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ABSTRACT Nasal decolonization is an integral part of the strategies used to
control and prevent the spread of methicillin-resistant Staphylococcus aureus
(MRSA) infections. The two most commonly used agents for decolonization are
intranasal mupirocin 2% ointment and chlorhexidine wash, but the increasing
emergence of resistance and treatment failure has underscored the need for al-
ternative therapies. This article discusses povidone iodine (PVP-I) as an alterna-
tive decolonization agent and is based on literature reviewed during an expert’s
workshop on resistance and MRSA decolonization. Compared to chlorhexidine
and mupirocin, respectively, PVP-I 10 and 7.5% solutions demonstrated rapid and
superior bactericidal activity against MRSA in in vitro and ex vivo studies. Nota-
bly, PVP-I 10 and 5% solutions were also active against both chlorhexidine-
resistant and mupirocin-resistant strains, respectively. Unlike chlorhexidine and
mupirocin, available reports have not observed a link between PVP-I and the in-
duction of bacterial resistance or cross-resistance to antiseptics and antibiotics.
These preclinical findings also translate into clinical decolonization, where intra-
nasal PVP-I significantly improved the efficacy of chlorhexidine wash and was as
effective as mupirocin in reducing surgical site infection in orthopedic surgery.
Overall, these qualities of PVP-I make it a useful alternative decolonizing agent
for the prevention of S. aureus infections, but additional experimental and clini-
cal data are required to further evaluate the use of PVP-I in this setting.

KEYWORDS povidone iodine, nasal decolonization, surgical site infection,
Staphylococcus aureus

Staphylococcus aureus is a leading cause of health care-associated infections world-
wide (1), which include bacteremia, endocarditis, osteomyelitis (2), and surgical site

infections (SSIs) (3). S. aureus infections, including those caused by methicillin-
susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains, are
associated with prolonged hospital stay and increased mortality (4). S. aureus colonizes
several body sites, including the nose, throat, and perineum (5–8). It is estimated that
approximately 20% of the general population are permanent nasal carriers of S. aureus
(9, 10). Colonization by MRSA increases the risk of infection by up to 27% (11), with
infecting strains matching colonizing strains in up to 86% of cases (9, 12).

Despite active surveillance efforts, advances in the prevention of infection and new
antibiotics, MRSA remains a prominent pathogen associated with high rates of mor-
tality (2). Decolonization, the goal of which is to decrease or eliminate bacterial load on
the body, is an integral part of the strategies used to control and prevent the spread
of MRSA (13). This approach involves eradication of MRSA carriage from the nose
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through the intranasal application of an antimicrobial agent and body washes with an
antiseptic soap to eliminate bacteria from other body sites (13). The most commonly
used agents for MRSA decolonization are intranasal mupirocin ointment applied to the
anterior nares and chlorhexidine body wash (13–15).

Mupirocin nasal ointment is effective in eradicating MRSA colonization in 94% of
cases 1 week after treatment and in 65% of cases after longer follow-up (16). Further-
more, mupirocin-based nasal decolonization decreases infections among patients in
high-risk settings, including surgery, intensive care unit (ICU), hemodialysis, and long-
term care (13, 16). However, there are growing concerns about decolonization failures
following the emergence of mupirocin (17, 18) and chlorhexidine resistance (18–20).
These concerns, along with suboptimal compliance and the high cost of branded nasal
mupirocin ointment, have underscored the need for alternative therapies (15, 21, 22).

We review here the properties, antimicrobial activity, and clinical efficacy of the
antiseptic agent povidone iodine (PVP-I) and discuss its role as an alternative agent for
S. aureus decolonization.

METHODS

This narrative review is based primarily on literature reviewed and recommended by
the authors based on their expertise and experience in S. aureus decolonization.
Additional studies were identified from a search conducted in PubMed using the key
terms “povidone iodine” and “Staphylococcus aureus.” Searches in Google Scholar were
also carried out using the key terms “povidone iodine,” “Staphylococcus aureus,” and
“methicillin-resistant Staphylococcus aureus.” The key terms in all searches were com-
bined using Boolean operators such as “OR” or “AND”. These main searches, carried out
in June 2019, aimed to identify full text articles, reporting human studies, published
with no date restrictions. Gray literature sources, such as reports, academic disserta-
tions, and conference abstracts, were also examined. The reference lists of included
articles were hand-searched to identify any potential relevant articles. A total of 379
English language publications were identified from the PubMed search, and most of
these were open-access articles. Papers were selected for inclusion based on their
relevance to the topics of this review: the mechanism of action and antimicrobial
efficacy of PVP-I, the potential for resistance to PVP-I, and clinical evidence comparing
PVP-I to mupirocin and chlorhexidine as a S. aureus decolonization agent, focusing on
the efficacy, safety, and cost-effectiveness of these agents in the prevention of SSI.

POVIDONE IODINE
Properties. PVP-I is a water-soluble iodophor (or iodine-releasing agent) that con-

sists of a complex between iodine and a solubilizing polymer carrier, polyvinylpyrroli-
done (Fig. 1) (23, 24). In aqueous solution, a dynamic equilibrium occurs between free
iodine (I2), the active bactericidal agent, and the PVP-I-complex. After dilution of PVP-I
10% solution, the iodine levels follow a bell-shaped curve and increase with dilution,
reaching a maximum at approximately 0.1% strength solution and then decreasing
with further dilution (25, 26). There is a good correlation between free iodine concen-
tration and the microbicidal activity of PVP-I (25, 27).

Mechanism of action and antimicrobial spectrum. As a small molecule, iodine
rapidly penetrates into microorganisms and oxidizes key proteins, nucleotides, and
fatty acids, eventually leading to cell death (23, 24). PVP-I has a broad antimicrobial
spectrum with activity against Gram-positive and Gram-negative bacteria, including
antibiotic-resistant and antiseptic-resistant strains (28, 29), fungi, and protozoa (Table 1)
(23). It is also active against a wide range of enveloped and nonenveloped viruses (30,
31), as well as some bacterial spores with increased exposure time (23). In addition,
PVP-I has been shown to have activity against mature bacterial and fungal biofilms in
vitro and ex vivo (32–35).

Activity against S. aureus. The activity of PVP-I against S. aureus has been tested
using traditional in vitro suspension and surface tests, as well as more complex ex vivo
porcine mucosal and human skin models. It has been suggested that ex vivo models
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may be more clinically relevant, since in vitro studies do not take into account host
proteins that can neutralize antiseptic activity (36). In contrast, substances commonly
present in test media and diluents (e.g., sulfur-containing amino acids) may negate
antiseptic activity and lead to false-negative results (37).

The interpretation of in vitro studies of PVP-I is also complicated by the paradoxical
increase in bactericidal activity with dilutions up to a 0.1% strength solution. This is
related to the subtle equilibrium between bound and unbound iodine; the concentra-
tion of the latter active compound, I2, follows a bell-shaped curve as the dilution is
increased. The activity of PVP-I against S. aureus correlates to this, and several studies
have observed decreased activity at concentrations above and below 0.1% (25–27,
38–41).

In vitro studies have confirmed the bactericidal activity of PVP-I 10% solution against
clinical isolates of MSSA and MRSA using both suspension tests (28, 37, 39, 42–45) and
surface test methods (46). In these studies, the action of PVP-I against MSSA and MRSA
was rapid, with bactericidal activity typically observed within 15 to 60 s (39, 43, 45).
Comparative in vitro studies have generally showed that, irrespective of exposure time
or dilution, 10% PVP-I was more active than chlorhexidine against MRSA and was
bactericidal against chlorhexidine-resistant strains (28, 39, 42, 44, 46). Furthermore, two
in vitro studies also showed that 5% PVP-I cream had bactericidal activity against MSSA,
MRSA, and mupirocin-resistant strains of MRSA (40, 43). However, the in vitro activity of
PVP-I, but not mupirocin, was reduced by the addition of nasal secretions (40).

FIG 1 PVP-I (povidone iodine) is a complex of iodine and the solubilizing polymer carrier polyvinylpyr-
rolidone (PVP) (23, 24). In aqueous solution, a dynamic equilibrium occurs between free iodine and the
PVP-I complex (25, 26).

TABLE 1 Indicative antimicrobial spectrum of PVP-I, chlorhexidine, and ethanola

Antiseptic

Vegetative bacteria

Spores Fungi VirusesGram positive Gram negative Actinobacteria

PVP-I, 10% BC���, LS BC���, LS BC�� SC�� FC���, LS VC��, LS
Chlorhexidine BC���, LS BC���, IS NA NA FC��, IS VC�, IS
Ethanol 70% BC�, LS BC�, LS BC� NA FC�, LS VC�

aData are as reported by Lachapelle et al. (23), reproduced under CC-BY license. BC, bactericidal; FC, fungicidal; IS, incomplete spectrum (signifying antimicrobial
activity is limited to certain, not all, microbes); LS, large spectrum (signifying a broad spectrum of antimicrobial activity); NA, no activity; PVP-I, povidone iodine; SC,
sporicidal; VC, virucidal. Strength: �, weak; ��, medium; and ���, high (based on a subjective analysis of eight papers on antiseptic agents by Lachapelle et al.).
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In an ex vivo model of porcine vaginal mucosa infected with MSSA, 7.5% PVP-I
solution significantly reduced bacterial load (measured in log CFU/explant) at 0.25 to 4
h compared to untreated controls, although some regrowth was evident at 24 h (36).
In the same porcine model infected with MRSA, a skin and nasal preparation (SNP) of
5% PVP-I significantly reduced viable bacterial cells after 1 h versus the control
(1.09 � 0.57 versus 5.30 � 0.06 log10 CFU/explant, respectively; P � 0.05), with sus-
tained activity over 12 h (P � 0.05 versus the control) (47). Interestingly, an ophthalmic
iodine preparation lacked this sustained activity, only significantly differing from con-
trol at 1 h (2.51 � 0.20; P � 0.05). Conversely, mupirocin had a slower onset of action
(5.14 � 0.09 at 1 h, 5.07 � 0.06 at 6 h; P � 0.05), with significant bactericidal effects
evident only after 12 h (Fig. 2A) (47). The SNP of 5% PVP-I was also significantly more
effective than mupirocin against low-level and high-level mupirocin-resistant MRSA
isolates in this porcine model (P � 0.05) (47). Finally, in a human skin model infected
with MRSA, both the SNP and the ophthalmic PVP-I-based 5% preparation were
significantly bactericidal after 1, 6, and 12 h compared to controls (P � 0.05), whereas
mupirocin was only significantly bactericidal versus control after 12 h (P � 0.05) (Fig.
2B) (47).

Potential for resistance. As with antibiotics, resistance to antiseptics (the ability of
a bacterial strain to survive the use of an antiseptic that could previously eliminate that
strain) can occur in bacteria because of intrinsic properties (e.g., biofilm formation,
endospores, and expression of intrinsic mechanisms) or can be acquired via mutation
or external genetic material (plasmids or transposons) (24, 48, 49). However, less is
known about fungal or viral mechanisms of resistance to antiseptics (24, 48). Although
there are no standard criteria for evaluating the capability of an antiseptic agent to
induce or select for antibiotic resistance in bacteria, a protocol based on evaluating the
change in susceptibility profile to the antiseptic and antibiotics has been proposed (50,
51). Based on available reports, no link has been observed between PVP-I and the
development of resistance, probably due to its numerous and simultaneous molecular
targets (e.g., double bonds, amino groups, and sulfydral groups) (23, 47, 52–56). To
date, evidence suggests that PVP-I does not select for resistance among staphylococci
(37) and Pseudomonas aeruginosa, Serratia marcescens, Escherichia coli, and Klebsiella
aerogenes in vitro (28, 57) or among staphylococci after long-term clinical application to
catheter exit sites (58). Isolated reports of slow bactericidal activity (27, 41) or apparent

FIG 2 Efficacy of PVP-I (5% ophthalmic solution or 5% SNP), 2% mupirocin (B. Nasal), or no treatment (control)
against MRSA infection in ex vivo models of porcine vaginal mucosa (A) and human skin (B) (adapted from ref. 47).
The results are expressed in log10 CFU per explant recovered over time. Values are means � the standard errors
of the means (indicated by error bars). Values that are significantly different (P � 0.05) from untreated controls are
indicated by an asterisk in panel A. In panel B, values with a different letter (a, b, or no letter) are significantly
different (P � 0.05) from each other, and values with the same letter are not significantly different (P � 0.05) from
each other. In panel A, the SNP of 5% PVP-I had significant activity versus the control at all time points, whereas
the ophthalmic PVP-I preparation and mupirocin only differed significantly from control at 1 and 12 h, respectively.
In panel B, both the SNP and the ophthalmic 5% PVP-I preparations were significantly bactericidal at 1, 6, and 12
h versus the control (P � 0.05), while mupirocin only differed significantly from control at 12 h (P � 0.05). Labels:
B. Nasal, Bactroban nasal ointment; MRSA, methicillin-resistant S. aureus; PVP-I, povidone iodine; SNP, skin and nasal
preparation.
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resistance to PVP-I (41, 59) are available, but they were later attributed to difficulties in
determining its in vitro activity and/or the use of culture conditions antagonistic to its
action (40). Furthermore, reports of intrinsic contamination of 10% PVP-I solution with
Burkholderia (formerly Pseudomonas) cepacia were concerning when initially published
in the 1980s and early 1990s (60–66) but were subsequently attributed to confounding
factors in the manufacturing process (62). The occurrence of such phenomena has not
been widely reproduced with PVP-I, and similar reports of contamination with other
antiseptics were also published during this time period (53, 67). Finally, unlike other
antiseptics, there have been no reports of PVP-I inducing horizontal gene transfer,
antibiotic resistance genes, or cross-tolerance and cross-resistance to antibiotics and
other antiseptics (20, 53).

Clinical evidence. (i) Decolonization prior to surgery. Intranasal and topical PVP-I
has been investigated in several studies for the preoperative decolonization of patients
undergoing surgery. Four of these studies were prospective with a randomized con-
trolled design (22, 68–70), and the remaining studies were retrospective database
studies with historical controls (71–75). The main outcome measures were either S.
aureus colonization status (68–70) or the prevention of SSI (22, 71–75). Current World
Health Organization (WHO) guidelines for decolonization recommend intranasal mupi-
rocin with or without chlorhexidine body wash in patients with known S. aureus
carriage that are undergoing cardiothoracic or orthopedic surgery (1); patients under-
going other types of surgery with known S. aureus carriage should also be considered
for decolonization with the same regimen (1). A summary of clinical studies investigat-
ing intranasal and topical PVP-I is presented in Table 2 (22, 68–75).

(ii) Efficacy of intranasal PVP-I decolonization. One large randomized, placebo-
controlled study evaluated the effects of intranasal PVP-I on nasal S. aureus colonization
in patients undergoing orthopedic surgery (68). In this study, a single preoperative
application of 5% PVP-I nasal solution eliminated nasal S. aureus in over two-thirds of
patients at 4 h posttreatment, although an off-the-shelf preparation of 10% PVP-I
solution was found to be less effective (68). In another randomized, placebo-controlled
study, a single application of 10% PVP-I nasal preparation significantly reduced nasal
MRSA at 1 and 6 h (P � 0.05); however, significant activity was not maintained at 12 and
24 h (P � 0.05) (70). Based on these results, the authors concluded that PVP-I may be
effective for the short-term suppression of MRSA during surgery, and they proposed
that this may be sufficient to reduce the risk of SSI (70). Of interest, the study
demonstrated that repeated dosing with PVP-I every 12 h for 5 days did not enhance its
efficacy, since there was no significant reduction in nasal MRSA with PVP-I compared to
control (P � 0.05) (70).

Studies have also investigated the effect of intranasal PVP-I on the rate of SSI. In a
retrospective database study, universal preoperative decontamination with intranasal
PVP-I plus chlorhexidine wash and oral rinse significantly reduced the 30-day SSI rate
versus historical controls in patients undergoing elective orthopedic surgery (1.1%
versus 3.8% in controls; P � 0.02) (71). In another retrospective review, the addition of
intranasal PVP-I to chlorhexidine wash also significantly reduced the SSI rate in trauma
patients undergoing emergency orthopedic surgery compared to chlorhexidine alone
(0.2% with chlorhexidine plus intranasal PVP-I versus 1.1% with chlorhexidine alone;
P � 0.02) (Table 2) (75).

Compared to intranasal mupirocin, preoperative intranasal PVP-I was found to have
similar efficacy in preventing SSI in patients undergoing orthopedic surgery, with or
without screening for MRSA (Table 2) (22, 74). In an investigator-initiated, open-label,
randomized study, 90-day deep SSI rates caused by any pathogen, including S. aureus,
were similar with either intranasal PVP-I applied within 2 h of surgery or intranasal
mupirocin given for 5 days before surgery with topical chlorhexidine (22). Likewise, in
a retrospective study, the 90-day SSI rate was similar in patients treated with universal
intranasal PVP-I 1 h before surgery compared to screening for MRSA followed by
intranasal mupirocin for 5 days (with both groups also treated with chlorhexidine
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washes and a preoperative chlorhexidine wipe) (74). Alongside similar efficacy, patients
treated with mupirocin were more likely to report headache, rhinorrhea, conges-
tion, and sore throat than those treated with PVP-I, in which a single case of
vasovagal reaction was reported (22). Overall, fewer patients (3.4%) rated their
experience of treatment with nasal PVP-I solution treatment as unpleasant/very
unpleasant compared to patients treated with intranasal mupirocin ointment
(38.8%) (P � 0.0001) (76).

According to a U.S. cost-effectiveness model, universal preoperative decolonization
with intranasal PVP-I in patients undergoing orthopedic surgery potentially saved
$74.42 per patient compared to preoperative screening and treatment of MRSA-
positive patients with a 5-day course of intranasal mupirocin (77). Other studies
conducted in different settings led to a similar conclusion, i.e., systemic preoperative
decolonization with PVP-I was more cost-effective than the standard MRSA screening
protocol in orthopedic surgery, with no difference in infection rates (74, 78).

(iii) Efficacy of topical PVP-I decolonization. In a prospective study in patients
undergoing elective plastic surgery, a preoperative shower with PVP-I significantly
decreased presurgical staphylococcal skin colonization versus controls (P � 0.0019)
(69). Furthermore, the efficacy of preoperative skin decontamination with topical 7.5 or
10% PVP-I was similar to that of topical 2% chlorhexidine in the prevention of SSI in
patients undergoing spinal or cardiac surgery, respectively (Table 2) (72, 73).

(iv) Decolonization of health care professionals. In a study investigating the
longer-term use of PVP-I in the ICU neonatal setting, intranasal PVP-I cream was applied
to health care personnel three times per working day for 3 months. This procedure
dramatically reduced the rate of nasal carriage of MRSA from 13.3% at baseline to 0%
(79).

STATE OF THE ART AND PERSPECTIVES

Intranasal mupirocin and topical chlorhexidine are currently the preferred agents for
the decolonization of S. aureus. However, the widespread use of mupirocin has led to
resistance and treatment failures, and antibiotic resistance and the horizontal transfer
of mobile antibiotic resistance elements following low-level exposure to chlorhexidine
have also been reported (20, 80), highlighting the need for alternative treatment
strategies.

PVP-I has several properties which make it an attractive option for S. aureus
decolonization, including strong antistaphylococcal activity in in vitro and ex vivo
models, and uniform activity against S. aureus regardless of the presence of antibiotic
or antiseptic resistance (28, 39, 40, 42–44, 46). Of note, a lack of acquired bacterial
resistance or cross-resistance to antibiotics or other antiseptics has been observed with
PVP-I use (20, 23, 28, 37, 55–58). Furthermore, clinical trial data suggest that intranasal
PVP-I demonstrates favorable efficacy in the preoperative decolonization of MRSA and
prevention of SSI, compared with chlorhexidine and mupirocin (22, 71, 74). Table 3
summarizes the properties of PVP-I, chlorhexidine, and mupirocin (22, 23, 28, 37, 39, 40,
42–47, 57, 58, 71, 72, 81–101).

Decolonization is most effective among patient populations who are at risk of
infection for only a short period (13). As documented in the WHO guidelines (1), the
strongest evidence for decolonization is among surgical patients to prevent postoper-
ative SSIs, particularly those undergoing cardiac and orthopedic surgery (13). Overall,
the clinical data published to date on intranasal PVP-I support its short-term use prior
to orthopedic surgery. Its successful use in trauma patients undergoing emergency
surgery within 24 h of admission is also notable, since the use of a 5-day regimen of
mupirocin is not feasible in this setting (75). Recent data indicate that a single
preoperative application of intranasal PVP-I may be enough for the short-term sup-
pression of MRSA during the perioperative period (70). Therefore, repeated dosing with
intranasal PVP-I after surgery in order to enhance or prolong its antimicrobial activity
may not be necessary, although studies are required to investigate this further. A large,
randomized, controlled clinical trial is currently recruiting patients in order to compare

Minireview Antimicrobial Agents and Chemotherapy

September 2020 Volume 64 Issue 9 e00682-20 aac.asm.org 7

https://aac.asm.org


TA
B

LE
3

St
at

e
of

th
e

ar
t

an
d

p
er

sp
ec

tiv
es

:u
se

of
PV

P-
I,

C
H

G
,a

nd
m

up
iro

ci
n

fo
r

th
e

p
re

op
er

at
iv

e
de

co
lo

ni
za

tio
n

of
M

RS
A

an
d

p
re

ve
nt

io
n

of
SS

Is
a

A
n

ti
se

p
ti

c
Sp

ec
tr

um
of

ac
ti

vi
ty

A
ct

iv
it

y
ag

ai
n

st
M

RS
A

an
d

m
up

ir
oc

in
-r

es
is

ta
n

t
S.

au
re

us
B

ac
te

ri
al

re
si

st
an

ce
Ef

fic
ac

y
in

su
rg

ic
al

si
te

in
fe

ct
io

n
s

PV
P-

I
Br

oa
d

sp
ec

tr
um

,i
nc

lu
di

ng
G

ra
m

-p
os

iti
ve

b
ac

te
ria

,G
ra

m
-n

eg
at

iv
e

b
ac

te
ria

,
ac

tin
ob

ac
te

ria
,a

nt
iv

ira
l,

an
tif

un
ga

l,
an

tip
ro

to
zo

al
,a

nd
an

tis
p

or
e

(2
3,

81
)

●
Bi

oc
id

al
ag

ai
ns

t
M

SS
A

/M
RS

A
w

ith
in

15
to

60
s

(3
9,

43
,

45
)

●
Ve

ry
lim

ite
d

oc
cu

rr
en

ce
of

th
e

in
du

ct
io

n
of

io
di

ne
re

si
st

an
ce

(3
7,

57
,5

8)

Pr
eo

p
er

at
iv

e
in

tr
an

as
al

PV
P-

I
in

or
th

op
ed

ic
su

rg
er

y:

●
A

ct
iv

e
ag

ai
ns

t
S.

au
re

us
re

ga
rd

le
ss

of
th

e
p

re
se

nc
e

of
an

tib
io

tic
or

an
tis

ep
tic

re
si

st
an

ce
(2

8,
39

,4
0,

42
–

44
,4

6)

●
D

oe
s

no
t

in
du

ce
cr

os
s-

re
si

st
an

ce
to

an
tib

io
tic

s
(5

7,
58

)

●
Si

gn
ifi

ca
nt

ly
re

du
ce

d
30

-d
ay

SS
I

ra
te

in
co

m
b

in
at

io
n

w
ith

to
p

ic
al

C
H

G
(1

.1
%

)
vs

co
nt

ro
ls

(3
.8

%
);

P
�

0.
02

(7
1)

●
Si

m
ila

r
ef

fic
ac

y
(6

/8
42

)
to

a
5-

da
y

co
ur

se
of

in
tr

an
as

al
m

up
iro

ci
n

(1
4/

85
5)

in
re

du
ci

ng
90

-d
ay

de
ep

SS
I

ra
te

fo
llo

w
in

g
su

rg
er

y
(f

ra
ct

io
n

of
su

rg
er

ie
s

w
ith

p
re

se
nc

e
of

de
ep

SS
I)

(2
2)

C
hl

or
he

xi
di

ne
Br

oa
d

sp
ec

tr
um

,i
nc

lu
di

ng
ac

tiv
ity

ag
ai

ns
t

G
ra

m
-p

os
iti

ve
b

ac
te

ria
an

d
so

m
e

G
ra

m
-n

eg
at

iv
e

b
ac

te
ria

an
d

lim
ite

d
ac

tiv
ity

ag
ai

ns
t

fu
ng

i
(e

.g
.,

ye
as

ts
)

an
d

en
ve

lo
p

ed
vi

ru
se

s
(8

1)

●
Bi

oc
id

al
ag

ai
ns

t
M

RS
A

w
ith

in
2

to
30

m
in

(4
5)

●
Se

ve
ra

l
re

p
or

ts
of

th
e

in
du

ct
io

n
of

C
H

G
re

si
st

an
ce

b
ut

a
lo

w
in

ci
de

nc
e

in
so

m
e

st
ud

ie
s

(8
1,

84
–9

0)

Pr
eo

p
er

at
iv

e
to

p
ic

al
C

H
G

in
or

th
op

ed
ic

su
rg

er
y:

●
D

ua
l

C
H

G
an

d
m

up
iro

ci
n-

re
si

st
an

t
M

RS
A

ra
re

b
ut

ha
s

b
ee

n
re

p
or

te
d

to
ca

us
e

de
co

lo
ni

za
tio

n
fa

ilu
re

(8
2)

●
M

or
e

co
m

m
on

in
M

RS
A

th
an

M
SS

A
(9

1)
●

2%
C

H
G

no
-r

in
se

cl
ot

h
re

du
ce

d
SS

I
ra

te
s

fr
om

3.
19

%
to

1.
59

%
w

he
n

in
tr

od
uc

ed
in

to
de

co
lo

ni
za

tio
n

p
ro

to
co

l
in

or
th

op
ed

ic
su

rg
er

y
(9

3)
●

O
ne

st
ud

y
fo

un
d

th
at

in
m

up
iro

ci
n-

re
si

st
an

t
M

RS
A

,
th

e
ra

te
of

qa
cA

/B
ge

ne
w

as
65

%
an

d
sm

r
ge

ne
w

as
71

%
(8

3)

●
Re

p
or

ts
of

cr
os

s-
re

si
st

an
ce

to
an

tib
io

tic
s

(9
2)

●
N

o
si

gn
ifi

ca
nt

di
ff

er
en

ce
in

in
ci

de
nc

e
of

SS
I

b
et

w
ee

n
to

p
ic

al
2%

C
H

G
(3

6
[0

.9
54

%
]

of
3,

77
4)

an
d

to
p

ic
al

7.
5%

PV
P-

I
(3

3
[1

.0
36

%
]

of
3,

18
5;

P
�

0.
72

8)
(7

2)

M
up

iro
ci

n
Br

oa
d

an
tib

ac
te

ria
l

sp
ec

tr
um

,i
nc

lu
di

ng
so

m
e

G
ra

m
-p

os
iti

ve
b

ac
te

ria
(s

ta
p

hy
lo

co
cc

i
an

d
st

re
p

to
co

cc
i)

an
d

so
m

e
G

ra
m

-n
eg

at
iv

e
b

ac
te

ria
(H

ae
m

op
hi

lu
s

in
flu

en
za

e,
N

ei
ss

er
ia

sp
p

.,
an

d
Br

an
ha

m
el

la
ca

ta
rr

ha
lis

)
(9

4)

A
ct

iv
e

ag
ai

ns
t

M
RS

A
af

te
r

12
h

(4
7)

●
Se

ve
ra

l
re

p
or

ts
of

re
si

st
an

ce
(9

5–
99

)
In

tr
an

as
al

m
up

iro
ci

n
in

or
th

op
ed

ic
su

rg
er

y:

●
N

o
si

gn
ifi

ca
nt

di
ff

er
en

ce
in

SS
I

ra
te

b
et

w
ee

n
na

sa
l

m
up

iro
ci

n
(3

.8
%

)
an

d
p

la
ce

b
o

(4
.7

%
)

(1
00

)
●

H
ig

h-
le

ve
l

re
si

st
an

ce
(M

IC
�

51
2

�
g/

m
l)

as
so

ci
at

ed
w

ith
tr

ea
tm

en
t

fa
ilu

re
(9

5)

In
tr

an
as

al
m

up
iro

ci
n

in
ot

he
r

su
rg

er
y

(g
yn

ec
ol

og
ic

,n
eu

ro
lo

gi
c,

or
ca

rd
io

th
or

ac
ic

su
rg

er
y)

:
●

C
lin

ic
al

si
gn

ifi
ca

nc
e

of
lo

w
-

le
ve

l
re

si
st

an
ce

(M
IC

�
8–

25
6

�
g/

m
l)

un
kn

ow
n

(9
5)

●
N

o
si

gn
ifi

ca
nt

di
ff

er
en

ce
in

S.
au

re
us

SS
I

ra
te

b
et

w
ee

n
na

sa
l

m
up

iro
ci

n
(2

.3
%

)
an

d
p

la
ce

b
o

(2
.4

%
)

(1
01

)
a
C

H
G

,c
hl

or
he

xi
di

ne
gl

uc
on

at
e;

M
RS

A
,m

et
hi

ci
lli

n-
re

si
st

an
t

S.
au

re
us

;M
SS

A
,m

et
hi

ci
lli

n-
se

ns
iti

ve
S.

au
re

us
;P

VP
-I,

p
ov

id
on

e
io

di
ne

;q
ac

,q
ua

te
rn

ar
y

am
m

on
iu

m
co

m
p

ou
nd

;s
m

r,
st

re
p

to
m

yc
in

re
si

st
an

ce
ge

ne
;S

SI
,s

ur
gi

ca
l

si
te

in
fe

ct
io

n.

Minireview Antimicrobial Agents and Chemotherapy

September 2020 Volume 64 Issue 9 e00682-20 aac.asm.org 8

https://aac.asm.org


the efficacy and safety of alcohol-based solutions of 5% PVP-I and 2% chlorhexidine in
reducing SSI after cardiac surgery (102). Such a study should help to address the paucity
of data regarding preoperative decolonization with topical PVP-I versus chlorhexidine
for the prevention of SSI in patients undergoing cardiac surgery. Moving forward,
studies investigating PVP-I in other patient groups who are at an elevated risk of
infection for short periods (e.g., ICU patients) would be of interest.

The management of MRSA colonization continues to evolve, and decolonization
should not be considered in isolation. Other notable preventative measures include
screening, contact isolation, environmental disinfection, and good hand hygiene prac-
tices. Usually, a collection of interventions works better than just one, and combined
interventions can reduce infection rates by 40 to 60% (2). With this in mind, further
research is required to define the best approaches for persistent carriers, as well as the
efficacy of different decolonization strategies and protocols in both surgical and
nonsurgical patients (1, 2, 13).

Despite the wealth of evidence obtained from different in vitro and ex vivo settings
supporting the use of various concentrations of PVP-I (5, 7.5, and 10%), the selection of
the most appropriate concentration of PVP-I for clinical use should be made on a
case-by-case basis. One factor to consider that may guide selection is whether PVP-I is
available in aqueous or alcoholic solution. For example, based on our clinical experi-
ence, we advocate 10% PVP-I in aqueous solution for use on mucous membranes,
whereas we recommend 5% PVP-I in alcoholic solution for use on healthy skin before
an invasive or surgical procedure. The final selection should be made by the treating
physician, with the ultimate goal to select the concentration of PVP-I which will
significantly reduce the bacterial load of the skin without causing issues with skin
toxicity.

FUTURE AREAS OF RESEARCH WITH POVIDONE IODINE

Studies investigating the longer term effects of PVP-I (e.g., prevention of recoloni-
zation postsurgery and use in long-term-care facilities) are needed. We also recognized
the paucity of information related to bacterial resistance to PVP-I. For this reason,
studies examining the potential for bacterial resistance to PVP-I are also recommended,
as well as studies to confirm the absence of an association between exposure to PVP-I
and the selection of antibiotic resistance among recent clinical isolates.

Evidence suggests that PVP-I in combination with chlorhexidine may prove to be
more effective in preoperative antisepsis than when either agent is used alone, a
finding indicative of a possible synergistic effect between the two agents (103–105).
Indeed, given the different mechanisms of action of PVP-I and chlorhexidine, there is
good reason to believe that the disruptive action of chlorhexidine on the bacterial cell
membrane may facilitate intracellular entry of PVP-I, thereby potentiating its antimi-
crobial efficacy (104). A synergistic effect with the use of two or more antimicrobials
would provide the opportunity to reduce the dose of each respective antimicrobial,
helping to further minimize possible adverse effects without sacrificing antimicrobial
activity. Overall, there is a general absence of data relating to the possible synergistic
actions of PVP-I in combination with other antiseptics or antibiotics, and this is an area
of research that warrants further investigation.

Some studies suggest that PVP-I may have a shorter time to bacterial regrowth than
other antiseptic agents (36, 68, 70, 106, 107). Although this is unlikely to be an issue for
surgical patients, clinical studies are needed to understand the long-term dynamics of
PVP-I. In the case of S. aureus, the bacterium is capable of invading nasal epithelial cells,
which appears to protect it from host defense mechanisms (7). A better understanding
of the role of the resulting intracellular reservoir of S. aureus during nasal colonization
may lead to improved decolonization procedures. This is necessary since both mupi-
rocin and chlorhexidine exhibit weak activity against intracellular S. aureus (108), and
there are currently no data available for PVP-I.

Minireview Antimicrobial Agents and Chemotherapy

September 2020 Volume 64 Issue 9 e00682-20 aac.asm.org 9

https://aac.asm.org


CONCLUSIONS

Based on current evidence, PVP-I may be a useful preoperative decolonizing agent
for the prevention of S. aureus infections, including MRSA and mupirocin-resistant
strains. The broad spectrum of activity of PVP-I, encompassing viruses and fungi, and its
reported activity against biofilm formation distinguish it from other antiseptics. How-
ever, compared to the current literature, additional experimental and clinical data are
required to further evaluate the use of PVP-I in this setting.
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