

public miRbase [21] database, we were able to test against the entire

set. Amadeus, Weeder, and POWRS again performed identically.

As expected, POWRS predicted all motifs to occur on the sense

strand only, while most TFBS were predicted to occur on both

strands. Unsurprisingly, POWRS detected no strong localization of

miRNA binding sites relative to the start of the 39 UTR.

Effect of Position Sensitivity on Motif Discovery
To investigate the impact of position sensitivity on our ability to

detect TFBS motifs, we performed three experiments. First, we ran

POWRS with positional granularity equal to the full sequence

length, thereby eliminating position sensitivity from the algorithm.

Table 1 shows that this ‘‘full length’’ variant performs significantly

worse than the position-sensitive version of POWRS.

Second, we compared the results of POWRS to an even simpler

algorithm that uses the same binomial scoring function, but

examines single words only (no word sets, no degeneracy) over the

entire sequence length. Results are reported as ‘‘Simple8’’ (8-mers)

and ‘‘Simple6’’ (6-mers) in Table 1. The results demonstrate that a

very simple discriminative algorithm is still sufficient to resolve

many of the benchmark cases, although in some cases only a

shorter 6-bp core of the motif could be reliably identified. In

Arabidopsis, the simpler algorithm detects the Site II and telo box

motifs, but does not detect the TATA box, presumably because

the TATA box is highly position specific. Comparing the

POWRS-FL and Simple8 results suggests that the word-set motif

model does improve sensitivity without over-generalizing the

motifs. Overall, POWRS is able to find correct motifs in 17 cases,

versus 10–14 cases for the simpler algorithms.

Third, we compared the results of POWRS on a set of 118

Arabidopsis constitutive gene promoters (see below), in one case

aligning them on the TSS annotated in TAIR9 [22], and in the

other aligning them on the most probable TSS estimated from the

available collection of Arabidopsis ESTs, essentially as in

Troukhan et al. [23]. The pipeline used for annotations at TAIR

favors the most 59 TSS rather than the most common TSS, so the

EST-aligned sequences are expected to display tighter distribu-

tions of TFBS, even though the TSS is predicted solely from the 59

Table 1. Comparison of motif finders on benchmark and de novo discovery data sets.

Group Target Ref. POWRS POWRS-FL Simple8 Simple6 Amadeus Weeder Trawler YMF AlignACE MEME Dispom

TFs CREB MA0018.2 2 3 2 2 2 X(2) X X X X X(2)

E2F MA0024.1 2 2 X 1 1 X(1) 2 X X X 1

ETS1 MA0098.1 2 1 1 1 3 1 X X(1) X X 2

HNF1a MA0046.1 1 X X 2 3(1) X 1 X X(4) X 2

NFkB1 MA0105.1 1 X X X 1 X(4) 2 X X X 2

P53 MA106.1 X X X X 1(X) 3 X X X X X

Sox2 MA0143.1 X X X X X X X X X X X

SRF MA0083.1 1 1 X 1 1 2(1) 2 4 X X 1

YY1 MA0095.1 1 2 X 1 1 1 1 1 1 X 1

miRNAs let7 (B) MIMAT0000062 X X X X X X X X X X nd

let7 (J) MIMAT0000062 1 1 X X 1 1 1 X X X nd

miR106b MIMAT0000680 1 1 1 1 1 1 1 2 X 1 nd

miR124 MIMAT0000422 1 1 1 1 1 1 1 1 X 1 nd

miR16 MIMAT0000069 1 1 1 1 1 1 1 X X 1 nd

miR1 MIMAT0000416 1 1 1 1 1 1 2 X X 1 nd

miR34 (C) MIMAT0000686 X X X X X X X X(4) X X nd

miR34 (H) MIMAT0000686 1 1 1 1 1 1 2 X X 2 nd

miR373 MIMAT0000726 1 1 1 1 1 1 2(X) 1 X 1 nd

Arabid. telo box AAACCCTAGC 1 2 1 2 nd nd nd nd nd nd nd

Site II AAGGCCCAWT 2 1 2 1 nd nd nd nd nd nd nd

TATA box TCTATAAAA 3 X X X nd nd nd nd nd nd nd

Rank of the ‘‘correct’’ motif in the output of various programs. ‘‘Target’’ refers to data sets defined in [3]. ‘‘Ref.’’ gives the accession number in the JASPAR or miRbase
database, or the target consensus sequence. X, no match in the top 4 results; nd, not determined (i.e. the tools were not run due to licensing restrictions on non-
academic use). Results for Amadeus, Weeder, Trawler, YMF, AlignACE, and MEME are quoted from [3], as several are not freely available outside academia. Results for
Dispom are quoted from [17]. ‘‘POWRS-FL’’ is POWRS without position sensitivity (‘‘full length’’). ‘‘Simple8’’ and ‘‘Simple6’’ are the whole-sequence, binomial-scoring
algorithm described in the text, using 8-mers and 6-mers respectively. A result was considered correct if at least 6 contiguous bases of the result matched the literature
motif (except ETS1 and YY1, which are effectively 4 bases long). The ranking from the more permissive PWM-based metric in [3] is shown in parenthesis where it
disagrees.
doi:10.1371/journal.pone.0040373.t001
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ends of ESTs and not from any sequence motifs. As expected,

when the EST-aligned sequences were used, the score of the top

motif hit increased from 25.0 to 28.0, and the score of the TATA

box motif increased from 13.3 to 17.2. These scores represent

improvements of 3 and 4 orders of magnitude in the binomial p-

values. The positional distribution of TATA box sequences also

tightened from (225 to +50) to (250 to 225). This demonstrates

that better TSS annotation can improve motif discovery, and

indirectly demonstrates that position-specific algorithms exploit

that information for higher sensitivity.

Motif Discovery in Arabidopsis
Using the microarray data of Brady et al. [24] and Schmid et al.

[25], we identified 118 genes that were highly expressed

throughout Arabidopsis plants (Table S1). For each gene, we

extracted 1000 bp upstream and 50 bp downstream of the TSS

annotated in the TAIR9 genome release [22]. We then used

POWRS to search for motifs involved in this expression pattern,

leading to the identification of 3 putative motifs.

The first motif has consensus AAACCCTAGC, and occurs on

either strand primarily between -75 and +25 relative to the TSS. It

occurs in that region in 46 of the 118 genes, and additional genes

contain near matches to the motif. The PLACE database [26]

identifies this motif as ‘‘Up2’’ (AAACCCTA) or ‘‘telo box’’

(AAACCCTAA). Although this motif has previously been

associated with up-regulation in axillary buds, root primordia,

and cycling cells, to the best of our knowledge it has not previously

been connected to constitutive high expression [27,28].

The second motif has consensus AAGGCCCAWT, and occurs

preferentially on the sense strand between 2150 and 225, in 47 of

the 118 genes. PLACE identifies this motif as ‘‘Up1’’

(GGCCCAWWW) or ‘‘Site II element’’ (TGGGCY). The

positional enrichment of this motif is depicted graphically in

Figure 1. Again, this motif has been previously implicated in

expression in cycling cells and meristems, but not constitutive high

expression [27,28].

The third motif has consensus TCTATAAAA, and occurs on

the sense strand between 250 and 225, in 38 of the 118 genes;

this is the TATA box. Although the literature reports that TATA

boxes are more common in highly regulated genes than in

‘‘housekeeping’’ genes, we find strong enrichment of TATA boxes

in these highly expressed constitutive genes, using a variety of

different algorithms. That being said, we find the Site II and telo

box motifs in both of the Arabidopsis promoters studied below, but

neither contains a recognizable TATA box.

Validation of Arabidopsis TFBS
To validate the impact of these motifs on gene expression, we

systematically mutated two short, endogenous Arabidopsis

promoters derived from the set of 118 strong, constitutive

genes. Both promoters contain Site II and telo box motifs,

though neither includes a recognizable TATA box. In each

promoter, consecutive 10 bp segments were subjected to

transversions (A«C, G«T), as diagrammed in Figure 2.

Activity of the mutated promoters was compared to wild type

by qRT-PCR (Figure 3). Although biological variation (presum-

ably position effects) masks minor changes in activity, several

Table 2. Detailed results of POWRS motif searches.

Target Ref. Rank Score Motif Start End Strands?

CREB TGACGTNW 2 45.4 [Act][Gat][Tg][Gc]ACG[Tac] 2400 0 Both

E2F TTTSSCGC 2 10.7 TT[Ga][Gt]C[Ga]C[Gc] 2450 250 Both

ETS1 NWTCCN 2 50.8 [Cagt]A[Cagt]TTCCG 2550 0 Both

HNF1a GGTTAATNWTTNNN 1 15.2 TTA[Ac][Tc][Gac]A[Tcg] 2250 0 Both

NFkB1 GGGGRWYYCCC 1 11.4 G[Gt][Ag][At][At][Tac][Cat]C 2400 0 Both

P53 NNRRRCATGYCCGGGCATGT – – – – – –

Sox2 CCWTTGTNNTNNNNN – – – – – –

SRF GCCCWTATAWGG 1 12.8 C[Ca][At][Ta][Agt]T[At][Ta] 2300 0 One

YY1 NCCATN 1 67.2 GC[Cg]AT[Gact]T[Tc] 2350 0 Both

let7 (B) CTACCTCA – – – – – –

let7 (J) CTACCTCA 1 24.3 [Ca]TA[Cag]CT[Cg][Ta] 0 5000 One

miR106b GCACTTTA 1 29.1 GCACTTT[Act] 0 4000 One

miR124 GTGCCTTA 1 31.9 [Gt]TGCCTT[Acgt] 0 5000 One

miR16 TGCTGCTA 1 31.3 [Tac]GCTGCT[Agt] 0 3500 One

miR1 ACATTCCA 1 23.8 [Agt]CATTCC[Agt] 0 2000 One

miR34 (C) CACTGCCT – – – – – –

miR34 (H) CACTGCCT 1 45.9 [Cagt]AC[Tag]GCC[Tag] 0 2000 One

miR373 AGCACTTC 1 18.4 [Tac]A[Ag]GCACT 0 1000 One

telo box AAACCCTAGC 1 28.0 [Ag]C[Ct]C[Ta][At][Gat][Tacg] 275 +25 Both

Site II AAGGCCCAWT 2 23.4 [Agt][Gat][Ga]CC[Cg]A[Acgt] 2150 225 One

TATA box TCTATAAAA 3 17.2 [Tacg][Ca][Tg]ATAA[Ag] 250 225 One

‘‘Target’’ refers to the data sets from [3]. Reference motifs are IUPAC approximations of PWMs from JASPAR (human TFs), seed sequences from miRbase (human
miRNAs), or manual consensus sequences (Arabidopsis). (See Table S2 for the same data with PWMs from JASPAR shown as sequence logos.) Motifs are represented
with the primary bases in uppercase and the variant bases in lowercase, with degenerate positions grouped in square brackets. Matching words are those that use at
most one variant base, so [Tac]GCTGCT[Agt] = {TGCTGCTA, aGCTGCTA, cGCTGCTA, TGCTGCTg, TGCTGCTt}.
doi:10.1371/journal.pone.0040373.t002
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10 bp transversions clearly disrupted promoter activity:

GR2A_14, 15, and 17; and GR11A_13, 14, 15, and 16. Most

of these blocks substantially disrupt either a Site II or telo box

motif. In GR2A, block 14 eliminates one of the two natural telo

box motifs (the other is downstream of the annotated TSS and

so unfortunately was not tested). Block 15 likewise eliminates the

only complete Site II consensus sequence (block 13 contains the

Site II core GCCCA only). Transversion of block 17, by

contrast, actually introduces a new telo box motif, on the

reverse strand and positioned between the two endogenous

occurrences. This site may disrupt transcription through

competition with the natural sites. In GR11A, there are three

good matches to the full Site II motif (blocks 6, 8, and 9/10);

disrupting any one of these individually may decrease expression

slightly, but does not seriously compromise the promoter. Of

course, not all motif matches will necessarily be biologically

active TFBS (see Discussion); this may also explain part of the

lack of response. On the other hand, there is only one telo box

motif, split between blocks 13 and 14; both these transversions

clearly disrupt activity. Finally, transversion of block 15 or 16

(which overlap by all but one base pair) also appears to disrupt

promoter activity, but does not appear to involve any of the

motifs identified here. In both promoters, a number of

transversions show a modest and statistically insignificant

decrease in activity (GR2A_5, 6, 9, 10, 11, 12, 13;

GR11A_3, 6, 11, 12). We hypothesize this primarily reflects

random biological variation, as the measurement error is

sizable. Consistent with this hypothesis, only GR11A_6 contains

a full length Site II or telo box motif.

Discussion

We have described POWRS, a novel algorithm for discovering

putative transcription factor binding motifs from sets of co-

regulated genes. However, POWRS also determines the preferred

location and strand for each motif, making it ideal for identifying

likely active instances of a motif or for targeting genetic

manipulations. In general, the motifs identified by POWRS in

promoters of constitutive, highly expressed genes from Arabidopsis

appear to be essential for the activity of those promoters. However,

our mutagenesis experiments also show that other sequences can

play a critical role in promoter activity, and that the effects of the

Figure 1. Graphical depiction of Site II motif matches in Arabidopsis. Smoothed histogram (kernel density estimate) of occurrences of the
Site II motif in Arabidopsis promoters from the 118 constitutive genes of interest (solid line) or background genes (dashed line). The Site II motif is as
defined in Table 2. Units of motif density are occurrences per base pair per sequence. POWRS reports maximal enrichment of Site II in the genes of
interest relative to the background in the region from 2150 to +25, in excellent agreement with what is seen here. Note that although Site II occurs
more often near the TSS for all genes, the effect is significantly stronger among the genes of interest.
doi:10.1371/journal.pone.0040373.g001
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motifs we identified can vary with position and number of copies.

This is to be expected: the DNA motifs found by POWRS should

correspond roughly to optimal TFBS on naked DNA, but not all

instances of a motif will be biologically active, nor will all

biologically relevant binding sites perfectly match the motif. Other

researchers have shown that histone modifications, chromatin

state, and DNA accessibility are all important for discriminating

active from inactive sites; one example is the CENTIPEDE

algorithm of Pique-Regi et al. [29].

In practice, discovery of motifs from co-regulated gene sets is a

messy affair. When the selection is based on co-regulation or co-

expression, it is possible (and perhaps likely) that the set will be

heterogeneous; that is, that different regulatory mechanisms are

operating on different genes, but with similar results. Each

mechanism may involve multiple TFs, and thus multiple TFBS.

The danger in motif clustering and PWM construction is in

combining unrelated motifs, a problem we have encountered

repeatedly in practice. We speculate this may be due in part to the

enormous flexibility of the (unrestricted) PWM model. Despite

these potential pitfalls, some level of degeneracy is essential for

improving sensitivity. An open question is whether one could

sufficiently restrict PWM construction (e.g. with an appropriate

prior) to provide some degeneracy while avoiding over-generaliz-

ing motifs. In the absence of such methods, we believe that the

word-set model offers a safe and useful level of degeneracy that is

resistant to overgeneralization. In our implementation, we elect

not to further cluster the results, despite some redundancy. This is

appropriate and sometimes useful to the specialist, but further

post-processing would be desirable in a push-button tool targeted

at novice users.

One might expect that the single-mutation word-set model

would fail for motifs with more than one degenerate position, yet

this does not appear to be a major problem in practice. For

example, POWRS finds the correct motif for E2F and HNF1a,

each of which has multiple degenerate positions (Table 2). We

hypothesize this is because even for degenerate motifs, most

occurrences are within one mutation of the consensus. Using the

literature E2F motif as an example, the word-set model could

capture three of the four main possibilities for the degenerate

center bases (the consensus ‘‘GG’’ and variants ‘‘GC’’ and ‘‘CG’’),

and could thus match .75% of occurrences. While POWRS does

fail to detect the highly degenerate Sox2 motif, none of the other

methods fared any better. Since many of those methods are PWM-

based, it seems unlikely that choice of motif model is the deciding

factor.

Having adopted the word-set motif model, we find no need for

an elaborate scoring function. We chose the binomial distribution

over the hypergeometric because the former admits use of the

binned enrichment correction described by Linhart et al. [3] and is

somewhat faster; otherwise, there is no practical difference. (We

have found the binned enrichment correction helpful in the past,

but have not needed it since accounting for positional effects.) One

important choice, however, is whether to count the number of

sequences that contain a motif or the number of occurrences of a

motif (irrespective of how many sequences they are spread over).

We find the latter approach very susceptible to false positive

enrichments, likely due to duplications and similar events within a

small subset of the sequences.

Scoring based on the binomial (or hypergeometric) distribution

has the nice property of balancing sample size against degree of

enrichment in a simple but statistically principled way. A motif

that matches 90% of the genes of interest and is weakly enriched

may be more or less significant than a motif that matches 10% of

those genes but is strongly enriched. Nonetheless, these extreme

cases can be directly compared by their p-values. A small number

of genes that achieve high statistical significance (i.e. strong

enrichment) are particularly interesting for motif discovery in co-

regulated sets of genes. Any collection of approximately ‘‘co-

regulated’’ genes will likely contain a significant amount of

heterogeneity in terms of expression pattern. Thus, it is

implausible that all genes in the set would be controlled by

exactly the same (set of) TFs. Finding that 10% of such a set (,12

genes here) share a common regulatory motif would suggest that

those genes may have some functional relationship that should be

investigated further.

The utility of positional preferences in the discovery process

varies by motif. Some TFBS appear to be relatively non-specific in

their positioning (e.g. ETS1, ,550 bp window). These motifs

should be discoverable by any method when applied to proximal

promoter sequences (e.g. -500 to -1 positions). On the other hand,

some motifs are highly localized, such as the TATA box (25 bp

window) and the telo box (100 bp window). For discovering these

motifs, positioning information is very helpful, and restricting the

sequence range a priori is difficult. Fortunately, POWRS can

efficiently detect either type of motif distribution, even when

presented with very long input sequences (e.g. 22000 to 21).

Figure 2. Transversion scheme in GR2A and GR11A. Endogenous sequence is shown in black, sequence after transversion is shown above in
gray. Transcription starts sites annotated by TAIR9 [22] and inferred from EST data are indicated. Blocks for transversion are numbered and delimited
by spaces. Natural Site II and telo box motifs are marked on the endogenous sequence in green and yellow respectively. Non-natural Site II and telo
box motifs created by the transversions are marked on the transversion sequence; in some cases, these are split between natural and mutated
sequences. Blocks whose transversion clearly disrupted promoter activity are numbered in red (compare to Figure 3).
doi:10.1371/journal.pone.0040373.g002
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Lastly, because the binomial test balances statistical power against

specificity, we cannot say that ETS1 does not prefer a narrower

range of positions, only that with the data in question, we lack the

statistical power to narrow it further. The same statistical

balancing act will necessarily exclude some number of biological

relevant ‘‘far’’ TFBS that occur outside the ranges determined by

POWRS.

During the development and validation of POWRS, several

other algorithms focused on motif position have been published

[17,30–32]. For comparison, we report benchmark results for one

of these (Dispom) in Table 1 [17]. In particular, Narang et al. [32]

independently developed an approach quite similar to POWRS.

Among the major differences, they employ a weighted combina-

tion of three separate scoring functions formulated in terms of

entropy, while POWRS’ single score sidesteps their unresolved

problem of choosing good weights. Additionally, Narang et al. [32]

use a consensus sequence plus all variants instead of an optimized

subset, use a Markov model for background, and do not identify

strand preferences. Unfortunately, we were unable to generate

meaningful benchmark results with the provided implementation.

However, these authors all concur that incorporating position

information improves their motif discovery algorithms.

Benchmarking algorithms is difficult; doing so fairly and

informatively is extremely challenging. An exemplary evalution

of drug docking algorithms by Warren et al. [33] discusses many

potential pitfalls for the unwary. Such a comprehensive bench-

mark is well beyond the scope of this study; it could be argued no

comparably rigorous comparative evaluation yet exists in the motif

discovery literature. Thus, we do not assert that POWRS is

superior to other algorithms on the basis of the data here, only that

it is approximately comparable to the state of the art, and that it

appears to provide some novel positional information. While

experience with internal projects leads us to hypothesize that

POWRS does offer some unique advantages, confirmation of that

will require additional empirical data.

In the 18 cases examined, the top 3 programs performed

essentially identically; and when successful, the correct motif is

generally in the top two results. However, in three cases, no

program was successful. This may mean that the motif is not

enriched in the target sequences, but is only active there because of

pairing with other factor(s) and/or structural features. Such motifs

will require very different algorithms, if it is even possible to

discover them computationally. Alternately, the data may simply

be low quality. In the miRNA cases, the two ‘‘difficult’’ cases are

paired with ‘‘easy’’ data sets for the same motif where many

programs succeed. This strongly suggests data quality is the issue,

underscoring the need for careful curation of benchmark data.

On the other hand, we see little value in benchmarks on

synthetic data. Such data sets inevitably reflect the preconceptions

of their creators, but they also often include blatantly unrealistic

features, such as equal A/C/G/T content, zero-order Markov

models, and exactly one instance of the true motif embedded in

each input sequence. In our experience, even high-order Markov

models do a poor job recapitulating the quirks of real sequences,

which include long runs of repetitive and low-complexity

sequence, sequence duplication (including transposons), nucleo-

some positioning and other structural features [34,35], etc. Thus,

one useful future direction for the field is to exploit these ‘‘quirks’’

to enhance discovery, as we have done here with motif position

and strand preferences.
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