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Abstract: We report the results from self-consistent calculations of electronic, transport, and bulk
properties of beryllium sulfide (BeS) in the zinc-blende phase, and employed an ab-initio local density
approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We obtained
the ground state properties of zb-BeS with the Bagayoko, Zhao, and Williams (BZW) computational
method, as enhanced by Ekuma and Franklin (BZW-EF). Our findings include the electronic energy
bands, the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses, the
equilibrium lattice constant, and the bulk modulus. The calculated band structure clearly shows
that zb-BeS has an indirect energy band gap of 5.436 eV, from Γ to a point between Γ and X, for an
experimental lattice constant of 4.863 Å. This is in excellent agreement with the experiment, unlike
the findings of more than 15 previous density functional theory (DFT) calculations that did not
perform the generalized minimization of the energy functional, required by the second DFT theorem,
which is inherent to the implementation of our BZW-EF method.

Keywords: zinc-blende structure; local density approximation; energy minimization; electronic
energies and related properties

1. Introduction

Group II–IV compounds have been widely studied in light of the growing demand
for potentially good semiconductors for various electrical and optical devices. BeS is an
interesting material with high hardness; it belongs to the beryllium chalcogenides family
and crystallizes in the zinc-blende structure under normal condition. It has potential
applications in blue-green laser diodes and light-emitting diodes. The material can be
grown on various substrates by molecular beam epitaxy [1,2]. The toxicity of zb-BeS has
partly resulted in the dearth of experimental results on its many properties. Muoz et al. [3]
used first-principles calculations to show that BeS undergoes a phase transition to the
nickel arsenide (NiAs) structure under high pressure. The band gaps of Be compounds are
experimentally reported to range between 2.7 eV and 5.5 eV [4]. Ab-initio pseudopotential
calculations [5] with the local density approximation (LDA) and the generalized gradient
approximation (GGA) obtained an indirect band gap of 2.911 eV and 3.041 eV, respectively.
The work of Gonzalez-Diaz et al. [6] employed the first-principles pseudopotential plane
wave method and the Cerperly Alder form of the local density approximation potential,
where they found an indirect band gap of 2.75 eV for zb-BeS. Benosman et al. [7] used the FP-
LAPW method and a local density approximation for exchange and correlation potential to
study the structural and electronic properties of BeS. They reported a band gap of 2.847 eV.
Table 1 shows the findings from over 20 previous DFT calculations using ab-initio LDA or
generalized gradient approximation (GGA) potentials. The 11 LDA calculations reported
gaps in the 2.38 eV to 4.17 eV range. The nine (9) GGA computations found band gaps in
the 3.041 eV to 4.241 eV range. These calculations not only disagree among themselves,
but also with an experiment that produced a gap of 5.5 eV. The previous DFT calculations
uniformly underestimated the band gap. Our motivation for this work stems from these
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disagreements and potential applications of zb-BeS. The results obtained with ad-hoc
DFT potentials vary with the adjustable parameters germane to the construction of these
potentials; consequently, we do not discuss here the calculations with these potentials due to
their lack of predictive capabilities. Even though the Green function and dressed Coulomb
approximation (GW) is beyond density functional theory, results from this approach, as
per the content of the table, are also underestimates of the measured band gap of zb-BeS.

Table 1. Previous calculated indirect band gap of zb-BeS using various computational techniques and potentials.

Computational Technique Potential Band Gap,
Eg (eV)

Pseudopotential Plane Wave (PP-PW) LDA 2.911 [5]
PP-PW LDA 2.75 [6]
PP-PW LDA 2.816 [8]

Empirical Pseudopotential Method LDA 2.38 [9]
Orthogonalized Plane Wave LDA 4.17 [10]

Full Potential Linearized Augmented Plane Wave (FP-LAPW) LDA 2.828 [11]
PP-PW LDA 2.912 [12]

Augmented plane Waves plus Local orbitals (APW + lo) LDA 2.78 [13]
PP-PW LDA 2.83 [14]

FP-LAPW LSDA 2.847 [7]
PP-PW GGA 3.041 [5]
PP-PW GGA 3.7 [15]
PP-PW GGA 3.192 [12]
PP-PW GGA 3.11 [16]

FP-LAPW GGA 3.141 [11]
FP-LAPW GGA 3.13 [17]

Plane Wave pseudopotential (PW-PP) GGA 3.15 [18]
APW + lo Perdew-Burke-Erzerhof (PBE-GGA) 3.10 [13]

PP-PW Sx-LDA 4.071 [12]
FP-LAPW EV-GGA 4.241 [11]

Augmented Plane Wave Hartee-Fock(HF) 6.10 [19]

PW-PP Quansiparticle Self-Consistent
Green’s Function (QPscGW) 5.27 [18]

PW-PP Green’s Function (GoWo) 4.62 [18]
PP-PW GoWo 4.45 [16]

Experiment using optical absorption measurement on the BeS platelets >5.5 [4]

Engel and Vosko generalized-gradient approximation (EV-GGA) and screened ex-
change local density approximation (Sx-LDA).

This motivation is underscored by the fact that an accurate value of the band gap is
necessary for producing correct, theoretical descriptions of electronic, optical, dielectric,
transport, and related properties of semiconductors and insulators. Our computational
method, described below, performs a generalized minimization of the energy functional
to reach, verifiably, the ground state without using over-complete basis sets. In doing
so, its results possess the full, physical content of DFT and generally agrees with the
corresponding, experimental ones.

2. Computational Method and Related Details

We employed the Ceperley and Alder’s [20] local density approximation potential,
which was parameterized by Vosko et al. [21]. Based on DFT, it fully minimized the energy
functional with the Bagayoko, Zhao, and Williams (BZW) method [22–24], as enhanced
by Ekuma and Franklin (BZW-EF) [25–28], while implementing the linear combination
of atomic orbitals (LCAO). We employed a program package developed at the Ames
Laboratory of the U.S. Department of Energy, Ames, Iowa [29,30].

We begin our self-consistent calculations with a small basis set that can account for
all the electrons in the system under study. Calculation II uses the basis set of calculation
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I plus one orbital representing an excited state. The occupied energies of calculation I
and calculation II were compared, graphically and numerically, with the Fermi energy set
to zero. Some occupied energies from calculation II were lower than their values from
calculation I. This lowering of occupied energies indicates that the basis set of calculation
I is not complete for the description of the ground state. If it were, no augmented basis
set would have lowered the occupied energies that have reached their absolute minima
(i.e., the ground state). We have no proof that calculation II reached the ground state,
so we continued the process of augmenting the basis set and of performing successive,
self-consistent calculations. When three (3) consecutive calculations produced the same
occupied energies, within our computational uncertainty of 5 meV, this is the proof that
these energies have reached their absolute minima (i.e., the ground state). These three (3)
calculations constitute the rigorous criteria for ending the process.

The first of the above referenced three (3) consecutive calculations, with the smallest
basis set, provides the true DFT description of the material. The occupied energies of
these calculations are unaffected (i.e., they do not change), however, the unoccupied
energies from these calculations are either lower than or equal to their corresponding values
produced with the optimal basis set [25,27,31]. In the discussion section, we address this
extra-lowering of some unoccupied energies while the occupied ones remain unchanged.
The most important thing to emphasize here is that unoccupied energy values that are
lower than their corresponding values obtained with the optimal basis no longer belong to
the spectrum of the Hamiltonian, a unique functional of the electronic density [25]. Another
way of proving this fact follows. The charge density and the potential did no change from
the first of the three (3) calculations to the last. Hence, the Hamiltonian, a unique function
of the density, does not change either. Therefore, any unoccupied eigenvalues from the
second or third of the three (3) calculations that is lowered than it corresponding value
from the first calculation is not due to a physical interaction. Bagayoko [25] explained
this fact and ascribed the lowering of these unoccupied energies to a mathematical artifact
stemming from the Rayleigh theorem for eigenvalues. The theorem asserts the lowering of
some eigenvalues with the increase in the dimension of the Hamiltonian matrix [30].

The computational details that permit the replication of this work are as follows: BeS
crystallizes in the cubic 216 (Fm-4m) space group where the positions of the atoms of Be
and S are (0,0,0) and (1/4,1/4,1/4), respectively, with an experimental lattice constant of
4.86 Å [32]. We began by performing self-consistent ab-initio calculations for the ionic
species Be2+ and S2−, and we employed a set of even-tempered Gaussian exponents to
expand the radial components of the atomic wave functions in terms of Gaussian functions.
The s and p orbitals for the ionic species (Be2+ and S2−) were described using 16 and 22
even tempered Gaussian functions, respectively. For Be2+, the maximum and minimum
exponents utilized were 0.9 × 105 and 0.24, respectively, whereas for S2−, they were
0.24 × 106 and 0.135, respectively. After 60 iterations, for 81 k-points in the irreducible
Broullouin zone, self-consistency was achieved when the difference in the potential between
two consecutive iterations was less than or equal to 10−5.

3. Results
3.1. Electronic Properties

The valence orbitals in the basis set for the successive, self-consistent calculations with
the BZW-EF computational method are listed in Table 2, along with the resulting band
gaps. The occupied bands from calculations III–V are perfectly superimposed. Hence, they
are the three (3) calculations producing the same, occupied energies that have reached their
absolute minima (i.e., the ground state). Calculation III is therefore the one providing the
true DFT description of zb-BeS. The calculated indirect band gap from Γ to a point between
Γ and X was 5.436 eV. The minimum in the conduction band occurred along the Γ-X line,
near the X point.
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Table 2. The successive, self-consistent calculations for zinc-blende beryllium sulfide, using the
BZW-EF computational approach. We performed our calculation utilizing the experimental lattice
constant of 4.86 Å.

Calculation
Number

Beryllium
(Be2+)

Sulfur (S2−)
(1s22s22p6 in Core)

No of Valence
Functions

Energy Gap
(eV)

I 1s22s02p0 3s23p6 18 7.486
II 1s22s02p03p0 3s23p6 24 6.345
III 1s22s02p03p0 3s23p64p0 30 5.438
IV 1s22s02p03p03s0 3s23p64p0 32 5.406
V 1s22s02p03p03s0 3s23p64p04s0 34 5.361

Figure 1 shows the electronic band structures of zb-BeS obtained from calculations
III and IV. The bands from calculation III are in solid lines while those from calculation IV
are in dashed lines. The occupied energies for both calculations (III and IV) are the same,
as clearly shown by the perfect superposition of the valence bands from calculations III
and IV. The fact that calculation V produced the same occupied energies signified that
the ground state had been reached. Our work on GaP showed that the two consecutive
calculations can produce the same occupied energies—as local minima—while the next
calculation with an augmented basis sets further lowered some occupied energies. Among
the three (3) calculations, the first had the smallest basis set called the optimal basis set.
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Figure 1. The electronic band structures of zb-BeS for a room temperature experimental lattice
constant of 4.863 Å as obtained from calculations III (solid lines) and IV (dashed lines). Zero on the
vertical axis denotes the position of the Fermi energy.

Table 3 shows the electronic energies, obtained with the optimal basis set of calculation
III, at high symmetry points in the Brillouin zone. The contents of this table lend themselves
to comparison with results from future experimental findings such as the UV and X-ray
spectroscopy experiments.
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Table 3. Calculated, electronic energies (in eV) of zb-BeS, at high symmetry points in the Bril-
louin zone, obtained from calculation III, using the BZW-EF method, with an experimental room
temperature lattice constant of 4.863 Å. The indirect band gap from Γ to X to 5.436 eV.

L-Point Γ-Point X-Point
(1–0.35) X-Point K-Point

25.451 29.334 25.824 24.420 22.099
17.165 29.334 15.998 16.067 14.157
13.482 9.794 11.256 13.179 12.276
8.463 6.784 11.256 13.179 11.816
8.463 6.784 10.196 7.564 10.040
7.593 6.784 5.436 6.505 7.207
−1.121 0.000 −2.215 −2.775 −2.299
−1.121 0.000 −2.215 −2.775 −4.162
−5.878 0.000 −3.810 −5.144 −4.639
−11.970 −13.585 −12.215 −11.424 −11.439

The calculated total density (DOS) and partial (pDOS) densities of states, are derived
from the ground state band structure from calculation III. Figures 2 and 3 show the DOS
and pDOS, respectively, in the energy range of −16 eV to +20 eV. In both figures, the
dashed, vertical line indicate the position of the Fermi level. While band widths and gaps
can be estimated using Figure 2, their accurate values can be easily read from Table 2. The
total valence band width and that of the lowest laying valence band were 13.585 eV and
2146 eV, respectively. The gap between the lowest laying band and the group of upper
valence bands was 5.561 eV. We already noted the indirect band gap of 5.436 between the
top of the valence band and the bottom of the conduction band. The width of the upper
group of valence bands was 5.878 eV. As shown in Figure 3, the lowermost valence band is
largely made up of S, with a faint contribution from Be s. The S p states contribute to the
most to the upper group of valence bands, with relative small and tiny contributions from
Be p and Be s, respectively. While Be p dominated at the very bottom of the conduction
bands, the contributions of S p and Be s increased with energy, up to 12 eV.
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structure from calculation III.

3.2. Transport Properties

The determination of numerous material transport properties requires the use of
effective masses. Electrical conductivity and mobility are two such quantities. We calculated
electron effective masses around the minimum of the conduction band, while the heavy
and light hole effective masses were calculated around the top of the valence band at the Γ
point. We considered the (1,0,0), (1,1,0), and (1,1,1) directions for the hole effective masses.
Our calculated effective masses are presented in part (a) for the electron and part (b) for the
hole effective masses. The calculation performed by D.J Skutel [10], using a nonrelativistic
formalism and slater’s free electron-exchange approximation, found the heavy hole and
light hole at Γ in the (1,0,0) directions as 0.7 m0 and 0.4 m0, respectively, where m0 is the
free electron mass. In (1,1,1), he found the effective masses for the heavy and light hole to
be 1.7 m0 and 0.3 m0, respectively. Skutel also calculated the electron effective mass at the
conduction band minimum, the (1,0,0) direction, as 1.0. This value is close to a third larger
than our finding of 0.743.

As in the case of the electron effective mass in the (1,0,0) directions, the calculated hole
effective masses from Skutel (10) were larger than the corresponding ones in part (b) of
Table 4.
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Table 4. Calculated electron (Me) and hole effective masses for zb-BeS, in the indicated directions, in
(a) for Me and (b) for heavy hole (Mhh) and light hole (Mlh) effective masses. The effective mass are
in units of the free electron mass (m0).

(a) Me (X-Γ) Longitudinal Me (X-U) Transverse Me (X-W) Transverse

0.743 0.317 0.313

(b) (Γ-L) in (1,1,1) Direction (Γ-X) in (1,0,0) Direction (Γ-K) in (1,1,0) Direction

Mhh Mlh Mhh Mlh Mhh Mlh
1.295 0.216 0.585 0.381 0.803 0.285

3.3. Structural Properties

The equilibrium lattice constant was determined to correspond to the minimum in the
curve of the total energy versus the lattice constant, as shown in Figure 4. This predicted
lattice constant was 4.814 Å for zb-BeS. This value is in good agreement with the first
principle calculation finding of Okoye [17]. Our theoretical bulk modulus was 107.7 GPa.
We compare our results to other theoretical calculations and experiments in Table 5.
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Table 5. Calculated lattice constant (ao) and bulk modulus (B) utilizing the LDA potential compared
to the experiment and other theoretical calculations.

Potential ao (Å) B References

LDA 4.814 107.7 Present
LDA 4.773 101.9 Theory [8]
LDA 4.81 93 Theory [14]
LDA 4.745 116 Theory [6]
LDA 4.800 102 Theory [13]
GGA 4.887 92 Theory [17]

PBE-GGA 4.878 93 Theory [13]
Experiment 4.870 105 Exp [32]
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4. Discussion

In this paper, we investigated the electronic, transport, and structural properties of
beryllium sulfide in the zinc-blende phase, using the BZW-EF computational method and a
local density approximation potential. Our study yielded an indirect band gap of 5.436 eV,
with the minimum of the conduction band wis located at a point between Γ and the X
point. The band structure shows that the minimum of the conduction band was located
not at the X-point (where Eg = 6.5 eV) but shifted toward the Γ-point by 35% (by 0.35). The
comprehensive description of our method [23,25] revealed a key distinction between BZW-
EF calculations and other DFT calculations. We performed a generalized minimization of
the energy in our self-consistent calculation to reach the ground state of the material, unlike
other DFT calculations that employed a single basis set. As explained by Bagayoko [23],
a single basis leads to a stationary state upon the attainment of self-consistency. These is
an infinite number of such self-consistent results called stationary solutions. One cannot
take any one of them arbitrarily to correspond to the ground state of the material. In these
one basis set calculations, that basis set is generally selected to be quite large, in order to
ensure completeness.

As explained by Bagayoko [25], when such a large basis set contains the optimal one,
it leads to the ground state energies and to some unoccupied energies that are spuriously
low by virtue of the Rayleigh theorem [30]. Specifically, these spurious, unoccupied
energies are smaller than the corresponding unoccupied energies produced with the
optimal basis set. As noted at the end of the presentation of our method, the referenced
spurious lowering of unoccupied energies, with basis sets that are over-complete for the
description of the ground state, is a plausible explanation of the general underestimation
of the band gap by single basis set calculations such as the ones in Table 1. We should
reiterate that the second theorem of DFT requires the generalized minimization of the
energy functional to reach the ground state. As successively augmented basis sets produce
energy functional that are lower for larger basis sets up the optimal one, the BZW-EF
performs a generalized minimization of the energy far beyond any minimization that
may result from self-consistent iterations with a single basis set. The above points are the
reason our computational results possess the full, physical content of DFT and agree with
the corresponding experimental ones, as is the case of the band gap of zb-BeS, for which
we had a measured value around 5.5 eV. The theoretical bulk modulus from our work,
107.7 GPa, was about the same as the experimental result of 105 GPa of Narayana et al. [32].

5. Conclusions

By employing the BZW-EF computational method and a local density approximation
potential, we studied the electronic, structural, and transport properties of the semicon-
ductor BeS, in the zinc-blende phase. Our results for the first principle self-consistent
calculations of the material and conclusion are summarized below. Our results possess
the full, physical content of DFT by virtue of our generalized minimization of the energy
functional (a) to reach the ground state while (b) avoiding over-complete basis sets. The
electronic structure calculations showed that zb-BeS has an indirect band gap of 5.436 eV
that agrees well with the available experimental value around 5.5 eV. Over 15 previous
ab-initio LDA and GGA calculations uniformly underestimated this band gap by more
than 50% in some cases, as per the contents in Table 1. As was the case in several previous
studies by our group, some of which are listed below as references, future experiments
are expected to confirm our results for which we could not find corresponding experimen-
tal ones. This assertion is expected to hold not only for the equilibrium lattice constant
(4.814 Å), but also for the effective masses and the widths and other features of the band
structures and related densities of states.
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