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Abstract: Metabolic syndrome (MetS) is an extremely prevalent complex trait and it can originate
in early life. This concept is now being termed the developmental origins of health and disease
(DOHaD). Increasing evidence supports that disturbance of gut microbiota influences various risk
factors of MetS. The DOHaD theory provides an innovative strategy to prevent MetS through
early intervention (i.e., reprogramming). In this review, we summarize the existing literature that
supports how environmental cues induced MetS of developmental origins and the interplay between
gut microbiota and other fundamental underlying mechanisms. We also present an overview of
experimental animal models addressing implementation of gut microbiota-targeted reprogramming
interventions to avert the programming of MetS. Even with growing evidence from animal studies
supporting the uses of gut microbiota-targeted therapies start before birth to protect against MetS of
developmental origins, their effects on pregnant women are still unknown and these results require
further clinical translation.

Keywords: obesity; hypertension; metabolic syndrome; hyperlipidemia; probiotics; prebiotics; postbiotics;
developmental origins of health and disease (DOHaD)

1. Introduction

Metabolic syndrome (MetS) is a group of concurrent medical conditions that raise risk
of cardiovascular disease (CVD). The major components of MetS are obesity, hypertension,
dyslipidemia and insulin resistance [1]. It is estimated that around one-quarter of the
world population (one billion) is affected by MetS [2]. Of note is that MetS and associated
disorders constitute two thirds of the non-communicable diseases (NCDs), the leading
causes of death globally [3]. Without specific therapeutic regimens for diverse phenotypes
of MetS, its prevalence is rising worldwide [2]. Hence, a strategic approach to avert the
spread of MetS should be switched from disease treatment to prevention.

Recent epidemiological and experimental studies suggest that metabolic syndrome
can originate in early life [4–7]. Exposure to various environmental cues in early life can
alter organ structure and function that may raise the risk for developing MetS in later
life [4–7]. This notion is now being termed the developmental origins of health and disease
(DOHaD) [8].

Notably, different environmental insults in early life can program similar features of
MetS, proposing a commonality of mechanistic pathways behind MetS of developmental
origins. Despite these pathogenic mechanisms underlying developmental programming are
still inconclusive, several common mechanisms have been reported, including nitric oxide
(NO) deficiency, oxidative stress, aberrant activation of the renin-angiotensin-aldosterone
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system (RAAS), dysfunctional nutrient sensing signals, epigenetic regulation and gut
microbiota dysbiosis [4–7,9–12].

Recent research has highlighted the influence of the gut microbiota in MetS and associ-
ated disorders [13]. Gut microbiota derived metabolites can work as signaling compounds
through systemic circulation involving in human disease, including MetS [13]. Fetal expo-
sure to environmental insults has been connected with negative impact on offspring gut
microbiota maturation, which precede later onset of disease in adult life [14]. Nevertheless,
relatively little information exists regarding whether and how various maternal insults
could shape gut microbiota, leading to MetS and associated disorders in adult offspring.

Conversely, unfavorable programming processes can be averted by intervention in
early life to stop or delay the development of chronic diseases throughout life, which
is referred to as reprogramming [15]. Considering gut microbiota dysbiosis is closely
connected with the developmental of MetS, interventions gut microbiota and relevant
metabolites may serve as a potential target for therapeutics [16–19].

Probiotics (i.e., beneficial microorganisms), prebiotics (i.e., compounds in food can
assist the growth of probiotics) and postbiotics (i.e., metabolites of probiotics providing
physiological benefits) are commonly used gut microbiota-targeted therapies. Our review
aims to map the fundamental concepts in how the uses of probiotics, prebiotics and
postbiotics in early life prevent the developmental programming of MetS.

We searched the MEDLINE/PubMed and Embase databases for studies written in
English between January 1980 and July 2022 using the following list of keywords: “gut
microbiota”, “probiotics”, “prebiotics”, “synbiotics”, “postbiotics”, “parabiotics”, “cardio-
vascular disease”, “cardiometabolic disorder”, “developmental programming”, “DOHaD”,
“reprogramming”, “dyslipidemia”, “hyperlipidemia”, “obesity”, “diabetes”, “insulin resis-
tance”, “hyperglycemia”, “hypertension”, “mother”, “father”, “gestation”, “pregnancy”,
“progeny”, “offspring” and “metabolic syndrome”. Additional studies were selected and
evaluated based on references in eligible literature. The search was ended by 10 July 2022.

2. Current Evidence Supports MetS of Developmental Origins
2.1. Epidemiological Evidence

There is tremendously epidemiological evidence suggesting that negative early-life
conditions are associated with the risk of MetS later in life. First, available data indicate
that famines increase risk of developing MetS [20–23]. The Dutch Famine Birth Cohort
Study revealed that pregnant women under famine had children who developed obesity,
hypertension, dyslipidemia and insulin resistance [20,22]. Studies in other famines show
similar effects [21,23]. Another line of evidence supports MetS of developmental origins
coming from many observational studies of risk factors. Risk factors reported in these
studies relating to MetS and associated disorders include environmental chemicals ex-
posure [24], maternal obesity [25,26], gestational diabetes [26,27] and excessive postnatal
weight gain [28]. Third, data from twin pregnancy revealed that there was an association
between low birth weight (LBW) and certain features of MetS [29,30]. Lastly, a systematic
review recruiting 39 studies demonstrated that rapid weight gain in infant with LBW had
an around 80% great risk for CVDs [31]. From these observations, there might be a relation-
ship between early-life environmental exposure, fetal programming and the development
of MetS later in life.

Notably, these observational studies are not able to offer molecular mechanisms un-
derlying programming processes of MetS for the creation of reprogramming interventions.
Accordingly, the biological plausibility of the associations, proof of causality and devel-
opment of reprogramming strategies have long been reliant on evidence whereby animal
models stand.

2.2. Experimental Evidence

Considering the difficulties in building animal models that exhibit all the components
of MetS, studying MetS of developmental origins are performed using models that manifest
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certain, but not all, characteristics of MetS in most investigations [4–7]. According to the
experimental approach, several species such as rats [32], mice [33], rabbits [34], sheep [35],
pigs [36] and non-human primate [37] have been used to evaluate developmental program-
ming of MetS. Among them, rats are most commonly used animals for comparisons of
major features of MetS develop throughout the lifetime [7]. Several environmental insults
in early life have been reported to program certain features of MetS in adult offspring, con-
taining maternal imbalanced nutrition, maternal illness, environmental chemical exposure,
medication use, etc. [4–7,27–30].

2.2.1. Maternal Nutrition Imbalance

The array of maternal imbalanced nutrition that have been established to induce
different features of MetS is categorized into models that aim to restrict calorie intake,
restrict certain nutrients or increase consumption of specific nutrients. Several maternal
nutrient restriction models have been created to mimic the malnutrition experienced by
pregnant women exposed to famine.

Caloric restriction is a dietary regimen that reduces energy intake without incurring
specific nutrient. Restriction of calories ranging from 30% to 70% in dams has been stated to
cause offspring hypertension, a key characteristic of MetS [38]. In addition to hypertension,
severe 70% maternal caloric restriction resulted in obesity, hyperleptinemia and insulin
resistance in adult offspring [39]. The severity of deleterious consequence seems related to
the degree of caloric restriction and the timing of exposure [38,40].

The protein restriction model is the same as the caloric restriction model that mimics
the challenge faced in developing countries. In rats, protein restriction with a range
from 6–9% to pregnant dams resulted in offspring hypertension [38]. Rodent studies of
maternal protein restriction also result in intrauterine growth retardation (IUGR) with
subsequent insulin resistance, obesity, hyperglycemia, glucose intolerance and adipocyte
hypertrophy [41].

There is also evidence to endorse that deficiencies in certain nutrients in pregnant
mothers resulting in MetS in adult progeny. In rodent models, when deficiencies in iron [42],
zinc [43], sodium [44], calcium [45], vitamin D [46] or methyl donor nutrients (folic acid;
methionine; choline; vitamins B2, B6 and B12) [47], in dams, their adult offspring were
likely to have elevated BP [38]. In addition, offspring of pregnant mothers with low levels
of trace elements and vitamins are at risk for developing MetS-related phenotypes, such as
insulin resistance [48,49], impaired glucose tolerance [50], increased visceral adiposity and
altered lipid metabolism [51].

On the other hand, the excessive consumption of specific nutrients can also program
MetS and associated disorders in adult offspring [25]. The Western diet is characterized
for being rich in saturated fats, salt and refined sugars. Animal models of maternal diets
containing key components of the human Western diet, synergistic effects of fat, salt and
refined sugars on the elevation of BP in adult offspring were noticed [52–54]. Rodent models
of high-fat diet-induced obesity have been used widely to study human obesity-related
disorders [55,56]. Numerous animal studies reveal that maternal high-fat diet can program
MetS traits in adult rat progeny, such as hypertension [57], obesity [58], dyslipidemia [59]
and insulin resistance [59].

Much of the increase in sugar consumption is from high-fructose corn syrup and
refined sugars [60]. Prior work indicates that intake of high-fructose alone or as a part of
diet by rodent mothers induces multiple characteristics of MetS in adult progeny, such as
hypertension, obesity, insulin resistance, dyslipidemia and hepatic steatosis [61–63].

2.2.2. Maternal Illness

Maternal illness and/or complications during pregnancy impact fetal programming,
which can be marked by IUGR [64]. IUGR offspring displayed dyslipidemia, hypertension
and insulin resistance in a rat model of uteroplacental insufficiency [65,66]. So far, several
animal models have been built resembling various maternal illnesses to evaluate MetS of
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developmental origins, including polycystic ovary syndrome (PCOS) [67,68], hypoxia [69],
inflammation [70,71], diabetes [72–74] and chronodisruption [75,76].

In the PCOS model, adult offspring manifested dyslipidemia and hypertension at
16–17 weeks of age [67,68]. Maternal hypoxia and inflammation are also able to induce
MetS-related phenotypes in adult rat progeny, including hypertension [69,70], obesity [69]
and insulin resistance [71]. Additionally, rodent studies of maternal diabetes induced by
streptozotocin (STZ) cause various features of MetS in offspring, such as insulin resistance,
obesity, dyslipidemia, hypertension and CVDs [72–74].

Since the circadian system is the principal regulator of metabolism, circadian rhythm
sleep disorders have been linked to MetS [77]. Data from animal studies indicated that
maternal constant light exposure or dams received pinealectomy can program offspring’s
hypertension [75] and insulin resistance [76].

2.2.3. Exposures to Chemicals or Drugs

Prior review showed adult rats exposed to several chemicals during early life devel-
oped hypertension, a major feature of MetS [78]. These chemicals, while only bisphenol A
and di-(2-ethylhexyl) phthalate (DEHP), have shown their programming effects resulting
in insulin resistance in adult progeny [79,80].

Additionally, maternal substance abuse is also involved in the development of off-
spring MetS. In rodent models, gestational exposure to alcohol or nicotine can induce
hypertension [81,82], insulin resistance [83,84] and obesity [84] in adult offspring.

The uses of drugs in pregnancy have also been connected with developmentally
programmed hypertension in adult offspring, such as glucocorticoid [85], cyclosporine [86]
or minocycline [87]. In addition to hypertension, early-life glucocorticoid exposure can also
induce offspring’s insulin resistance [88–90].

In view of the fact that animal models are in line with the epidemiological observations
revealing different maternal insults induce similar feature of MetS in offspring, perhaps
various early-life environmental cues may mediate common mechanisms culminating in
the developmental programming of MetS.

3. Gut Microbiota and MetS of Developmental Origins

Although the exact mechanisms underlying MetS of developmental origins have
not yet been completely understood, animal studies have provided insights on potential
mechanisms, including oxidative stress [90,91], dysfunctional nutrient-sensing signals [91],
epigenetic regulation [92], aberrant activation of the renin–angiotensin-aldosterone system
(RAAS) [92,93] and gut microbiota dysbiosis [94,95]. Notably, gut microbiota dysbiosis is
interrelated to most of the above-mentioned mechanisms.

Although growing evidence supports the pathogenic interconnection between the
dysbiotic gut microbiota and MetS [90–92], there is paucity of data about the impact
of early-life disturbance of gut microbiota on offspring MetS in later life. Hence, this
section primarily document evidence addressing the influence of gut microbiota on various
components of MetS, with an emphasis on animal models.

3.1. Early-Life Gut Microbiome

Microbiota is usually defined as all the microorganisms living in a given environ-
ment, while the microbiome is a term used to describe the collection of genomes from all
microorganisms in a specific environment. Though microbes will colonize the neonatal
gut soon after birth [93], microbial colonization keep evolving and modulate in species
abundance to attain an adult-like structure at the age of 2–3 years [94]. An important
underlying contributor of offspring gut microbial structure and composition if mother
microbiome [95]. Importantly, many factors can impact offspring gut microbiome, such as
maternal conditions, gestational age, model of delivery, feeding type, antibiotic exposure
and ecological factors [95]. Several above-mentioned risk factors connected with MetS of
developmental origins have also been associated with disturbed gut microbiota, including
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maternal malnutrition [96], maternal obesity [97], gestational diabetes [98], LBW [99] and
prematurity [100]. In addition, the establishment of the microbiome has a strong connection
with developing immune system, which closely ties inflammation to MetS [61]. All of
these studies indicate that adverse environmental insults induce microbial alterations may
contribute to the development of MetS later in life.

3.2. Dysbiotic Gut Microbiota and MetS of Developmental Origins

Disruption of gut microbiota participates in the development of several MetS phe-
notypes, such as hypertension [101], obesity [102], dyslipidemia [103] and insulin resis-
tance [104]. Additionally, decreased gut microbial diversity and richness are linked to a
high risk for CVD [11,105].

The absence of microbiota in germ-free rats gave rise to relative hypotension in
comparison with their conventional counterparts, indicating a vital role of gut microbiota
in the regulation of BP [106]. In several hypertensive rat models [107–109], gut microbiome
is disturbed and significantly different from the microbiota of normotensive control rats.

Gut microbiota metabolites are also involved in MetS of developmental origins. Short
chain fatty acids (SCFAs) are products of fermentation of polysaccharides by gut microbiota.
SCFAs are commonly accepted to control BP through activating their SCFA receptors [110].
Moreover, SCFAs modulate glucose homeostasis, appetite regulation and obesity [111].
Another example is trimethylamine-N-oxide (TMAO), a molecule generated from choline
and carnitine via gut microbial metabolism [112]. TMAO is transformed from trimethy-
lamine (TMA) by flavin-containing monooxygenase (FMO). High TMAO and TMO link to
CVD mortality [113,114]. TMAO also contributes to MetS and associated disorders, such
as type II diabetes, insulin resistance, non-alcoholic fatty liver disease and chronic kidney
disease [112].

A maternal high-fat diet has been generally used to evaluate the mechanisms of MetS
of developmental origins, as this model induces all features of MetS in adult rat offspring [7].
Prior work revealed that maternal high-fat diet caused offspring hypertension coincided
with alterations of gut microbiota composition, reduced fecal SCFA level, dysregulated
SCFA receptor expression and increased TMA levels and decreases of TMAO-to-TMA
ratio in adult rat offspring [101,115]. Moreover, several indole derivatives generated from
tryptophan by microbial metabolism may participate in MetS pathogenesis via activating
AhR signaling [116,117]. Dysbiotic gut microbiota can mediate AhR signaling resulting in
metabolic impairments, particularly liver steatosis and glucose dysmetabolism [118].

Moreover, other gut-microbiota metabolites such as lipopolysaccharide (LPS), long-
chain fatty acid and bile acids (BAs) have also been linked to the MetS traits. LPS could
induce low-grade inflammation, which features obesity and insulin resistance [119]. An-
other report showed that long chain fatty acids derived by gut microbes could be one of
the mechanisms implicated in the anti-inflammatory properties of probiotics [120]. Gut
microbiota-derived long chain fatty acids also play a vital role in host metabolism and
adipocyte thermogenesis, which mediate anti-obesity effects [121–123]. Additionally, gut
microbiota can convert primary BAs to secondary BAs to balance the BA pool and reg-
ulate lipid metabolism. High-fat diet-induced hyperlipidemia is related to impaired BA
metabolism [124]. Figure 1 is a graphic illustration of environmental cues in early life
mediate gut microbiota dysbiosis and program different organ systems, leading to MetS of
developmental origins later in life.
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Figure 1. A schematic depiction delineating early-life environmental cues that may cause the de-
velopmental programming in different organ systems leading to MetS and associated disorders in
adult life.

3.3. Common Mechanisms behind MetS Linking to Gut Microbiota

The pathogenic interconnections between the gut microbiota and certain mechanisms
are implicated in MetS of developmental origins. These core mechanisms include aberrant
activation of the RAAS, oxidative stress, NO deficiency and dysregulated nutrient sensing
signals [4–7,9–12].

First, activation of the RAAS can induce various phenotypes of MetS, including insulin
resistance, hypertension, obesity and hyperglycemia [125]. The most common studied
phenotype of MetS connected with the RAAS is hypertension [126]. There is a bidirectional
interaction between the gut microbiota and RAAS; gut microbiota-derived metabolites can
moderate the gut RAAS, whereas alterations in RAAS shift microbial structure and com-
position [127]. Angiotensin-converting enzyme 2 (ACE2), a homologue of ACE, converts
angiotensin (ANG) II to ANG-(1–7) that adversely regulates the RAAS [128]. Previous stud-
ies showed that ACE2 not only can modulate gut microbiota but also alleviate hypertension
and cardiovascular dysfunction in adult rat offspring [126,129,130]. Importantly, ACE2
activation has shown benefits of anti-obesity and improvement of metabolic parameters,
such as blood glucose and lipids [131–133].

Second, data from several animal models supports a connection between gut mi-
crobiota dysbiosis and oxidative stress in the pathogenesis of developmental program-
ming [57,134–136]. Enteric microbial communities govern redox signaling to maintain
host–microbiota homeostasis [137]. Conversely, an imbalanced redox state induces gut
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microbiota dysbiosis. A maternal high-fructose diet has been reported to motivate many
characteristics of MetS in adult offspring [134]. In particular, oxidative stress is close lined
to dyslipidemia [138], insulin resistance [139] and hypertension [140]. Conversely, early
interventions targeting gut microbiota have shown beneficial effects against oxidative
stress as well as many adverse offspring outcomes in the maternal high-fructose diet rat
model [141,142]. Likewise, perinatal gut microbiota-targeted therapy using resveratrol
prevented the rise of BP programmed by maternal CKD in adult offspring, which coincided
with altering the gut microbiota and reducing oxidative stress concurrently [132].

Third, increasing evidence suggests that NO deficiency is involved in developmental
programming and has a key role in the pathogeneses of MetS [143,144]. NO deficiency
can be induced by enhancing asymmetric dimethylarginine (ADMA) production, a NO
synthase inhibitor [145]. A high ADMA level is connected with MetS-related disorders,
such as hypertension, hypercholesterolemia, diabetes mellitus, obesity and coronary artery
disease [145]. Decreased NO bioavailability and increased plasma ADMA levels have been
shown to participate in several models of developmental programming [144]. As dietary
nitrate (a precursor of NO) and NO metabolism can be mediated by microbiome [146], NO
deficiency may work with the dysbiotic gut microbiota under the developmental program-
ming of MetS. Resveratrol is a commonly used nutritional supplement with prebiotics and
antioxidant properties [147,148]. The positive actions of resveratrol against developmental
programming of hypertension are likely related to its ability to restore the ADMA/NO
pathway as well alter gut microbiota in a maternal CKD model [149] and a maternal NO
deficiency model [150].

Last, nutrient-sensing signals govern metabolic homeostasis in response to maternal
insults during fetal development [151,152]. Hence, dysregulated nutrient-sensing signals
have a crucial influence in the pathogenesis of MetS of developmental origins [7]. Gut
microbiota-diet interactions interfere in nutrient-sensing signals from the gut to the brain,
where the information is processed to govern whole-body metabolic and energy homeosta-
sis [153]. It has long been known that cyclic adenosine monophosphate (AMP)-activated
protein kinase (AMPK) is a key nutrient-sensing signal. Dysfunctional AMPK signal is
related to developmental programming of hypertension, while AMPK activation in early
life could prevent offspring hypertension [154]. Additionally, resveratrol, an AMPK activa-
tor, can regulate nutrient-sensing signals to increase expression of PPARs target genes and
thereby reverse MetS-related programmed processes [9,147].

With regard to the multifaceted role of gut microbiota in human health, other pos-
sible pathways might be interconnected and all work together to program MetS, for ex-
ample, hydrogen sulfide signaling [155] or nuclear factor erythroid 2-related factor 2
(NRF2) [156]. Although the exact mechanism behind MetS of developmental origins re-
mains inconclusive, animal studies provide a possibility regarding gut microbiota as a
possible reprogramming target.

4. Reprogramming Strategy: Probiotics, Prebiotics and Postbiotics

The DOHaD theory generates opportunities to stop or delay the programming process
by an early reprogramming strategy aiming to prevent adult disease later in life [15].
With a deeper understanding on MetS programming, the development of mechanism-
targeted strategies provides potential for reprogramming. Emerging evidence from animal
studies in DOHaD research supports that gut microbiota-targeted therapy might act as a
reprogramming strategy to avert adult disease of developmental origins [11].

4.1. Gut-Microbiota Targeted Therapy

Several gut microbiota-targeted therapies have proven to manipulate the gut micro-
biome in various disorders. Probiotics and prebiotics are the most frequently used gut
microbiota-targeted options in clinical work [16–18]. Probiotics refers to live microor-
ganisms that, when administered in adequate amounts, confer a health benefit on the
host [157]. The international scientific association of prebiotics and probiotics (ISAPP) de-
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fined prebiotics as substrates that are selectively utilized by host microorganisms conferring
a health benefit [158]. Synbiotics, a probiotic-prebiotic combination, also confers a health
benefit [16].

Postbiotics and parabiotics and the emerging concepts in the functional foods field,
which have shown to promote health, too [159]. The postbiotics are the complex mixture of
metabolic bioproducts generated by probiotics in cell-free supernatants such as vitamins,
enzymes, organic acids, secreted proteins, amino acids, SCFAs, peptides and secreted
biosurfactants. While the parabiotics are the inactivated microbial cells of probiotics or
crude cell extracts [159]. Another way to modify the gut microbiome is by transplanting
fecal matter. Emerging evidence suggests efficacy of fecal microbiota transplant (FMT) for
the therapy of obesity associated disorders [160].

Here, we illustrate Table 1 that summarizes studies reporting microbiota-targeted
reprogramming interventions in animal models for studying MetS of developmental ori-
gins, restricting those therapeutic duration is starting before birth to cover the periods of
organogenesis [57,101,141,142,149,150,161–178].

Table 1. Summary of animal models reporting gut microbiota-targeted therapies for MetS of develop-
mental origins.

Gut Microbiota-Targeted Therapies Animal Models Species/Gender Age at
Evaluation

Reprogramming
Effects Ref.

Probiotics

Daily oral gavage of Lactobacillus casei
during gestation and lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension [141]

Daily oral gavage of Lactobacillus casei
during gestation and lactation Perinatal high-fat diet SD rat/M 16 weeks Prevented

hypertension [101]

Daily oral gavage of multi-strain
probiotics (Bifidobacterium breve,

Lactobacillus acidophilus, Lactobacillus casei
and Staphylococcus thermophilus) during

gestation and lactation

Maternal high-fat diet C57BL/6 J
mice/F 20 weeks Improved glucose

and insulin levels [161]

Prebiotics

5% w/w long chain inulin during
gestation and lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension [141]

5% w/w long chain inulin during
gestation and lactation Perinatal high-fat diet SD rat/M 16 weeks Prevented

hypertension [101]

10% w/w oligofructose during gestation
and lactation

Maternal
high-fat/sucrose diet SD rat/M 24 weeks

Improved glucose
tolerance, insulin

sensitivity and
hepatic steatosis

[162]

Daily oral gavage of garlic oil
(100 mg/kg/day) during gestation

and lactation
Perinatal high-fat diet SD rat/M 16 weeks Prevented

hypertension [57]

Resveratrol (50 mg/L) in drinking water
during gestation and lactation Maternal high-fat diet Wistar rat/M

and F 3 weeks Improved obesity [163]

Resveratrol (50 mg/L) in drinking water
during gestation and lactation

Maternal ADMA and
TMAO exposure SD rat/M 12 weeks Prevented

hypertension [164]

Resveratrol (50 mg/L) in drinking water
during gestation and lactation Perinatal TCDD exposure SD rat/M 12 weeks Prevented

hypertension [165]

Resveratrol (50 mg/L) in drinking water
during gestation and lactation

Maternal
adenine-induced CKD SD rat/M 12 weeks Prevented

hypertension [149]

Daily oral gavage of resveratrol
(20 mg/kg/day) during gestation

Maternal protein
restriction

Wistar rat/M
and F 110 days Improved obesity

and insulin resistance [166]

Resveratrol (50 mg/L) in drinking water
during gestation and lactation

Maternal L-NAME
administration and

high-fat diet
SD rat/M 16 weeks Prevented

hypertension [150]
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Table 1. Cont.

Gut Microbiota-Targeted Therapies Animal Models Species/Gender Age at
Evaluation

Reprogramming
Effects Ref.

Resveratrol (50 mg/L) in drinking water
during gestation and lactation

Maternal and
post-weaning
high-fat diet

SD rat/M 16 weeks Prevented
hypertension [167]

Resveratrol (50 mg/L) in drinking water
during gestation and lactation

Maternal bisphenol A
exposure and
high-fat diet

SD rat/M 16 weeks Prevented
hypertension [168]

Resveratrol (50 mg/L) in drinking water
during gestation and lactation

Maternal and
post-weaning
high-fat diet

SD rat/M 16 weeks
Improved obesity,

hyperlipidemia and
hepatic steatosis

[169]

Resveratrol (4 g/kg of diet) during
gestation and lactation Maternal hypertension SHR/M and F 20 weeks Prevented

hypertension [170]

Resveratrol (0.2% w/w) during gestation
and lactation Maternal high-fat diet C57BL/6 J

mice/M 14 weeks Improved obesity
and hyperlipidemia [171]

Daily oral gavage of resveratrol butyrate
ester (30 or 50 mg/kg/day) during

gestation and lactation

Maternal bisphenol
A exposure SD rat/F 50 days Improved obesity

and hyperlipidemia [172]

Daily oral gavage of resveratrol butyrate
ester (30 mg/kg/day) during gestation

and lactation

Maternal bisphenol
A exposure SD rat/M 50 days Improved hepatic

steatosis [173]

Postbiotics

Magnesium acetate (200 mmol/L) in
drinking water during gestation

and lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension [142]

Magnesium acetate (200 mmol/L) in
drinking water during gestation

and lactation

Maternal
minocycline exposure SD rat/M 12 weeks Prevented

hypertension [174]

Sodium butyrate (400 mg/kg/day) in
drinking water during gestation

and lactation

Maternal
tryptophan-free diet SD rat/M 12 weeks Prevented

hypertension [175]

1% conjugated linoleic acid in chow
during gestation and lactation Maternal high-fat diet SD rat/M 150 days

Improved
cardiometabolic

dysfunction
[176]

Others

1% DMB in drinking water during
gestation and lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension [142]

1% DMB in drinking water during
gestation and lactation Perinatal TCDD exposure SD rat/M 12 weeks Prevented

hypertension [177]

1% DMB in drinking water during
gestation and lactation

Maternal high-fructose
diet and TCDD exposure SD rat/M 12 weeks Prevented

hypertension [178]

Studies tabulated based on types of intervention, animal models and age at evaluation. CKD = chronic
kidney disease; TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin; ADMA = asymmetric dimethylarginine;
TMAO = trimethylamine-N-oxide; SD = Sprague-Dawley rat; DMB = 3,3-maternal dimethyl-1-butanol.

The most widely used species are rats. A number of MetS programming models have
been used to examine gut microbiota-targeted interventions, such as maternal high-fructose
diet [141,142], perinatal high-fat diet [57,101,167,169], maternal high-fat/sucrose diet [162],
maternal high-fat diet [161,163,171,176], maternal ADMA and TMAO exposure [164], peri-
natal TCDD exposure [165,177], maternal adenine-induced CKD [149], maternal protein
restriction [165], maternal L-NAME and high-fat diet exposure [150], maternal bisphenol A
exposure and high-fat diet [162], maternal hypertension [170], maternal bisphenol A expo-
sure [172,173], maternal minocycline exposure [174], maternal tryptophan-free diet [175]
and combined maternal high-fructose diet and TCDD exposure. [173].

Reported gut microbiota-targeted strategies include probiotics, prebiotics and postbi-
otics. A schematic summary of gut microbiota-targeted reprogramming interventions for
MetS of developmental origins is illustrated in Figure 2.
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Figure 2. A summary of the currently available reprogramming interventions for metabolic syndrome
of developmental origins.

In view of the fact that the difficulties in developing animal models exhibiting all characteris-
tics of MetS, gut microbiota-targeted interventions into developmental programming of MetS have
been evaluated for their protective effects against some but not all characteristics of MetS. Table 1
illustrates maternal high-fat diet induces almost all characteristics of MetS in adult offspring at
3–24 weeks of age, such as obesity [54,57,60,62,63], hypertension [57,101,141,142,149,150,161–178],
dyslipidemia [60,62,63], hepatic steatosis [162,169,173], insulin resistance [161,162,166] and
CVD [176]. Hypertension is the most commonly studied phenotype of MetS.

4.2. Probiotics

The major probiotics consist of one or mor strains coming from the genera Lacto-
bacillus spp. and Bifidobacterium spp. [16–18]. A recent systematic review reported that
probiotics supplementation in patients with MetS improved obesity, hypertension, glu-
cose metabolism and dyslipidemia [179]. In spite of probiotics demonstrating benefits in
MetS [179], there was scant evidence with respect to their impact on MetS of developmental
origins. Using the perinatal high-fat diet [101] or high-fructose diet [141] rat model, the
use of Lactobacillus casei during gestation and lactation periods has shown to benefits on
hypertension in adult progeny. Another study showed that maternal multi-strain probi-
otics supplementation (Bifidobacterium breve, Lactobacillus acidophilus, Lactobacillus casei and
Staphylococcus thermophilus) improved glucose and insulin levels in female mice offspring
programmed by maternal high-fat diets [161].

4.3. Prebiotics

Dietary fibers, such as inulin or oligosaccharides, are the best-known prebiotics [18].
Inulin supplementation during gestation and lactation has been reported to protect adult rat
offspring against hypertension induced by maternal high-fructose or high-fat diet [101,141].
Another study tested the maternal high-fat/sucrose diet model and revealed that modula-
tion of gut microbiota by oligofructose can avert insulin sensitivity, hepatic steatosis and
glucose tolerance in adult progeny [162].
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In addition to fibers, a large proportion of foods remains unabsorbed and are me-
tabolized by the gut microbiota. These dietary contents, such as garlic and polyphenols,
have shown prebiotic-like effects [180,181]. Although there are many prebiotic foods,
Table 1 shows that only garlic and resveratrol have shown benefits on protection of MetS
in adult offspring. The protective effects of maternal garlic oil treatment against high-fat
diet-induced offspring hypertension accompanying by enhanced α-diversity; increased
plasma levels of acetate, butyrate and propionate; and augmented abundance of beneficial
microbes Bifidobacterium and Lactobacillus [57].

4.4. Resveratrol

Polyphenols are the greatest group of phytochemicals. The use of polyphenols as
a reprogramming intervention has been examined in animal models of developmental
hypertension [182]. One of the most extensively studied groups of polyphenols is resver-
atrol [182]. Importantly, resveratrol has been proposed as a reprogramming strategy for
preventing MetS programming [183].

Table 1 shows that the use of resveratrol before birth has beneficial effects against adverse
offspring outcomes, including obesity [163,166,169,171], hypertension [149,164,165,167,168,170],
insulin resistance [166], hepatic steatosis [169] and hyperlipidemia [169,171] in various
MetS programming models.

Resveratrol prevented maternal FCDD exposure-induced offspring hypertension was
related to alterations of the gut microbiota by enhancing microbes that can inhibit T helper
17 cell (TH17) responses and diminishing the Firmicutes to Bacteroidetes (F/B) ratio [165].
Additionally, perinatal resveratrol therapy prevented adult offspring from maternal CKD-
induced hypertension, which was associated with restoration of microbial richness and
diversity and an increase in beneficial microbes, Bifidobacterium and Lactobacillus [149].

However, the low bioavailability of resveratrol restricts its clinical translation [184]. On
this matter, resveratrol was esterified to resveratrol butyrate esters (RBE), to enhance the ef-
ficacy and facilitate broad applications [185]. Our recent study demonstrated that low-dose
RBE (30 mg/L) is able to protect against maternal bisphenol A exposure-induced obesity
and hyperlipidemia [172] in female progeny and hepatic steatosis in male progeny [173] in
a sex-specific manner.

Although some prebiotics have shown benefits in offspring MetS-related disorders,
much remains unclear regarding the interplay between gut microbiota and prebiotics and the
impact of prebiotic foods as a reprogramming strategy for MetS of developmental origins.

4.5. Postbiotics

SCFAs are the main microbial metabolites and can serve as postbiotics. One previous
study reported that acetate supplementation during pregnancy and lactation periods was
able to prevent offspring against hypertension programmed by maternal high-fructose
diet [142] or maternal minocycline exposure [174]. Another study examined the maternal
tryptophan-free diet model and found that modulation of gut microbiota by maternal bu-
tyrate supplementation can protect the development of hypertension in adult progeny [175].
Conjugated linoleic acid is a gut microbiota-derived metabolite from dietary polyunsat-
urated fatty acids. As a postbiotic, maternal conjugated linoleic acid supplementation
reversed maternal high-fat diet-induced offspring hypertension [176]. Since postbiotics
cover a wide range of bioactive compounds produced by microorganisms, the repro-
gramming effects of other postbiotics on various characteristics of MetS are awaiting
further clarification.

4.6. Others

Another way to manipulate the gut microbiome is to regulate microbial metabolites.
For example, microbe-dependent TMA and TMAO formation can be inhibited by a struc-
tural analog of choline, 3,3-dimethyl-1-butanol (DMB) [186]. In a maternal high-fructose
diet model, maternal DMB treatment protected adult rat offspring against hypertension,
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which was coincided with the reduction of TMA and TMAO levels [142]. Similarly, the use
of DMB in pregnancy and lactation as a reprogramming intervention to prevent offspring
hypertension has been proven in a maternal TCDD exposure model [177] and a combined
TCDD and high-fructose exposure model [178].

5. Translating Animal Models to Clinical Practice

Animal studies support that early use of certain probiotics, prebiotics or postbiotics
may prevent MetS of developmental origins, while this growing body of evidence awaits
translating into clinical practice.

In clinical work, the most generally used treatment options to manipulate gut micro-
biota are probiotics and prebiotics. When discussing the therapeutic benefits of probiotics
and prebiotics in clinical practice, special consideration should be paid to their safety.
So far, probiotic or prebiotics supplementation during pregnancy are limited in human
studies [187]. Limited information that currently exists suggests that probiotic supplemen-
tation for pregnant women is mostly safe and may have a beneficial role in gestational
diabetes [188], preeclampsia [189], vaginal infections [190], obesity, [191] and spontaneous
preterm delivery [192]. However, little reliable information is available about the uses of
various prebiotic-like components or prebiotic-rich food, either individually or in combina-
tion, in pregnant women [193]. More importantly, currently no information exists regarding
their effectiveness in protecting adult disease or long-term safety in offspring.

In the context of safety, postbiotics and parabiotics are safer as compared to probiotics.
Unlike definitions were provided by the ISAPP and the Food and Agriculture Organization
of the United Nations-WHO (FAO-WHO) for probiotics and prebiotics, currently there
remains a lack of a clear definition for postbiotics and parabiotics. Considering the complex
nature of postbiotics and parabiotics, there is urgent need to define both terms clearly from
a regulatory perspective.

Currently, no information regarding the impact of probiotic or prebiotics supplemen-
tation during pregnancy on long-term offspring outcome related to MetS is available in
human studies. As review elsewhere [194,195], prior studies investigating the impact
of maternal probiotics or prebiotics supplementation on offspring outcome have mainly
focused on allergic or metabolic diseases as main outcomes. Nevertheless, the offspring
outcome in almost all studies are only determined in neonatal or infantile period.

Recently, several clinical trials were completed in overweight women and women
diagnosed with gestational diabetes [191,196–199]. Mid- or late-pregnancy supplementa-
tion with several mixtures of Lactobacillus, Bifidobacterium and Streptococcus species had
no impact on anthropometric measures at birth. Nevertheless, their long-term effects on
metabolic outcomes are still unknown. Although there are more than 10 ongoing trials
working on probiotic or prebiotics supplementation during pregnancy [200], none of them
focus primarily on offspring outcome related to MetS and associated disorders. To briefly
sum up, maternal prebiotic and probiotic interventions in animals show promising results;
however, transferability to the human trial is yet to be confirmed. Accordingly, future
work in large prospective trials is required to better identify probiotic species and improve
formulation of prebiotics for MetS of developmental origins.

6. Conclusions and Future Perspectives

Previous research has indicated the impact of the gut microbiota in MetS and associated
disorders. This review sought to highlight disturbance of gut microbiota during fetal
development linking to MetS in later life. Our review also, reflecting current knowledge,
opens a new window for preventing MetS of developmental origins via gut microbiota-
targeted reprogramming strategies.

No matter recent advances in building appropriate animal models for studying de-
velopmental programming of MetS, only few models exhibit the full characteristics of
MetS. Even though several gut microbiota-targeted interventions have brought about a
significant progress in certain components of MetS in one model, attention should be
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given to clarify whether their reprogramming effects are also advantageous for other MetS
phenotypes. After all this tremendous growth in gut microbiota-targeted interventions
and deeper understanding of MetS programming, we expect that microbiota-based repro-
gramming therapies will be employed in clinics to reduce the global burden of MetS and
associated disorders.
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