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Abstract
The same term “dose-response curve” describes the relationship between the number of ingested microbes or their logarithm, and the
probability of acute illness or death (type I), and between a disinfectant’s dose and the targeted microbe’s survival ratio (type II), akin
to survival curves in thermal and non-thermal inactivation kinetics. The most common model of type I curves is the cumulative form
of the beta-Poisson distribution which is sometimes indistinguishable from the lognormal or Weibull distribution. The most notable
survival kinetics models in static disinfection are of the Chick-Watson-Hom’s kind. Their published dynamic versions, however,
should be viewed with caution. Amicrobe population’s type II dose-response curve, static and dynamic, can be viewed as expressing
an underlying spectrum of individual vulnerabilities (or resistances) to the particular disinfectant. Therefore, such a curve can be
described mathematically by the flexible Weibull distribution, whose scale parameter is a function of the disinfectant’s intensity,
temperature, and other factors. But where the survival ratio’s drop is so steep that the static dose-response curve resembles a step
function, the Fermi distribution function becomes a suitable substitute. The utility of the CT (or Ct) concept primarily used in water
disinfection is challenged on theoretical grounds and its limitations highlighted. It is suggested that stochastic models of microbial
inactivation could be used to link the fates of individual viruses or bacteria to their manifestation in the survival curve’s shape.
Although the emphasis is on viruses and bacteria, most of the discussion is relevant to fungi, protozoa, and perhaps worms too.

Keywords Kinetics .Viruses .Bacteria . CT (orCt) . Chick-Watson-Hom’smodels .Distribution functions . Stochasticmodels .

Survival models

Introduction

COVID 19 [43, 45] transmission through consumption of
contaminated food has not been an issue in the current crisis,
but other kinds of viruses remain a health hazard [3, 10, 52].
Conventional food preservation methods, primarily targeting
cellular organisms especially bacteria, have been apparently
efficient in destroying viruses as well [4]. However, meat-
processing plants have recently emerged as hotspots in the
pandemic spread in rural areas, and food service operations
been identified as potential culprits of its spread among
humans. Thus, not surprisingly, disinfection of personnel, pro-
duce, clothing, air, tools, equipment, or any surface that
humans can be in contact with has recently become a common
practice and increasingly mandated by health authorities.

There is a very rich body of scientific and technical litera-
ture on disinfection. Being an integral part of medicine, water,
and air purification, and an important aspect of the food, phar-
maceutical, and other industries, the various aspects of disin-
fection, including its kinetics, have been extensively investi-
gated at every relevant level form the molecular to the
epidemiological.

The objective of this review is neither to evaluate and
compare the efficacy of the various available disinfection
methods and explain their underlying biological/chemical/
biochemical/physical principles, nor to discuss the engi-
neering aspects of their implementation. This work has
the very limited scope to highlight and assess the theoret-
ical implications of the similarities and dissimilarities be-
tween kinetic models of water, air and surface disinfection,
and those used to quantify the efficacy of food preserva-
tion methods, thermal and non-thermal. Although special
attention will be given to viruses and bacteria, we should
always keep in mind that most of the technologies and
agents used for their disinfection are also effective against
other biological contaminants.
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Terms and Definitions

Disinfection, according to the Centers for Disease Control and
Prevention (CDC), is a “process that eliminates many or all
pathogenic microorganisms, except bacterial spores, on inan-
imate objects.” It differs from sterilization, which “eliminates
all forms of microbial life” and from cleaning (also called
sanitation) which is “the removal of visible soil (e.g., organic
and inorganic material) from objects and surfaces and normal-
ly is accomplishedmanually or mechanically using water with
detergents or enzymatic products.”

Disinfectants, according to Wikipedia, are “chemical
agents designed to inactivate or destroy microorganisms on
inert surfaces,”which may include fresh produce [26]. But the
term also applies to chemical agents used to disinfect water
and air [1, 17, 21, 43, 44, 46, 49], ultraviolet (UV) light [23],
other forms of radiation [14, 15], and even cold plasma [31].

Dose in our context can be defined as the quantity of dis-
infectant used in a particular application. Originally, it referred
to an amount of medicine prescribed to (dosis in Greek) or of
ingested poison by a human. Now, the term is also used for the
amount of disinfectant administered to a targeted microorgan-
ism or the medium in which it may reside or the surface on
which it may be present (see below).

Dose-response curve (or exposure-response relationship)
according to Wikipedia “describes the magnitude of the re-
sponse of an organism, as a function of exposure to a stimulus
or stressor after a certain exposure time.” The response is
commonly expressed as the percent of inactivated organisms
and hence has the range of 0 to 100% (see below).

LD50 is the median lethal dose, i.e., the dose that corre-
sponds to a response of 50% inactivation. It is used to compare
disinfectants’ potency; the lower the LD50 the higher is the
agent toxicity or treatment efficacy.

Survival curve in our context is a plot of the number or
fraction of surviving organisms (or viable viruses) or its log-
arithm (almost always 10 based) as a function of the expo-
sure’s time, commonly expressed in seconds, minutes or
hours. A survival curve obtained under constant lethal agent’s
intensity and environmental conditions is referred to as static.
A survival curve obtained under varying lethal agent’s inten-
sity and environmental conditions is referred to as dynamic
(see below). Notice that in both static and dynamic exposures
to a lethal agent, the survival curve’s local slope, which has
time reciprocal units, is the momentary (“instant”) inactivation
rate and hence the connection to kinetics [35].

Issues with the Definition of a Dose

Ostensibly, the above-listed definitions are all straightforward
and their meanings intuitively clear. Yet, this is not always the
case with the dose definition, which is a core issue when
trying to relate the dose-response curve to the inactivation

kinetics. Here is why caution is needed. When dealing with
the potency or toxicity of a drug, poison, or any substance
ingested by a human or animal, a dose can be quantified in
terms and units such asmg ingested/kg of the ingesting person
or animal. Similarly, the number of a pathogenic microorgan-
ism’s cells or virus’s units ingested by an individual human
can also be viewed as a dose. Indeed, a pathogen’s virulence
and infectivity, which determine the severity of the damage
that it causes and the speed of its spread, are intimately asso-
ciated with the number of ingested cells or virus units needed
for acute infection. In contrast, in water or air disinfection, the
disinfectant’s effective concentration is determined in the
medium where the targeted pathogen resides and not in the
microorganism or virus itself. Similarly, in surface disinfec-
tion by an active chemical compound or radiation, the treat-
ment’s intensity is expressed in terms of mass or energy per
unit treated area and not per the targeted individual microbe’s
cell or virus unit, or a specified number of the targeted cells or
units, or even their biomass, which would depend on the con-
tamination level and its pattern.

Moreover, rarely is the desired disinfection level goal,
expressed as the number of decades reduction in the targeted
microbial population’s size, is accomplished instantaneously.
Consequently, the exposure’s duration becomes a crucial con-
sideration and ought to be taken into account in the treatment’s
intensity quantification. This is manifested in the CT, or Ct,
concept [32] according to which a chemical disinfectant’ ef-
fective dose is expressed as the multiplication product of the
disinfectant’s concentration (C) and the exposure time (T or t)
needed to reduce the targeted microbial population’s by a
chosen number of decades, an issue to which we will return.
(The confusing traditional CT term, where T represents time
and not temperature (and which has nothing to do with the
State of Connecticut…), is a carry on from an older publica-
tion where the integration limit of t was assigned the letter T.)

Also, in chemical disinfection processes, the administered
lethal agent is a highly active chemical compound, e.g., ozone,
chlorine dioxide, or paracetic acid. Such compounds are
chemically unstable; the primary cause of their reactivity and
rationale of their use as disinfectants. But as a result, their
effective concentration diminishes with time, sometimes re-
quiring their constant or periodical replenishment. The gas-
eous disinfectants are also volatile and hence, their effective
concentration can diminish even without chemically
disintegrating or reacting with the targeted microbe. Either
way, maintaining a predetermined constant concentration of
such chemical agents during the disinfection process, or even
in studies of its kinetics in the laboratory, is technically diffi-
cult. This makes the experimental determination of perfectly
static survival curves, and similarly dose-response curves, a
challenging task. It also raises the question of whether the
initial or average concentration is or can be an acceptable
representative of the diminishing effective concentration.
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The above issues, especially how to account for the time’s role
in disinfection mathematically, have been and can be tackled
in various ways, which we’ll address in what follows. Suffice
it to state at this point is that since time is inherently involved
in both dose-response and survival curves, each cannot be
considered in isolation but as a manifestation of the same
underlying inactivation kinetics.

Viral Versus Bacterial Inactivation

There is an ongoing debate on whether a virus can be consid-
ered a life form but it should not concern us here. From a
mathematical modeling viewpoint, the inactivation of a viral,
bacterial, or other microbial population follows similar kinet-
ics despite that the underlying mechanisms at the individual
cell/unit and molecular levels can be quite different. Since in
what follows, we’ll only address the kinetics at the population
level, the focus will be on concepts and models that are perti-
nent to the disinfection of either or both viruses and bacteria.

There are two main differences between viral and other
organismic populations that should be always kept in mind:

1. Unlike at least certain kinds of bacteria, viruses do not
have damage repair mechanisms. Therefore, unless prov-
en otherwise, their inactivation can be viewed as irrevers-
ible. It will be assumed, however, as has presumably been
done in the cited publications, that the same applies to
bacteria and other pathogens on the pertinent time scale.
In other words, we will assume that issues concerning
injury, repair, and/or adaptation need not be taken into
account for modeling the disinfection kinetics.

2. Unlike in a decimated bacterial and other microbial pop-
ulation, the number of survivors in a viral population, if
any, cannot rise without recontamination. In other words,
depending on conditions, the survivors of a bacterial or
other microbial population can resume cell division. Thus,
at least in principle, their numbers can not only rise but
also exceed the original contamination level. This demon-
strated in Fig. 1. It shows the screen display of a freely
downloadable Wolfram Demonstration that can be used
to simulate such and other inactivation/growth scenarios
(open : h t tps : / /demons t r a t ions .wol f r am.com/
GrowthInhibitionAndRetardationByAntimicrobials/).
[To run the Demonstration and download, the also freely
downloadable Wolfram CDF Player, which runs it and
more than 12,000 other Demonstrations to date, follow
instructions on the screen.] We will also assume that for
the time scale pertinent to disinfection the issue of spore
germination need not be addressed.

There can also be differences between how long viruses,
bacteria, and other microorganisms remain viable when

dispersed in untreated air or water, or on a contaminated sur-
face. These differences can vary dramatically depending on
the virus or organism type, the particular habitat, and on the
ambient conditions, notably temperature, and in air or on a
surface on the relative humidity too. It has been traditionally
assumed though that the rate of a pathogen perishing sponta-
neously is very small relative to that induced by a disinfectant,
and therefore need not be taken into account in dose-response
or survival curves modeling. Nevertheless, although true, we
will still show how natural attrition can be incorporated into a
survival model if needed.

Dose-Response Models

The qualitative difference between a dose of ingested sub-
stance or pathogen by a human, or any organism for this
matter, and a dose administered externally to a targeted mi-
crobe or virus as in disinfection, has been explained in previ-
ous sections. Let us call the dose-response curve based on the
first kind “type I,” and based on the second “type II.” It so
happened that the type I dose-response curves are traditionally
described mathematically and represented graphically as a re-
lationship between the rising fraction (or %) of the infected or
dead individuals as a function of the ingested dose, or its
logarithm, as shown schematically in Fig. 2 (left). In contrast,
type II dose-response curves are commonly described mathe-
matically and presented graphically as a relationship between
the falling number (or fraction) of the treatment’s survivors, or
its logarithm, and the dose administered to the medium in
which they are imbedded or the surface on which they reside
as shown schematically in Fig. 2 (right). The drop in the num-
ber of survivors can be gradual (solid curve) or very steep,
almost instantaneous (dashed curve), as can be seen in the
figure.

Mathematical Models of Type I
Dose-Response Curves

The ubiquitous sigmoid shape of type I dose-response curves
has been described mathematically by a variety of algebraic
models. The most notable among them are the two parameters
beta-Poisson function [1, 22, 25, 27, 30, 48, 55], an example
of which is given in Fig. 2 (left). In its simplified version [55],
this model has the form:

P Doseð Þ ¼ 1−½1þ Dose
β
�−α ð1Þ

where the Dose refers to the ingested drug, poison, etc., usu-
ally expressed on per kilogram body weight or similar weight
basis, and α and β are constants. The magnitudes of α and β
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depend on the toxicmaterial kind and the manner in which it is
ingested. According to this model LD50 = β/(21/α − 1).

The lethal or infectious Dose can also be the number N of
ingested, inhaled, or injected virus units or a pathogenic bac-
terium’s cells in which case the model will assume the form:

P Nð Þ ¼ 1− 1þ N
βN

� �−αN

ð2Þ

where P(N) is the probability (expressed as a fraction or %) of
death or acute infection, and αN and βN are constants whose
magnitude depends on the kind of pathogen and the manner in
which it enters the body. The beta-Poisson is not a unique
model. It can be shown that data generated with it can be fitted
with the cumulative form of the lognormal distribution (open
and use the interactive Wolfram Demonstration https://
demonstrations.wolfram.com/PathogenDoseResponse
CurvesWithTheBetaPoissonAndLognormalMode/), as
demonstrated in Fig. 3, and most probably with other
unimodal distribution functions.

The interchangeability of the beta-Poisson and lognormal
distribution functions for dose-response data representation is
not a coincidence. It can be shown mathematically and
through Monte Carlo simulations that if the mortality proba-
bility (PN) is the multiplication product of a set of underlying
probabilities of several events (Pis), i.e., P(N) = ∏ P(i), and if
each of these underlying P(i) is uniformly distributed within
its specific range, then the resulting probability of infection
(PN) has a lognormal distribution, which is indistinguishable
from the beta-Poisson for all practical purposes (see https://
d e m o n s t r a t i o n s . w o l f r a m . c o m /
ExpandedFermiSolutionsInPathogensDoseResponseCurves/
and [38, 41, 42]). The Wolfram Demonstrations’ screen
display is shown in Fig. 4. More elaborate software to
analyze dose-response relationships is described in [55].

For microbial and viral infections, an alternative to the
beta-Poisson model is the single-parameter exponential mod-
el:

P Nð Þ ¼ 1−Exp −kNN½ � ð3Þ

Fig. 1 Screen display of a
Wolfram Demonstration that
generates survival curves turned
into growth curves of the
survivors

Type I Type IIFig. 2 Type I and type II dose-
response curves
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Fig. 3 Screen display of a
Wolfram Demonstration that
shows the interchangeability of
the beta-Poisson and lognormal
distributions

Fig. 4 Screen display of a
Wolfram Demonstration that
shows how a type II dose-
response curve emerges when the
probability of acute infection is
the multiplication product of
underlying factors probabilities
each having an assumed range.
Generated with the Monte Carlo
method

309Food Eng Rev (2021) 13:305–321



where kN is a characteristic constant whose magnitude de-
pends on the pathogen and the way it enters the body. A
hypothetical dose-response curve generated with this model
is shown in Fig. 5 (left). Equation 3 too is not a unique dose-
response model, and its fit to experimental data could most
probably be matched by a Monod type model

P Nð Þ ¼ N
bN þ N

ð4Þ

where bN is the adjustable parameter. (See the Wolfram
Demonstration https://demonstrations.wolfram.com/
CharacteristicTimesInAccumulationAndDecay/). An
example of a dose-response curve, generated with Eq. 4 as a
model, is given in Fig. 5 (right). If and where found applica-
ble, the advantage of this non-exponential model over the
beta-Poisson and exponential models would be that bN =
LD50. (This is because at P(N) = ½, N = bN.)

For technical and logistic reasons, experimental viral and
bacterial dose-response data of type I are usually few in num-
ber and notoriously widely scattered, frequently showing ob-
vious outliers (e.g., [22, 53, 56]). Therefore, any preference of
one model over another (even having the same number of
adjustable parameters) based on statistical fit alone should be
viewed with caution. Also, notice that the sigmoid shape of
the dose-response curves described by Eqs. 1–4 as models
only appear when drawn as linear-log plots as shown in Fig.
2 (left) and Fig. 5. Thus, to generate a sigmoid dose-response
curve on linear coordinates would require different kinds of
models. One possible candidate for such a case would be the
two-parameter version of the exponential model known as the
stretched exponential model, which would have the form

P Doseð Þ ¼ 1−Exp −kDoseDosenDose½ � ð5Þ
or

P Nð Þ ¼ 1−Exp −kNNnN½ � ð6Þ

where the subscriptsDose orN denote that the ingested dose is
of a chemical compound or a number of pathogen cells or
units, respectively. The stretched exponential model is akin
to the cumulative form of the Weibull distribution, which

can sometimes be used interchangeably with the Fermi
distribution. Both will be discussed in more detail in the next
sections.

Since the focus of this review is on the mathematical prop-
erties of dose-response curves and disinfection kinetics,
models of microbes’ pathogenicity when orally ingested, in-
haled, or entering the body by other means (e.g., through
insect bites or injection) will not be discussed. However, we
will return to statistical distributions as determining the shape
of type II dose-response curves and that of microbial survival
curves, which are used to assess the efficacy of food preser-
vation methods.

Type II Dose-Response Curves

Intuitively, one would expect that because a type II dose-
response curve depicts the survival ratio (instead of the
destroyed fraction) versus dose relationship, it would be sim-
ply a flipped or mirror image of that of type I, replacing the
infected humans or animals with the targeted microbes. This is
not always the case, however, for two major reasons: The
applied disinfectant’s intensity (concentration, radiation ener-
gy, etc.) is intentionally set at a lethal level, and time plays a
more central role. In fact, type I dose-response curves are
sometimes determined at different days after the infection or
inoculation (see [56]), while disinfection usually takes place
on a much shorter time scale. As can be seen in Fig. 2 (right),
the survival ratio’s drop with the dose increase, however the
dose is defined, could vary between gradual (solid line) to
almost perfectly vertical, and with (dotted line) or without a
noticeable “shoulder.” Either way, the similarity of the type II
dose-response curves’ shapes to those of the more familiar
microbial survival curves encountered in thermal and non-
thermal inactivation is unmistakable. This should not come
as a surprise because both reflect a common characteristic
response of biological populations to a hostile environment.
Had all the targeted microbes been genetically identical and in
exactly the same physiological state, i.e., having the same
vulnerability, and had the lethal agent been applied in perfect
uniformity, then, at least in principle, they would all succumb

Fig. 5 Simulated type I dose-
response curves generated with
two empirical models (Eqs. 3 and
4), alternatives to the beta-Poisson
distribution
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to the very same dose at exactly the same time. The dose-
response curve in such a case would be a perfect step function
[33–35] very similar to that shown as a dotted curve in Fig. 2
(right). The corresponding dose magnitude in such a case
would be a measure of the individual virus unit or bacterial
cell’s sensitivity to or tolerance of the lethal agent, which all
members of the population share and exhibit in unison, or vice
versa. A dose-response curve having the shape of a perfect
step function would indicate that the above-mentioned condi-
tions are fully satisfied; i.e., that all the targeted viruses or
bacterial cells are indeed identical and they succumb simulta-
neously to the uniformly applied disinfectant. Obviously, this
is rarely the case in practice and most type II dose-response
curves indicate that there is an underlying narrow or wide
spectrum of sensitivities and/or at least a certain degree of
non-uniformity in the exposure’s intensity [39]. Let us empha-
size that for a true step dose-response curve to appear, both
uniformity conditions ought to be satisfied simultaneously.
But viruses can at least sometimes exhibit slight composition-
al variations [47, 48] and their dispersion pattern might not be
uniform due to aggregation, for example [5, 29]. Residing on a
non-uniform surface may also cause non-uniform exposure.
Bacteria and other microorganisms, even if their dispersion is
uniform can be in different physiological states as a result of
age, cell division stage, etc. Consequently, type II dose-
response curves closely resembling a step function are uncom-
mon [33–35]. The concept of an underlying spectrum of sen-
sitivities or resistances also applies to the various shapes of
survival curves (see below) except that their primary manifes-
tation is in the survival ratio’s dependence on time.

Prominent Flat Shoulder

A prominent flat shoulder in a type II dose-response curves (of
the kind shown in Fig. 2 (right)) has been reported in various
publications (e.g., [8, 32]). The shoulder’s presence has been
commonly considered a special case where the drop in the
survival ratio commences only after the administration of a
critical dose or as a consequence of a characteristic physiolog-
ical lag time. In other words, the idea has been that there are
two distinct response regimes and a sharp transition between
them. An alternative view is that both type II dose-response
curves (of the kind shown in Fig. 2 (right)) and survival curves
encountered in thermal food preservation having a similar
shape are actually the cumulative form of an underlying
unimodal distribution of the targeted microbe’s sensitivities
to the imposed lethal agent. The sensitivities (or resistances)
are manifested in the dose needed to inactivate the microbe in
the former, or the time it takes to inactivate it in the latter.
From this viewpoint, the primary difference between a dose-
response and a survival curve is that in the first, the survival
ratio is presented as a function of dose while in the second as a
function of time. If this observation is correct, then a

prominent flat shoulder will always appear if the mode of
the sensitivities distribution is considerably larger than its
variance [34, 35]. In other words, as long as the underlying
distribution is unimodal, the distribution kind is immaterial; it
can be normal, lognormal, Weibull, log-logistic, Fermi, or
whatever. This is demonstrated in Fig. 6. The figure shows
two pairs of juxtaposed curves generated with theWeibull and
Fermi distributions, left and right respectively. In each pair,
the distribution’s spread (variance) is about the same but only
when it is considerably smaller than the mode does a promi-
nent shoulder appear. Despite their superficial similarity, the
initially very mild drop in a concave downward semi-
logarithmic Weibullian dose-response or survival curve (hav-
ing a shape factor larger but close to one; see below) should
not be confused with a shoulder. Thus, any suggestion that it
represents a special physiological state or inactivation mech-
anism ought to be backed up by independent experimental
evidence.

Prominent Flat Shoulder with Log-Linear
Continuation

A special case of a flat shoulder in a dose-response or survival
curve is where the continuation is clearly log-linear as shown
in Fig. 6 (right) [35, 37]. This pattern has been traditionally
interpreted as a delayed first-order decay kinetics triggered
when a threshold dose or characteristic lag time is crossed.
Here, again (see figure), the alternative explanation is that
there is no abrupt transition between two regimes.
According to this second view, the dose-response or survival
curve’s shape is determined by an underlying spectrum of
sensitivities that follows the Fermi distribution [33, 35]. If
true, then because the smoothly changing slope takes place
in a relatively small region, it is likely to be missed when the
dose or survival curve is constructed from spaced experimen-
tal data. More details on the mathematical properties of the
Fermi andWeibull distribution functions will be provided in a
later section.

Traditional Kinetic Survival Models
for Microbial Disinfection

The Chick-Watson Model

The old Chick-Watson model [7, 9, 54] is probably the most
well known and widely used to describe the kinetics of disin-
fection by a chemical agent [19–22]. For static, i.e., constant
disinfectant concentration, it can be written in the form

Log S tð Þ½ � ¼ Log
N tð Þ
N0

� �
¼ −kCnt ð7Þ
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where S(t) is the survival ratio, defined as N(t), the number of
viable survivors after time t, divided by N0, the initial number
of the targeted virus units or microbial cells, and C is the
“residual disinfectant concentration.” The model’s two adjust-
able parameters, k and n, are characteristic to the targeted
microbe and the particular disinfectant. Their magnitudes de-
pend on the type of mediumwhere the disinfection takes place
and ambient conditions, notably temperature and pH, or rela-
tive humidity where relevant. Whether Log[S(t)]’s base is e or
10 is immaterial and will be only manifested in the numerical
value of the corresponding k.

The rate version of the Chick-Watson model according to
the literature [19, 32] has the form

dN tð Þ
dt

¼ −kCnt ð8Þ

From a formal viewpoint, Eq. 8 describes a static first-order
decay or loss kinetics where the characteristic rate constant k,
in time reciprocal units, is proportional to the momentary dis-
infectant’s concentration raised to the power n, i.e., k = kCn.
To avoid confusion, let it be understood that Eq. 8 in the above
form only applies to a constant disinfectant concentration, or
in other words, it can only describe the targeted microbe’s
decay rate if and only if the disinfectant concentration remains
unchanged during the disinfection (see below).

Hom’s Model

An expanded version of the Chick-Watson survival model is
known as Hom’s model, which for static disinfection can be
written in the form [21].

Log S tð Þ½ � ¼ Log
N tð Þ
N0

� �
¼ −kCntm ð9Þ

where the three parameters are k and n transplanted from the
Chick-Watson model, and m an added exponent. The original
Chick-Watson equation is therefore a special case of the
Hom’s model where m = 1.

According to various publications (e.g., [18–20]), Hom’s
model underlying differential rate equation is

dN tð Þ
dt

¼ −kmCntm−1N tð Þ ð10Þ

Although apparently intended to describe dynamic disin-
fection, the above form of Hom’s model, like its predecessor
Eq. 8, is only applicable to processes where the disinfectant
concentration remains constant throughout the entire disinfec-
tion process. In other words, Eq. 10 can describe the targeted
microbe’s elimination rate if and only if the disinfectant’s
concentration and hence the term Cn is not a function of time.
If, however, the residual disinfectant concentration falls, rises
(through replenishment) and/or oscillates, that is varied and
becomes a function of time, i.e., C =C(t) ≠ constant, then the
governing differential rate equation ought to be

dLog S tð Þ½ �
dt

¼ −ktm−1C tð Þn−1 mC tð Þ þ nt
dC tð Þ
dt

� �
ð11Þ

where the actual time t is the same as the time t* (see below),
which corresponds to the momentary survival ratio, i.e., the
(numerical) solution for t of the equation

Log S tð Þ½ � ¼ −k*C tð Þntm ð12Þ

Fig. 6 “Long flat shoulder” in the
cumulative form of unimodal
distributions when their mode is
much larger than their variance
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(For details see [13, 35] and below.)
Despite its cumbersome appearance, Eq. 11, especially

with t* being a momentary numerical solution of an algebraic
equation, is still an ordinary differential equation (ODE).
Thus, although yet be attempted, one can expect that with
modern mathematical software Eq. 11 would be solved nu-
merically for almost any conceivable concentration profile
C(t) expressed algebraically. At least in principle, if and when
the Chick-Watson or Hom’s model is validated experimental-
ly, Eq. 11 could be used to simulate or predict the outcome of
realistic actual or contemplated dynamic disinfection process-
es, where the disinfectant concentration does vary with time.

The reported applicability of the Chic-Watson-Hom’s
models, in their original and modified versions, seems to have
been primarily based on their respective equations’ fit to ex-
perimental static data, rather than to their ability to predict
dynamic survival patterns. Unfortunately, good fit by statisti-
cal criteria alone cannot be considered a model validation. The
fit only provides evidence that the proposed model can
describe the observed data at hand mathematically and does
not even establish its uniqueness. Proper validation of a sur-
vival model, or of any kinetic model for that matter, requires
that it can predict correctly survival data not used in its pa-
rameters determination, for example, predicting correctly dy-
namic survival curves from static data or vice versa, or dy-
namic survival data from other dynamic survival data [13, 35,
37].

Models Based on an Underlying Spectrum
of Sensitivities

Alternatives to the Chick-Watson-Holm’s type survival
models are the already mentioned models based on an under-
lying spectrum of sensitivities or resistances described by a
distribution function. Several such distribution functions can
be considered. The first two natural candidates that come to
mind are the commonplace and highly flexible Weibull and
lognormal distributions, or for the less common case of an
extremely narrow distribution, where the dose-response or
survival curve resembles a step function, the less familiar
Fermi distribution becomes a promising option [33], as dem-
onstrated in Fig. 2.

The Weibull Distribution

The Weibull distribution has been used in the mathematical
description of a wide range of failure phenomena and hence its
ubiquitous association with risk assessment in a variety of
technological fields. Since the inactivation or death of an in-
dividual microbe during disinfection can be viewed as its fail-
ure to overcome the destructive or lethal agent, the Weibull

distribution is a natural choice [13, 35]. The two parameters of
the more familiar form of the distribution function named after
Weibull are α known as the shape factor and β known as the
scale factor. For our purpose, since we deal with a process’s
kinetics, we will use the model’s version known as the Rosin-
Rammler distribution, which had been proposed (to particle-
size reduction operations) 3 years prior to its introduction by
Weibull [6].

For static disinfection (constant disinfectant concentration),
it can be written in the form [2, 13, 35].

Log S tð Þ½ � ¼ −b Cð Þtm Cð Þ ð13Þ
where b(C) is a concentration-dependent rate parameter, relat-
ed to Weibull’s scale factor reciprocal, and m(C) a power that
can but need not be concentration-dependent, equivalent to
Weibull’s shape factor. Where and when m(C) is independent
or practically independent of the concentration, which is not
uncommon (see [49, 50, 51]), the static model becomes

Log S tð Þ½ � ¼ −b Cð Þtm ð14Þ

This equation is reminiscent of Hom’s model, except that
the rate parameter b(C) need not be in the form of the power-
law expression. In other words, Hom’s model can be viewed
as a special case of the Weibullian model where b(C) = kCn.

Implementing the assumption that in dynamic disinfection,
where C =C(t), not a constant, the momentary inactivation
rate is the static rate at the disinfectant’s momentary concen-
tration, at the time that corresponds to the momentary surviv-
al ratio [13, 35], renders the rate model

dLog S tð Þ½ �
dt

¼ −b C tð Þ½ �m −Log S tð Þ½ �
b
h
C tð Þ

i
2
4

3
5

m−1ð Þ=m

ð15Þ

Here, again, despite its cumbersome appearance, Eq. 15 is
still an ordinary differential equation (ODE). Therefore, as has
been already demonstrated [ibid], it can be rapidly solved
numerically with modern mathematical software for almost
any conceivable relevant concentration history C(t) expressed
algebraically, including containing If statements to account
for instant replenishments. Thus, at least in principle, this
model can replace the Chick-Watson-Hom type models when
validated experimentally by testing its predictive ability.
Examples of Eq. 15’s solutions for disinfection with a dissi-
pating agent can be generated with a freely downloadable
interactive Wolfram Demonstration https://demonstrations.
w o l f r a m . c o m /
MicrobialSurvivalWithDissipatingDisinfectant/. Its screen
display is shown in Fig. 7.

According to the Weibullian model [35], if the shape fac-
tor, i.e., the power m, is larger than one (m > 1), the static
survival curve has downward concavity, which suggests that
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damage accumulation progressively weakens the survivors’
resistance to the lethal agent. Where m < 1, the survival curve
has upward concavity, a shape known as tailing [28, 46]. Its
observation suggests that sensitive members of the targeted
population are quickly eliminated leaving progressively stur-
dier, i.e., more resistant survivors.What’s known as first-order
or log-linear kinetics is a special case of the Weibullian model
where m = 1. Notice that the local slope of the cumulative
form of the Weibullian distribution, or that of any alternative
distribution function for this matter, is the momentary survival
or inactivation rate having time reciprocal units. In other
words, the notions of a spectrum of resistances or sensitivities
characterized by a distribution function and of inactivation
kinetics are the two sides of the same coin.

The Expanded Weibullian Model

Assuming that the shape factor m remains constant or practi-
cally constant, the rate parameter b[C] in Eq. 14 or b[C(t)] in
Eq. 15 is solely a function of the disinfectant’s residual con-
centration. However, and regardless of how it is expressed, the
magnitude of its parameters also depends on other factors,
most notably the temperature, T, which too can vary consid-
erably during a long disinfection process. The rate constant’s
dependence on simultaneously varying disinfectant concen-
tration and the temperature is rarely if ever known a priori.

Also, there is no reason to assume that their combined effect is
somehow multiplicative (the basis of the “gamma hypothe-
sis”). Traditionally, the temperature effect has been assumed
to follow the Arrhenius equation despite that its universal
applicability cannot be taken for granted for several reasons
[16, 39]. The same is true for alternative temperature depen-
dence models. In an assumption-free model where only the
concentration and temperature play major roles, the static sur-
vival rate parameter can be written as b(C, T). If so, then in
dynamic disinfection the momentary disinfection can be writ-
ten in a nested form [35], i.e., b(t) = b[C[T(t)]] or b(t) =
b[T[C(t)]]. In the nested forms, the concentration effect on
the rate parameter can be temperature-dependent, or alterna-
tively, the temperature effect on the rate parameter can be
concentration-dependent. To illustrate this notion, consider
the oversimplified example of a hypothetical (unlikely but
not totally unrealistic) scenario where a virus’s Weibullian
rate parameter rises linearly with the disinfectant concentra-
tion. If so, we can write b(C) = k0 + kCC, where k0 represents
its natural disappearance rate without the disinfectant presence
(if not totally negligible) and kC the b(C) versus C relation-
ship’s slope. For simplicity, let us assume that k0 is very small
and practically unchanged and that in the pertinent tempera-
ture range kC rises with temperature following the exponential
model kC = kCTrefExp[kT(T − Tref)], where kCTref is the rate
constant at a chosen reference temperature within the pertinent

Fig. 7 Screen display of a
Wolfram Demonstration that
simulates microbial survival
curves during exposure to a
chemically unstable or volatile
disinfectant
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range. Both T and Tref are in degree Celsius. [Curves generat-
ed with this simple model are practically indistinguishable
from those produced by the Arrhenius equation [39], and their
construction needs no conversion of the temperatures to de-
gree Kelvin terms.] Where both the disinfectant’s concentra-
tion and temperature vary simultaneously, the momentary
Weibullian rate constant, b(t), becomes b(t) = k0 +
kCTrefExp[kT(T(t) − Tref)] C(t). Thus, with the assumption that
k0 andm are practically independent of both concentration and
temperature, the dynamic survival model becomes

dLog S tð Þ½ �
dt

¼ −b tð Þm −Log S tð Þ½ �
b tð Þ

� � m−1ð Þ=m
ð16Þ

where b(t) is the expression in which both the concentration
profile, C(t), and temperature profile, T(t), are incorporated.

Dynamic survival curves generated with Eq. 16 as a model
are given in Fig. 8.

A similar rate equation can be constructed for more realistic
and more complicated temperature or concentration depen-
dencies, which may include terms of k0(t) = k0[C[T(t)]] and
m(t) = m[C[T(t)]]. The same can be said about b(t) =
b[T[C(t)]] and k0[T[C(t)]] and m(t) =m[T[C(t)]], whichever
might be the more convenient.

The issue here is not the complexity of the resulting rate
model’s equation. For almost all conceivable C(t) and T(t)
histories, Eq. 16 will remain ODE which could be solved
numerically almost instantaneously. The issues are primar-
ily logistic and of two kinds: Unlike temperature recording,
monitoring the disinfectant’s residual concentration at
close enough time intervals may not be a simple matter,
and to determine experimentally the model’s parameters,
k0, kCTref, and kT, even in the simplified example above
may not be a feasible option. The problem will be further
aggravated if a more realistic and hence more elaborate
b[C[T(t)]] or b[T[C(t)]] expression is employed. The
resulting model’s terms will require the experimental de-
termination of even more parameters, rendering the whole
endeavor impractical. The situation will become almost
totally unmanageable if terms accounting for the roles of
additional factors such as RH or pH are also incorporated
in the model’s rate equation.

In light of the above, it is highly doubtful that the method as
described will be implemented in disinfection studies any time
soon. But the underlying concept should not be thrown over-
board for two reasons: Models with assumed parameters can
be used in simulations to reveal patterns (especially as a result
of oscillations) that might not be obvious, and keeping the
conceptual model in mind will help to avoid making assump-
tions about the kinetics that are difficult to defend.

The simulated oscillating concentration and temperature
profiles and corresponding survival curves shown in Fig. 8
demonstrate these points. The three plots at the bottom show

the potentially dramatic effect that the shape factor m might
have if it is allowed to vary while the other model parameters
remain fixed. The figure also demonstrates that the assump-
tion of first-order inactivation kinetics, while the actual kinet-
ics is not, might be fairly harmless initially may result in large
discrepancies after a longer time.

m = 1.0

m = 0.8

m = 1.2

Fig. 8 Simulated dynamic survival curves (bottom) under simultaneously
dissipating disinfectant agent (top) and fluctuating temperature (middle)
generated with the expanded Weibullian dynamic model (Eq. 16) with
three shape factors (ms)
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The Fermi Distribution

None of the already mentioned survival models can be consid-
ered inherently superior and two or more of them can be fre-
quently used interchangeably. The same can be said about other
unimodal distributions not mentioned. Statistical fit criteria
alone, as already stated, are insufficient to establish a model’s
uniqueness. A notable exception to the above is the already
mentioned Fermi distribution function and similarly construct-
ed models. They too can be indistinguishable from theWeibull
or lognormal distributions when describing a wide distribution
as shown in Fig. 2 (right). The Fermi model’s particular and
clear advantage is its ability to describe very steep dose-
response or survival curves that resemble a step function, those
of individual microbes included. [The function was proposed
by Fermi to describe the mass density distribution within an
atom, which at the nucleus edge drops almost vertically to
almost zero.] When used as a dose-response or survival curve
model it can be written in the form [33, 40].

S xð Þ ¼ 1

1þ Exp
x−xc
a

h i ð17Þ

where x is the dose (however defined) or time, xc a marker of
the curve’s inflection point, where S(xc) = ½, and a the spread
measure. If a has any arbitrary value which is very small rela-
tive to x − xc, then it is easy to show that Eq. 17 produces a
curve that for all practical purposes looks like a step drop. Yet,
the Fermi distribution function is still a continuous function that
has algebraic derivatives and can be integrated. As the value of
a increases, so does the spread around xc (the variance) and
eventually, the Fermi distribution becomes almost indistin-
guishable from the more familiar unimodal distribution.
Notice that since

Log S xð Þ½ � ¼ −Log 1þ Exp
x−xc
a

h ih i
ð18Þ

then when x < < xc, Log[S(x)] ≈ 0, and when x > > xc,
Log[S(x)] ≈ − (x − xc)/a as shown in Fig. 6 (right). But unlike
the 0 < x <∞ range of the Weibull or lognormal distribution,
the Fermi distribution’s range is −∞ < x <∞. Consequently,
S(0) is always < 1 and Log[S(0)] < 0. However, this inevitable
gap is usually negligibly small and has no practical implications,
especially when dealingwith highly scattered experimental data.

The CT (or Ct) Concept

According to Wikipedia: “CT Values are an important part of
calculating disinfectant dosage for the chlorination of drinking
water. A CT value is the product of the concentration of a
disinfectant (e.g., free chlorine) and the contact time with the
water being disinfected. It is typically expressed in units of

mg-min/L.” The entry also has a table listing CT values of free
chlorine (applied to Giardia cysts) in water to accomplish 1, 2,
and 3 “log inactivation.”

Despite its intuitive appeal and wide use in water disinfec-
tion (e.g., [1, 49]), the CT concept is a peculiar one. The phys-
ical meaning of dosage expressed as having Mθ/L3 (mass ×
time ÷ volume) dimensions, which is equivalent to mass per
volumetric flow rate,M/(L3/θ), is at best unclear. Had all disin-
fection processes been static and followed first-order kinetics as
described by the Chick-Watson model with n = 1, then there
would have been a unique universal relationship between the
accomplished decimation, expressed in terms of the targeted
microbe’s log survival ratio, and CT. This is shown schemati-
cally in Fig. 9 (left). But for any (positive) n ≠ 1, this will no
more be the case and the accomplished level of inactivation will
inherently depend on the disinfectant’s concentration as shown
schematically in Fig. 9 (right). In other words, since the Chick-
Watson model’s equation can be written as Log[S(t)] = −
kCn−1Ct, then whenever n ≠ 1, the slope of the Log[S(t)] versus
Ct relationship, i.e., − kCn−1, is not constant but a function of
the concentration C. The situation is further complicated if the
static survival curve is not log-linear, as where it followsHom’s
model. In that case, the model equation can be written as
Log[S(t)] = − kCn−1tm−1Ct and therefore where n ≠ 1 and m ≠
1, the slope of the Log[S(t)] versusCt relationship, − kCn−1tm−1,
will depend on both concentration and time. Similar claims can
be made for models based on nonlinear kinetics such as follow-
ing the Weibullian model.

Notice that the dosage is similarly defined for UV light
disinfection, i.e., dose = light intensity × time of exposure.
But since UV light’s intensity is expressed as power per unit
area, the dose so defined has energy per area dimension and
units, and hence is not an issue as in chemical disinfection.

Stochastic (Probabilistic) Versus Deterministic
Inactivation Models

The survival kinetics models presented and discussed in the
previous sections were originally devised for and tested with

n = 1

C�t

Lo
g 
S(
t)

C1

C�t

Lo
g 
S(
t)

00

Chick-Watson model & the CT (or Ct) “dosage”

0 0

n ≠ 1

C2
C3

Fig. 9 The problem with CT (or Ct) as a dosage measure: Only with the
Chic-Watson model with n = 1 is there a unique correspondence between
the CT and the accomplished drop in the targeted microbe’s survival ratio
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very large microbial populations reduced through disinfection
by several orders of magnitude. They are all deterministic and
expressed in the form of cont inuous func t ions .
“Deterministic” in our context is manifested in that the surviv-
al curve is reproducible (despite that the individual counts
themselves can be somewhat scattered, the main reason for
their replication) and that when presented in the form of the
survival ratio or its logarithm versus time relationship, the
initial number is unimportant as long as there are enough
microbes to be counted. [There are special cases where the
initial inoculum size can be an issue but these should not
concern us here.] But the same deterministic models that are
applicable to large microbial populations may not be always
applicable to very small microbial populations, especially
when they are subjected to a marginal disinfection treatment.
This is because at the individual microbe’s level, even appar-
ent continuity no more exists and probability plays a central
role in whether it will survive or succumb after a given time.

Reports on the use of discrete stochastic (probabilistic)
models of microbial inactivation are rather scarce in the liter-
ature on disinfection and food preservation. They will be
briefly introduced here to alert the reader to their existence

and potential explanatory power. (More detailed information
can be found in [11, 12, 24].)

Consider the simplest case where the targeted individual
virus, bacterium, or other microbe can be in only two states,
viable or inactivated, as shown schematically on the left side
of Fig. 10. If it is viable at time 0, then after time Δt1 of
exposure to the disinfectant, it can be either inactivated with
a probability Pm(1) or remain viable with a probability 1 −
Pm(1). If it is still viable, then after another time interval Δt2
(which can but need not be equal to Δt1), it can be either
inactivated with a probability Pm(2) or remain viable with a
probability 1 − Pm(2), and so forth after Δt3, Δt4… Δti…
until it is finally inactivated and leaves the game. [Actually,
the Pm(i)s are probability rates, i.e., probability per unit time.
To avoid this issue, we will assume unit time intervals, i.e.,
that each and every Δti = 1.] In a group or population of N0

microbes exposed to a lethal agent, each individual member
plays the same “game.” Therefore, if we count the total num-
ber of survivors after eachΔti, i.e., N(i), and plot this number
versus time, we are actually constructing the group’s survival
curve. Examples of three hypothetical Pm(i) versus i scenarios
are shown in Fig. 10.

Constant Sigmoidally dropping Sigmoidally risingInac�va�on probability (Pm):

Fig. 10 Three examples of survival curves generated for 1000 individual
microbes with the simplest stochastic model shown schematically on the
left. Pm(i) is the inactivation/mortality probability per time unit. Top row:
The inactivation/mortality probability history (Pm(t) versus time). Middle

row: The corresponding survival curve plotted on linear coordinates.
Bottom row: The corresponding survival curve plotted on log-linear
coordinates. Notice that the left column, constant Pm(t), is equivalent to
first-order kinetics
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As has been shown [12, 24], adjustment of the Pm(i) versus
i relationship can be used to produce almost all commonly
encountered microbial inactivation patterns (see below). For
the scenarios described in the figure, we assumed that all
members of the group share the same set of probabilities
Pm(i)s and that these are functions of the exposure time only.
Notice that because the process is purely probabilistic even
with the same shared probability Pm(i) at each step, some
individuals will survive longer than others before they perish
too. Therefore, and consistent with observation, a survival
curve so constructed need not be perfectly smooth even in
principle, and need not be exactly reproducible (see below).
However, it can be shown that as the number of individual
microbes increases, their survival curve becomes progressive-
ly smoother and ever more deterministic [12, 24]. What’s also
very important here is that the temporal changes in the Pm(i)s
can be extracted from conventional experimental survival
curves obtained with large microbes populations and used
to simulate the fates of small groups [24]. Such groups might
be representative of realistic situations especially where a vir-
ulent pathogen’s presence is less than massive.

Constant mortality probability, Pm(i) or Pm(t), throughout
the disinfection, is equivalent first-order (log-linear) inactiva-
tion kinetics, as expected from its definition, except where we
reach the last few survivors. At that time, see Fig. 10 (left
column), the curve’s continuation becomes jagged, and irre-
producible, a clearer manifestation of the process’s stochastic

nature. The irreproducibility becomes dramatic when dealing
with very small microbial populations or reaching a small
number of survivors as demonstrated in Figs. 11 and 12.
Each figure shows the simulated fates of three identical groups
of 20 individuals having exactly the same Pm(i)s; constant
(“first-order kinetics”) in Fig. 11 and decreasing (Weibullian
where m < 1). The three survival curves are shown in Fig. 12
are not only dissimilar but they can also be hardly recognized
as being produced by the very same first-order inactivation
kinetics. Also, and in contrast with and classic first-order ki-
netics theory, the stochastic model allows for the complete
elimination of the targeted population in finite time. As dem-
onstrated in Fig. 12, the same is true for Weibullian inactiva-
tion, including where it indicates tailing, i.e., where the semi-
logarithmic survival curve has upper concavity (m < 1)!

With different patterns of temporal changes in the Pm(i)s,
as already mentioned, one can generate almost every known
kind of inactivation kinetics. The plots in Figs. 10, 11, and 12
were produced with the freely downloadable Wolfram
Demonstration (https://demonstrations.wolfram.com/
ProbabilisticModelForMicrobialMortality/),which allows the
choice of four types of Pm(i)s and the initial microbe’s
number to vary between 1 and 5000. Weibullian inactivation
patterns with upward or downward concavities can be
generated by selecting the linearly rising or falling Pm(i)
option and adjusting the slope [12], or by adjusting the
probability range of the proper sigmoid pattern.

Run 1 Run 2 Run 3

Fig. 11 Survival curves of three groups of 20 individual microbes (the
three runs) each generated with the stochastic model shown schematically
in Fig. 10 (left) having the same constant inactivation/mortality
probability per time unit, Pm(t) = 0.05, plotted on linear (top row) and

log- l inear (bot tom row) coordinates . Not ice the curve’s
irreproducibility, in which the expected first-order kinetic pattern is
hardly recognizable and in which each group is totally eliminated in a
finite time
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A similar stochastic model with added division probabili-
ties, Pd(i)s, introduced at each step can simulate resumed
growth after insufficient treatment (of the same kind shown
in Fig. 1) or the onset of inactivation after sustained growth
[24]. At least in principle, stochastic models can also be writ-
ten for scenarios that include cell division, injury and damage
repair [36] and simultaneous activation and inactivation of
bacterial spores [11].

It seems unlikely that stochastic model of disinfection will
replace the conventional deterministic ones any time soon.
But a probabilistic model even if only used for simulations
can be a valuable tool to investigate the connection between
the fates of individual virus units or bacterial cells and their
observed manifestations at the population level.

Concluding Remarks

The notion of an underlying distribution function is well
established in modeling type I dose-response curves but
not so in modeling type II curves, where its relation to ki-
netics is yet to be universally acknowledged and accepted.
Application of the popular Chick-Watson-Hom’s disinfec-
tion model, especially in its published dynamic version, can
be problematic on theoretical grounds. Its replacement by
the static or dynamic version of the Weibullian, or a similar

kind of model, could resolve this predicament. Such a
models’ coefficients can be written in a manner that will
account not only for the effect of a disinfectant’s varying
concentration or intensity consistently but will also for the
effects of varying temperature and other ambient condi-
tions. Experimental determination of such expanded
models’ coefficients may not be always feasible. But they
can be used in simulations with assumed parameters to re-
veal patterns that would be otherwise difficult to predict.

The CT concept is only applicable to survival patterns that
follow first-order kinetics where the rate constant is propor-
tional to the disinfectant’s concentration. It becomes problem-
atic when the concentration scaling (power) is different than
one (n ≠ 1). In the case of Hom’s or other nonlinear inactiva-
tion patterns, the momentary survival ratio that corresponds to
any CT value is concentration and time-dependent by defini-
tion. Therefore, its utility as a measure of a volatile chemical
disinfectant’s dosage should be reconsidered. Stochastic
models of microbial inactivation, currently not widely
employed, can be used to explain how different types of dis-
infection kinetics emerge. They also explain the irregularity
and irreproducibility observed in the survival patterns of small
groups of pathogens exposed to a disinfectant.

Although the emphasis in this review has been on viruses
and bacteria, most if not all the discussion is also relevant to
fungi, protozoa, and even worms.

Run 1 Run 2 Run 3

Fig. 12 Survival curves of three groups of 20 individual microbes each
generated with the stochastic model shown schematically in Fig. 10 (left),
whose Pm(t) continuously decreases (tailing) according to the Weibullian
model where m < 1, plotted on linear and log-linear coordinates, top and

bottom, respectively. Notice that the curves’ typical upward concavity
can disappear when the survivors’ numbers reach single digits and that
they become totally irreproducible
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