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Abstract: In this paper, a novel multi-sensor clustering algorithm, based on the density peaks
clustering (DPC) algorithm, is proposed to address the multi-sensor data fusion (MSDF) problem.
The MSDF problem is raised in the multi-sensor target detection (MSTD) context and corresponds
to clustering observations of multiple sensors, without prior information on clutter. During the
clustering process, the data points from the same sensor cannot be grouped into the same cluster,
which is called the cannot link (CL) constraint; the size of each cluster should be within a certain
range; and overlapping clusters (if any) must be divided into multiple clusters to satisfy the CL
constraint. The simulation results confirm the validity and reliability of the proposed algorithm.

Keywords: clustering; data fusion; target detection

1. Introduction

As a powerful tool, clustering analysis is usually used in machine learning [1], image analysis [2],
information retrieval [3] and data mining [4] to eliminate noise data-points and find hidden groups or
patterns in a dataset. Due to the diversity/variability of the dataset to be processed, many clustering
algorithms, such as density-based clustering [5,6], hierarchical clustering [7], and k-means clustering [8],
have been developed to solve specific problems. It can be seen that, although there are many clustering
algorithms, none of them can be applied in all cases.

Clustering is often taken as an unsupervised learning technique in many pre-processing processes,
as no information is provided. Nevertheless, for many of the problems, including the MSDF clustering
problem, to be solved in this paper, an amount of prior information can be obtained through
additional data features [9,10], which can be employed to obtain better clustering results, namely,
semi-supervised clustering.

Constraining the dataset during the clustering process to obtain specific clustering results is a hot
issue in clustering research. In constrained clustering, “must-link” constraints (ML) and “cannot-link”
constraints (CL) are two basic rules. An ML constraint is used to specify that the two instances
should be associated with the same cluster, whereas a CL constraint is used to specify that the two
instances should assigned to different clusters, allowing users to specify constraint rules to obtain
the desired clustering results. Typical constrained clustering algorithms include the constrained
k-means [11], pairwise constrained k-means [12], complete link [13], constrained hierarchical clustering
algorithms [14].

In clustering research, the number of clusters and cluster center initialization have a great impact
on the clustering convergence speed and clustering result. The research on the number of clusters
mainly focuses on running the clustering algorithm multiple times, with different values of k, and the
estimated k is chosen based on a specific criterion, such as the Bayesian information criterion [15],
rate distortion theory [16], Akaike information criterion [17], etc. The research on cluster center
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initialization mainly focuses on how to maximize the distance of the initial cluster center through
statistical information, such as the k-means++ [18].

In this paper, we address the problem of MSDF, which is involved in multi-sensor multi-target
tracking [19], using the density peaks clustering (DPC) algorithm [5]. The DPC algorithm was published
in the journal, Science, in 2014. The core idea of DPC is that cluster centers are characterized by a higher
density and a relatively longer distance. The outstanding performance of DPC has attracted many
scholars’ attention, and many variants based on DPC have been proposed to address various clustering
problems, such as BDDPC [20], and DPC-KNN [21]. In this paper, the original DPC algorithm is shown
to be able to handle the type of dataset that contains observations of targets that obey a zero-Gaussian
distribution well. Therefore, we use the original DPC algorithm to solve the MSDF problem. The
purpose of clustering is to divide the observations of targets into multiple clusters; overlapping clusters
(if any) must be divided into multiple sub-clusters to satisfy the CL constraint; the data points in each
cluster correspond to the observations of targets; and the cluster center is the estimated target position.

In the past, the MSDF problem was solved using a model-based method [22,23], but in recent years,
many scholars have begun to solve the MSDF problem using a clustering-based method. Tiancheng Li
has produced a lot of groundbreaking work [24–27] on this issue. He not only solves the MSDF problem
using density-based clustering, but also uses multi-sensor clustering to improve the performance of a
model-based filter [28]. Tianxian Zhang uses the clustering method to solve the MSTD problem with a
distributed radar network [29]. This paper made several improvements on the basis of Li’s work: (1)
A more accurate and robust clustering algorithm, based on DPC, is proposed; and (2) the proposed
algorithm can accurately filter out clutter, and the performance of the algorithm does not vary with the
change of the detection probability of the sensors, which has great advantages, given the low detection
probability of sensors.

The rest of the paper is organized as follows. The problem model is discussed in Section 2.
Section 3 presents details of the proposed clustering method. Section 4 discusses the experimental
simulation results, which are summarized in Section 5.

2. Multi-Sensor Data Fusion

2.1. Multi-Sensor Data Fusion

The MSDF problem involves estimating the state of the unknown number and unknown motion
mode targets in the presence of noise data, which has a wide application space in the remote sensing
image fusion, oceanography and military fields. The general MSDF problem can be modeled by the
following assumptions:

Assumption 1. Each target evolves and generates observations/measurements independently from the others.

Assumption 2. The observations of targets obey a zero-Gaussian distribution. Both the noise and observations
constitute the measurement dataset of each sensor.

Assumption 3. One target can generate no more than one measurement in each scan.

Assumption 4. The distribution density of the clutter is significantly lower than the density of the observations
of targets.

The goal of the MSDF is to distinguish the observations of each target from those of others using a
clustering method, as shown in Figure 1.
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Figure 1. Multi-sensor i.i.d data points.

2.2. Problem Formulation

The above MSDF problem can be formulated as a CL-constrained clustering problem. Considering
a dataset Z, which consists of observations from multiple sensors, zi is included in dataset Z.

zi ∈ P, i = 1, · · · , N (1)

where parameters N and P are the number of data points and the parameter space, respectively. In this
paper, we define zi as a point in a two-dimensional Cartesian coordinate system.

The dataset Z can be written in the form of a union of multi-sensor observations. We define the
sth sensor as Ss =

{
zs

1, zs
2, · · · , zs

ms

}
, where ms is the number of data-points, and all the data-points in Z

can be written as:

Z := {S1, S2, · · · , Sn} =
{
z1

1, z1
2, · · · , z1

m1
, z2

1, z2
2, · · · , z2

m2
, · · · , zn

1 , zn
2 , · · · , zn

mn

}
(2)

where n is the number of sensors. The MSDF problem requires that the dataset Z be divided into k
clusters, namely, C1, C2, · · · , Ck, and the CL constraint requires that:

c , (zs
i , zs

j),∀i, j ∈ {1, 2, · · · , ms}, s ∈ {1, 2, · · · , n} (3)

where c , (zs
i , zs

j) means zs
i , zs

j cannot be within the same cluster.
We define the set of noisy data points in dataset Z as C0 and the observations of targets as CT. The

dataset Z can be defined as:

Z = C0 ∪C1 ∪C2 ∪ . . .∪Ck = C0 ∪CT, k ∈ T (4)

At the same time, each cluster cannot have any intersection with the rest of the subsets.

Ci ∩C j = Φ,∀i, j ∈ {1, 2, · · · k, 0} (5)

As mentioned above, the MSDF clustering problem can be described as: A dataset Z is divided
into k clusters, the size of each cluster must satisfy the CL constraint (3), and each cluster cannot have
any intersection with the others (5).
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2.3. CL Constraint and the Size of Clusters

The CL constraint (3) limits the size of each cluster, which must be smaller or equal to the number
of sensors n.

|Ci| . n,∀i ∈ {1, 2, · · · k} (6)

where |Ci|means the number of data points in cluster Ci, .means smaller than or equal to. Denoting
the detection probability of the sensor s on target i as ps

D(i) ≤ 1, to simplify the calculation, we simplify
ps

D(i) as a constant pD, then the size of a cluster can be calculated as:

E[|Ci|] =

ni∑
s=1

pD ≤ ni (7)

Given pD and the number of sensors n, E[|Ci|] can be considered as a constant:

E[|Ci|] = r (8)

The number of sub-clusters (targets) in each cluster Ci is:

ki ≈

[
|Ci|

r

]
(9)

3. Multi-Sensor Data Clustering Algorithm

3.1. Density Peaks Clustering Algorithm

In this paper, we use the DPC to calculate the local density. For each data point, we compute
two quantities: its local density ρi and distance δi from points of higher density. Both these quantities
depend only on the distances di j between data points [5]. The local density ρi is defined as:

ρi =
∑

j

χ(di j − dc) (10)

where di j means the distances between data points. χ(x) = 1 if x < 0 and χ(x)= 0; otherwise, dc is a
cutoff distance. ρi is equal to the number of data points within the cutoff distance to point i. The larger
the ρi, the higher density of data point i, and the more likely are the observations of targets.

δi is measured by computing the minimum distance between point i and the other points with a
higher density:

δi = min
j:ρ j>ρi

(di j) (11)

The original DPC algorithm defines the data points of ρi ≥ 0.8× r and δi > 2dc as cluster centers.
Figure 2 shows the clustering results of the DPC algorithm of 50 i.i.d sensors. Clusters of different
colors represent observations of different targets. The red “+” represents the true position of the
targets, and the red “o” represents the clustering results. It can be seen, from Figure 2, that for
non-overlapping clusters, the real position and estimated position of the targets are very close; for
overlapping clusters, the clustering result has a large deviation from the target real position, and the
target number is incorrect. In subsequent calculations, we need to re-cluster the overlapping clusters
to obtain correct estimates.
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Figure 2. Clustering results of the density peak clustering algorithm for data from 50 i.i.d sensors.

From Figure 2, we can draw a conclusion: the cutoff distance in the clusters of ki ≥ 2 (overlapping
clusters) is larger than that in the clusters of ki = 1 (non-overlapping clusters). We define the cutoff

distance in the non-overlapping clusters as dc, and the cutoff distance in overlapping clusters is
d′c = mdc,m ∈ [1.1, 1.5]. Assuming the cluster center of Ci is data point i, i ∈ {1, 2, · · · , k}, the number of
data points closer than i is equal to the size of the cluster Ci, that is, ρi ≈

∣∣∣Ci
∣∣∣. The data points of cluster

Ci can be defined as:
Ci =

∑
j∈{i|di j<dc}

z j (12)

The number of targets in cluster Ci can be defined as:

ki ≈

[ρi

r

]
(13)

The difference between Equations (9) and (13) is that Equation (13) can determine whether cluster
Ci is an overlapping cluster using the ρi of cluster center i. The calculation of ki is also an important
step in the subsequent re-clustering process.

3.2. Target Observations Set and Target Number

The multi-source n-points algorithm searches for the number of data points within the cutoff

distance of data point i to determine whether the union of point i and the data points within the cutoff

distance is a cluster formed by observations of targets. The position of the data point i and detection
probability pD have a greater impact on the effect of the multi-source n-points algorithm. How to
quickly and efficiently filter out noise and obtain the target observations is the key to designing MSDF
clustering algorithms. Using the DPC algorithm, we find that data point i in CT has a prior rule: ρi
must be larger than a threshold. The data points in CT can be defined as:

CT =
∑

j∈{i|ρi≥l×n}

z j (14)

where l = 0.4 is a reference and can be chosen roughly between 0.3~0.45, ρi ≥ l × n means that the
number of data points closer in data points i must be larger than or equal to l× n, and the data point i
in ρi ≥ l× n is considered to be the target observations.
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Based on the same dataset shown in Figure 2, the data points in CT are circled with a red “o” in
Figure 3. As shown in Figure 3, the observations of targets (color data points) are almost circled with a
red “o”, and only few data points are not circled. Considering the impact that noisy data points may
have in clusters of CT, Equation (14) is still very reliable.Sensors 2019, 19, x FOR PEER REVIEW 6 of 15 
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The CL constraint requires that CT be divided into multiple clusters of roughly the same size, and
the number of clusters/targets in dataset Z is:∑

ki =
[
|CT |

r

]
(15)

The number of targets in cluster Ci can be calculated using the ρi of the cluster center i through
Equation (9), while the total number of targets in dataset Z can be calculated through Equation (15).

Given the number of clusters (targets)
∑

ki and dataset CT, the preferred choice is to use the
k-means algorithm for clustering, as this saves the computing resources of δi; however, the k-means
algorithm has difficulty handle cases where the local density differs greatly between clusters. During
the experiment, we found that if the size of the clusters is roughly equal (no overlapping clusters), the
k-means algorithm can obtain correct clustering results. Conversely, if there is at least one overlapping
cluster contained in the dataset, the clustering result obtained by the k-means algorithm does not
satisfy the CL constraint. In order to correctly cluster CT using the k-means algorithm, we must first
determine whether there are overlapping clusters in dataset Z.

The key to determining whether there are overlapping clusters in dataset Z is to compare max(ρ)
and 1.1 × r. If max(ρ) < 1.1 × r, there are no overlapping clusters in dataset Z, and the number of
targets in each cluster is 1, that is, ki = 1, i ∈ {1, 2, · · · , k}; otherwise, at least one overlapping cluster is
contained in dataset Z. The reason for why we choose 1.1× r, instead of the number of sensors n, is
that the noisy data points may otherwise fall into cluster Ci.{

max(ρ) < 1.1× r, ki = 1, i ∈ {1, 2, · · · , k}
max(ρ) ≥ 1.1× r, ki ≥ 2, i ∈ {1, 2, · · · , k}

(16)

3.3. Proposed Clustering Method

The original DPC algorithm needs to calculate ρi and δi to find the cluster centers, which involves
a computational burden that is too great in the case of no overlapping clusters in dataset Z, in this case,
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we can obtain the correct clustering results using the k-means clustering algorithm to cluster dataset
CT (a total of

∑
ki targets), and dataset CT can be obtained by a threshold rule.

While the DPC algorithm cannot correctly cluster overlapping clusters, and we have a fast and
more efficient solution for the non-overlapping clusters. For the above reasons, we divide the dataset Z
into two cases for processing: (1) Non-overlapping clusters in dataset Z (Algorithm 1); and (2) at least
one overlapping cluster in dataset Z (Algorithm 2). The main difference between Algorithm 1 and
Algorithm 2 is that Algorithm 2 requires an additional calculation of parameter δi and re-clustering of
the cluster centers of overlapping clusters.

The proposed clustering Algorithm 1 includes 3 steps: (1) Calculate the ρi for each data point and
determine whether there is an overlapping cluster in dataset Z according to (16); (2) filter out clutter
and obtain dataset CT and

∑
ki for k-means clustering; and (3) revisit each cluster to make sure each

cluster satisfies the CL constraint.

Algorithm 1 Clustering without any overlapping cluster in dataset Z

Input: dataset Z. Output: cluster Ci and its cluster center zi, i ∈ {1, 2, · · · , k}.
1.1: Calculate ρi according to (10) and determine whether there is any overlapping cluster in dataset Z
according to (16). If there is no overlapping cluster, go to step 1.2; otherwise, see Algorithm 2.
1.2: Calculate CT and

∑
ki according to (14) and (15), then cluster CT using the k-means algorithm.

1.3: Revisit each cluster Ci to make sure that the CL constraint was satisfied, then calculate the cluster center zi
of each cluster.

Algorithm 2 Clustering with at least one overlapping cluster in dataset Z

Input: dataset Z. Output: cluster Ci and its cluster center zi, i ∈ {1, 2, · · · , k}.
2.1: Calculate δi according to (11), and we can obtain estimated cluster centers

_
z i, i ∈ {1, 2, · · · , k} using the

DPC algorithm.
2.2: According to (16), for cluster centers

_
z i that are max(ρi) < 1.1× r, the cluster center is

_
z i; for cluster

centers
_
z i that are max(ρi) ≥ 1.1× r, calculate Ci and ki according to (12) and (13), then cluster Ci with the

k-means algorithm (ki clusters).
2.3: Repeat step 2.2, until all the overlapping clusters are all divided into sub-clusters.
2.4: Revisit each cluster Ci to make sure that the CL constraint was satisfied, then calculate the cluster center zi
of each cluster.

Remark 1. The cutoff distance is the key to the proposed and the existing MSDF clustering algorithm. The
C4F [24] algorithm selects two times the standard deviation of the observation noise as the cutoff distance, the
multi-source n-points [26] calculates the cutoff distance using an online learning algorithm, and the proposed
algorithm selects 2% of the sorted distances matrix di j (from small to large) as the cutoff distance. The multi-source
n-points algorithm and the algorithm proposed in this paper can deal with unknown observation noise associated
with the proposed clustering problem, whereas C4F can only deal with the case of known observation noise.

Remark 2. An indispensable step in the existing multi-sensor data fusion clustering algorithm is to calculate
the point-to-point distance, which is also the most time-consuming part of the algorithm. The runtime
complexity/storage space requirements of the proposed algorithm and the multi-source n-points algorithm are
O(N2)/(N2

−N)/2, O(N log N)/O(N), respectively. Compared with the multi-source n-points algorithm, it
can be seen that the proposed algorithm runs more slowly and requires more storage space.

Remark 3. For the multi-source n-points algorithm, the selection of sensor s is very critical. If one target in
sensor s is lost, this target will not be detected during the subsequent clustering process, while the proposed
algorithm can well deal with the case of some targets avoiding detection. This is the advantage of the proposed
algorithm, which is more obvious when the sensor detection probability is lower.



Sensors 2020, 20, 238 8 of 14

4. Simulation Results

In this section, we compare the proposed algorithm with the k-means algorithm [8], multi-source
n-points algorithm [26], and typical DBSCAN [6] algorithm to obtain the performance of the
various algorithms.

4.1. Given Cutoff Distance

The k-means clustering needs one parameter k (the number of clusters), and the DBSCAN
algorithm needs two parameters ε (neighborhood radius) and m (minimum number of points). Both the
multi-source n-points algorithm and the proposed algorithm need one parameter: the cutoff distance
dc. All the parameters used in the four algorithms are provided in Table 1. The number of sensors is
set to n = {20, 50}, and the experimental results of n = {20, 50} are given in Figures 4 and 5, respectively.

Table 1. Parameters used in the four algorithms.

Algorithms k-Means DBSCAN Multi-Source
n-Points Proposed Method

Parameters k = 4 ε = 8/m = 6 dc = 8 dc = 8Sensors 2019, 19, x FOR PEER REVIEW 9 of 15 
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In each Monte Carlo simulation, the color of the circles is assigned randomly, and circles of the
same color represent the same cluster. The clustering results show that both the proposed method
and the multi-source n-points algorithm can solve the MSDF clustering problem, but the proposed
method algorithm has a smaller variance. The k-means algorithm is unable to deal with clutter, and
the clustering result is incorrect. The DBSCAN algorithm can detect observations of targets, but the
overlapping cluster clustering result is incorrect.

Table 2 shows the average computing time of different algorithms for the 100 Monte Carlo
simulations shown in Figures 4 and 5. It shows that the proposed method is slower than the other
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three algorithms. To speed up the multi-sensor data fusion clustering algorithm, a target motion model
can be employed to determine the potential cluster centroid.
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Based on the same dataset as that given in Figure 2, we assume the cutoff distance dc is unknown
and must be calculated from dataset using an algorithm, such as the DPC algorithm. The cutoff

distances of the multi-source n-points and the proposed method are shown in Table 3. The clustering
results of the proposed algorithm are given in Figure 6. Compared with the clustering results shown in
Figures 4 and 5, the clustering results shown in Figure 6 are also good. This demonstrates that the
cutoff distance calculation used in the DPC algorithm is effective.

Table 3. Cutoff distance of different clustering methods (m).

Algorithms Multi-Source n-Points Proposed Method

20 sensors 6.7815 8.0932
50 sensors 5.9779 9.1440
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4.3. Clustering-Based Model

In this simulation, we compare our algorithm with the C4F and multi-source n-points algorithm
for multiple target trajectories, provided in the excellent sample MATLAB code in [26]. Information on,
for example, clutter and the target dynamic model, are unknown, and the only information that can
be used is contained in the observations dataset (the data points in the two-dimensional Cartesian
coordinate system) of multiple sensors. The surveillance area is [−100,100] × [−100,100] (m), and the
start/end time and the initial position (green “�”) of each target are recorded near the target trajectory,
as shown in Figure 7. The average clutter rate per scan is 10, and the observation noise obeys a
zero-mean Gaussian distribution, with a variance of 4.Sensors 2019, 19, x FOR PEER REVIEW 11 of 15 
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Figure 7. Trajectories of the targets with a fully unknown movement.

To test the clustering accuracy, we use the optimal sub-pattern assignment (OSPA) metric [29] to
compare the proposed algorithm with the C4F and multi-source n-points algorithms. We set the cutoff

parameter c = 100 and the ordered parameter p = 2.
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First, we use 20 sensors. The clustering results of different algorithms for t = 16 are given in
Figure 8. The average clustering target numbers and the average OSPA versus time over 100 Monte
Carlo trails of different algorithms are given in Figure 9. The average OSPA of the proposed method is
3.7979, which is better than that of the C4F (5.9163) and the multi-source n-points (12.24).

Sensors 2019, 19, x FOR PEER REVIEW 11 of 15 

 

 

Figure 7. Trajectories of the targets with a fully unknown movement. 

First, we use 20 sensors. The clustering results of different algorithms for t = 16 are given in 

Figure 8. The average clustering target numbers and the average OSPA versus time over 100 Monte 

Carlo trails of different algorithms are given in Figure 9. The average OSPA of the proposed method 

is 3.7979, which is better than that of the C4F (5.9163) and the multi-source n-points (12.24). 

 

Figure 8. Clustering results of 20 sensors and different clusters (differently colored “o” and “□”), true 

target positions (red “□”), cluster centers of MS n-points (red “+”), C4F (blue “o”) and proposed 

method (black “o”). 

Figure 10 shows the clustering results of different algorithms with 100 sensors for t = 16. The 

average clustering target number and the average OSPA comparison of different algorithms over 100 

Monte Carlo trails are given in Figure 11. The average OSPA of the proposed method is 1.6717, which 

is better than that of the C4F (5.5241) and multi-source n-points (7.8788) algorithms. Compared with 

Figure 8, the clustering accuracy of the two algorithms increases with the increase of the sensor 

number. 

Figure 8. Clustering results of 20 sensors and different clusters (differently colored “o” and “�”), true
target positions (red “�”), cluster centers of MS n-points (red “+”), C4F (blue “o”) and proposed method
(black “o”).Sensors 2019, 19, x FOR PEER REVIEW 12 of 15 

 

 

Figure 9. Mean estimated number of targets and mean OSPA of different algorithms over 20 MC trials. 

 

Figure 10. Clustering results of 100 sensors and different clusters (differently colored “o” and “□”), 

Table 4. F (blue “o”), and proposed method (black “o”). 

Figure 12 gives the average time-consuming and average OSPA comparison of different 

algorithms versus different numbers of sensors over 100 Monte Carlo trials. It can be seen that the 

proposed method outperforms the C4F and multi-source n-points algorithm in the average OSPA. 

The clustering accuracy with 20 sensors using the proposed algorithm exceeds the clustering result 

with 100 sensors using the C4F and the multi-source n-points algorithms. As for the computing speed, 

the proposed method is slower than the C4F and multi-source n-points algorithms. 

Figure 9. Mean estimated number of targets and mean OSPA of different algorithms over 20 MC trials.

Figure 10 shows the clustering results of different algorithms with 100 sensors for t = 16. The
average clustering target number and the average OSPA comparison of different algorithms over 100
Monte Carlo trails are given in Figure 11. The average OSPA of the proposed method is 1.6717, which
is better than that of the C4F (5.5241) and multi-source n-points (7.8788) algorithms. Compared with
Figure 8, the clustering accuracy of the two algorithms increases with the increase of the sensor number.
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Figure 11. Mean estimated number of targets and mean OSPA of different algorithms over 100 MC trials.

Figure 12 gives the average time-consuming and average OSPA comparison of different algorithms
versus different numbers of sensors over 100 Monte Carlo trials. It can be seen that the proposed
method outperforms the C4F and multi-source n-points algorithm in the average OSPA. The clustering
accuracy with 20 sensors using the proposed algorithm exceeds the clustering result with 100 sensors
using the C4F and the multi-source n-points algorithms. As for the computing speed, the proposed
method is slower than the C4F and multi-source n-points algorithms.
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5. Conclusions

We propose a robust multi-sensor clustering algorithm to solve the MSDF problem. The MSDF
problem corresponds to the clustering dataset of the observations (containing a large amount of noise)
of multiple sensors, forming k clusters, and each cluster must satisfy the CL constraint. Unlike other
model-based multi-sensor data fusion algorithms, no prior information, like the noise and motion
model of a target, is needed in the proposed algorithm. Compared with the existing multi-sensor
data fusion clustering algorithm, the proposed algorithm is more robust, and the lower the detection
probability of the sensors, the better the performance of the proposed algorithm.
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