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PURPOSE. To characterize macular ganglion cell layer (GCL) changes with age and provide a
framework to assess changes in ocular disease. This study used data clustering to analyze
macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects
without ocular disease.

METHODS. Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia)
were retrospectively enrolled (age range, 20–85); 8 3 8 grid locations obtained from
Spectralis OCT macular scans were analyzed with unsupervised classification into statistically
separable classes sharing common GCL thickness and change with age. The resulting classes
and gridwise data were fitted with linear and segmented linear regression curves. Additionally,
normalized data were analyzed to determine regression as a percentage. Accuracy of each
model was examined through comparison of predicted 50-year-old equivalent macular GCL
thickness for the entire cohort to a true 50-year-old reference cohort.

RESULTS. Pattern recognition clustered GCL thickness across the macula into five to eight
spatially concentric classes. F-test demonstrated segmented linear regression to be the most
appropriate model for macular GCL change. The pattern recognition–derived and normalized
model revealed less difference between the predicted macular GCL thickness and the
reference cohort (average 6 SD 0.19 6 0.92 and �0.30 6 0.61 lm) than a gridwise model
(average 6 SD 0.62 6 1.43 lm).

CONCLUSIONS. Pattern recognition successfully identified statistically separable macular areas
that undergo a segmented linear reduction with age. This regression model better predicted
macular GCL thickness. The various unique spatial patterns revealed by pattern recognition
combined with core GCL thickness data provide a framework to analyze GCL loss in ocular
disease.

Keywords: ganglion cells, image analysis (clinical), pattern recognition, optical coherence
tomography, aging

The retinal ganglion cell (GC) is the final output cell of the
retina, receiving and modulating input from bipolar cells and

amacrine cells to code for complex visual information.1 While GCs
are susceptible to a variety of disease processes,2–5 GC loss is also
known to occur in the absence of identified disease as a part of
aging.6–14 There is controversy regarding the spatial and temporal
pattern of GC loss with age. Histologic studies have described GC
loss to be linear,6,9,15 and a model for estimating the GC
population derived from visual field sensitivity has likewise
suggested a linear change.16 Studies using nerve fiber layer
(NFL) thickness10,14,17–20 and ganglion cell layer (GCL) thickness12

from optical coherence tomography (OCT) as a measure of GC
loss have likewise suggested linear loss with age. Gao and
Hollyfield,7 however, found that while the GC loss appeared to be
linear for the macular area, loss metrics in the peripheral retina
appeared logarithmic. Closer inspection of histologic data from
Harman et al.9 and Jonas et al.6 suggests that there is a large
variation in GC count and limited losses until after middle age.
Recent studies analyzing retinal21 and GCL thickness11 with the

OCT in the macula likewise showed greater reduction in thickness
after middle age. While it is now acknowledged that peripheral
retina loses GCs faster than the macula,7,9 knowledge of the rate
of macula change is limited. Inadequate understanding of age-
related GC loss may confound the detection and diagnosis of age-
related pathologies involving GC loss, namely glaucoma.13,18,22

OCT can provide high-density imaging and quantification of
the retinal layers analogous to histologic studies,23–25 allowing
large-scale in vivo profiling in a normal population. Thus, we
sought to reinvestigate the pattern of normal age-related GC loss
in the macula using OCT. Although numerous studies have
quantified GC loss via NFL thickness10,14,17–20 and GCL thick-
ness11,12 by OCT, few have analyzed these entities across temporal
and spatial domains of the macula. Our study uses high-density
macular cube OCT scanning to assess GC changes at 64 grid
locations centered at the fovea, each grid 8603 860 lm in size. To
identify areas with similar age-related changes, we applied pattern
recognition, a well-established technique for computationally
clustering imaging data sets over N dimensions, in this case N ¼
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7 age groups defined as decades. Pattern recognition visualizes
complex data associations as memberships in statistically distinct
theme classes26 and is traditionally used for satellite remote
sensing analysis.27–31 This analysis can be applied in other fields
and has previously been used to successfully cluster retinal cells
into unique signature classes according to small molecule
content.32–36 Pattern recognition has the distinct advantage of
being able to analyze large data for multiobjective optimization
and at the same time assess separability of the classes using
statistical tests such as transformed divergence. We hypothesized
that different areas within the macula could be allocated to
distinct classes according to their temporal regression signature.
While a gridwise analysis enables high spatial resolution, the
discriminatory power may be reduced when analyzing data that
are known to have high individual variability, such as GC
density.6,9,37 Clustering analyses allow areas with statistically
proven common features to be pooled together, which can
improve the discriminatory power and allow more robust analysis
of highly variable data. Furthermore, classwise data may facilitate
the application of these data in future research by providing a
framework with which macular areas can be classed and analyzed
together. We further aimed to demonstrate the application and
accuracy of these models for converting GCL thickness to an age
equivalent, as well as a potential tool for in vivo estimation of GC
count. This improves our understanding of normal human GC
population dynamics and forms the basis for future investigations
involving disease, particularly if areas of retinal space can be
grouped into cohesive units.

MATERIALS AND METHODS

Participants

Subjects were recruited retrospectively from patients who had
been referred to the Centre for Eye Health for clinical imaging
and assessments based upon risk factors or suspicion of ocular
disease, but were subsequently found to have a healthy
posterior pole in at least one eye. All patient records and
imaging results were analyzed and reviewed by at least two
experienced clinicians. Clinical data collected included visual
acuity, retinal photography, Cirrus OCT scans (Macula 5123 128
and Optic Nerve 2003 200), intraocular pressure, and Spectralis
OCT (see Macular OCT section below) scans. Participants were
excluded if their intraocular pressure (IOP) was measured to be
>22 mm Hg for either eye on any visit or if there was any
evidence of bilateral optic nerve or retinal disease that may
affect the integrity of the GCL, even if manifest unilaterally at
time of examination. These included but were not limited to age-
related macular degeneration, retinal dystrophies, optic neurop-
athies, and glaucoma as well as those identified as glaucoma
suspects. Glaucoma suspects were defined in previous work,38

which, in brief, included any subject with a clinical finding
suspicious with regard to glaucoma on fundus appearance,
imaging results, or visual fields. All eyes encompassed in this
study met the following inclusion criteria: availability of a good-
quality Spectralis OCT (imaging quality score > 15 dB) scan,
visual acuity (VA) better than 20/25 (logMAR < 0.1) for all those
under the age of 60 or better than 20/32 (logMAR < 0.2) for
those older than 60, and spherical equivalent of less than 66
diopters and astigmatism of less than 3 diopters. Unilateral
ocular disease, such as central serous retinopathy, did not
necessitate exclusion provided the fellow eye met the inclusion
criteria. If both eyes met the inclusion criteria, one eye was
randomly chosen. The scan results for the left eye were
converted to right eye format. This study received ethics
approval from the University of New South Wales Australia,
Human Research Ethics Advisory (UNSW Australia HREA) panel.

The tenets of the Declaration of Helsinki and ethics procedures
put forward by the UNSW Australia HREA were observed for
subject data collection.

Macular OCT

Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany)
macular scans for all participants spanned 308 3 258 and
consisted of 61 B-scans spaced approximately 120 lm apart.
Each B-scan image was constructed from averaging at least nine
frames using the acquisition software’s Automatic Real Time
(ART) mean function to reduce imaging noise. Scans with an
overall quality score of less than 15 dB were excluded from the
analysis. If multiple scans were available for the patient, the
earliest scan meeting image quality criteria was selected. The
measurement area was visualized on the HRA viewing module
(version 6.3.4.0) consisting of an 8 3 8 grid (6880 3 6880 lm)
centered on the fovea and the central horizontal line aligned
over the line connecting the fovea and the middle of the optic
nerve head (Figs. 1A, 1B). The GCL was automatically
segmented throughout this area (Fig. 1C), and these were then
manually checked and corrected for segmentation errors,
defined as more than 50% difference in thickness compared
to the surrounding area or any pronounced misclassification of
the layers. Individual grids were excluded from the data if they
contained segmentation errors that could not be corrected
adequately (e.g., shadowing and distortion caused by blood
vessels), or if 10% of the grid square fell outside the mea-
surement area or was impinging on the optic nerve head.

Gridwise GCL Thickness Data Model

The cohort was separated into seven groups according to age
by decade (Table 1). Normality of GCL thickness distribution
for each decade group was checked with D’Agostino omnibus
test (GraphPad Prism, version 6.0; GraphPad Software, La Jolla,
CA, USA). The average GCL thickness was calculated for each
grid location by decade (Supplementary Fig. S1). The GCL
thickness data were converted to a log unit for two reasons:
Linearization of the data and, as previous studies have shown,
when GCL count is plotted against visual field sensitivity,
another surrogate in vivo metric of GCL integrity, better corre-
lation was achieved if GCL count was expressed as a log-unit.39

Thus, the GCL thickness measurements were converted to
decibel-micron units (dB, lm) using the following correlation:

tdB ¼ 10 � log10ðtmÞ;
where tdB¼GCL thickness in dB, lm and tm¼GCL thickness in
microns.

Linear regression and segmented linear regression analysis
were conducted for the GCL thickness data for each grid
location using GraphPad Prism (version 6.0) to obtain a
gridwise rate of GCL thickness change as a function of age.

Pattern Recognition (Clustering) Model

A grayscale heat map (Fig. 1D, first image) was generated using
gridwise GCL thicknesses in microns (Supplementary Fig. S1)
to provide a range of pixel values between 0 and 255. Various
scaling proportions were tested, with no difference found in
the final classification results. Clustering of data requires
appropriate ‘‘feature selection’’ to be conducted, as excessive
numbers of classes do not aid classification if they are not
separable and lead to unnecessary burden of the model.26 As a
consequence, clustering is significantly affected by the applied
strategy and statistical criteria. Therefore, we have adopted a
clustering paradigm that has been well established in previous
studies.27,28,30,34,35,40 Specifically, the data were analyzed with
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FIGURE 1. Illustration of ganglion cell analysis, conversion, and comparison. Ganglion cell layer (GCL) thickness measurements were obtained with
the Spectralis OCT (A) identifying the macular and optic nerve head (ONH) center. (B) The default 64-square analysis grid of the Spectralis OCT was
aligned to connect the two entities through the horizontal midline. Values for each grid location were based on average thickness values from (C)
segmentation of the GCL identified between the purple and green lines. (D) Using the average GCL thickness for each decade of life, grid locations
were converted into grayscale maps translating to distinct signatures. Grid locations with similar signatures were clustered in n dimensional space
into classes and a color code was assigned to each class to generate a theme map indicating grid locations that has statistically similar GCL thickness
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unsupervised classification using ISODATA clustering for each
decade subgroup (PCI Geomatica, Markham, ON, Canada) (Fig.
1D, second image) generating clusters of locations within the
macula with similar change in GCL thickness with age (theme
classes). ISODATA clustering is a specific form of K-means
clustering (a migrating means methods) and aids with feature
selection by automated splitting of high variance classes and
merging classes with low separability.41 Unlike traditional K-
means methods, this algorithm is not bound by a predefined
number of classes, but allows the class numbers to be reduced
or increased appropriately within a given range. The separa-
bility of identified theme classes was statistically verified using
transformed divergence (DT).26 DT value ranges from 0 to 2,
with 0 referring to inseparable clusters and 2 indicating
complete separation. A value of >1.9 corresponds to a
probability of correct classification of >98%42 and is commonly
accepted as the cutoff for statistically significant separability
for clustering studies,27,28,30,32–35,40 as well as recommended
by the manufacturer of the software.43 Following classification
and confirmation of separability, each distinct theme class was
assigned a color for visualization in pseudocolor plot (Fig. 1D,
third image). In the initial model, a single peripheral point was
clustered together with the central four points corresponding
with the fovea, which is inconsistent with an a priori
assumption that the foveal pit is anatomically distinct from
the rest of the retina.44 Thus, in developing the final model, the
central four locations corresponding to the fovea were masked
and the data were reanalyzed, resulting in the reassignment of
the aforementioned peripheral point with no other change in
the classification. The ISODATA algorithm and statistical
analysis provided the maximum number of statistically
separable classes. After identifying the highest number of
statistically unique theme classes using ISODATA clustering (N
¼ 8 theme classes), the K-means algorithm was used to restrict
the number of classes stepwise down to the lowest separable

number (N¼ 5) to further explore the effect of total number of
theme classes on the provided model.

In a similar fashion to the gridwise analysis data, linear
regression and segmented linear regression analysis were
conducted on the eight theme classes to obtain a classwise
rate of regression with age. F-test was conducted for each
theme class to compare linear and segmented linear fit quality.
The degree of freedom (df1) was defined as 1 for the numerator
and 12 for the denominator (df2). The F-ratio was calculated for
each theme class, defined as the quotient of the absolute sum
of squares (SST) of the linear regression divided by the absolute
SST of segmented linear regression. Cutoff for statistical
significance was specified as >4.75 (equivalent P < 0.05).
Paired t-tests were conducted for the absolute SST of the theme
classes to compare the fits of the two models throughout the
entire measurement area.

Furthermore, to determine if the rate of GCL change is related
to the baseline thickness, the GCL thickness data for each class
were analyzed after being converted to proportional data by
normalizing the data to the highest value. For the purpose of
statistical assessment, the proportional data were further
converted to a continuous variable by an ad hoc logit transform.45

Specifically, this was conducted by adding a small value of e to the
denominator and numerator to avoid 0 and 1 being transformed
into an undefined value (i.e.,�‘ andþ‘) as outlined below:

e ¼ 1� t0

tlogit ¼ ln
tp þ e

1� tp þ e
;

where t’ ¼ the highest non-1 proportional GCL thickness value
(dB, lm) from the data set, tp ¼ GCL thickness (dB, lm) as a
proportion, and tlogit ¼ proportional data after ad hoc logit
transform.

TABLE 1. Demographic Characteristics of the Study Population (n¼ 201)

Cohort

Average

Age 6 SD Range

Rx 6 SD,

Diopters

IOP 6 SD,

mm Hg

Sex,

Percent,

M:F

Laterality,

Percent

OD:OS

Ethnicity,

Percent

Euro:Asian:Oth N

All subjects 49.7 615.8 20.2–84.9 �0.5 6 1.8 15.9 6 3.1 43:57 53:47 63:35:2 201

Cohorts by decade

Second 25.4 6 2.9 20–29 �1.3 6 1.7 15.0 6 2.8 37:63 63:37 36:64:0 27

Third 34.2 6 3.0 30–39 �1.6 6 1.7 14.6 6 3.8 36:64 39:61 43:57:0 28

Fourth 44.9 6 2.8 40–49 �0.8 6 1.5 16.7 6 2.6 34:66 39:61 59:36:5 44

Fifth 55.8 6 2.8 50–59 �0.0 6 1.0 16.6 6 3.1 45:55 38:62 69:26:5 42

Sixth 63.5 6 2.9 60–69 �0.2 6 2.3 15.9 6 3.1 51:49 51:49 74:26:0 35

Seventh 73.6 6 2.8 70–79 þ0.9 6 1.3 15.8 6 4.8 53:47 58:42 84:16:0 19

Eighth 82.0 6 1.6 80–85 þ0.8 6 0.9 13.2 6 2.6 83:17 83:17 83:17:0 6

50 year-old equivalent cohort

49.7 6 2.9 46–55 �0.7 6 1.4 16.9 6 2.8 44:56 47:53 47:53:0 34

Curcio and Allen equivalent cohort*

33.5 6 3.3 29–39 �1.7 6 1.8 15.5 6 2.7 32:68 42:58 39:58:3 31

Curcio and Allen’s cohort37

33.8 6 4.0 27–37 60:40 50:50 5

SD, standard deviation; Rx, habitual spectacle correction; OD, right eye; OS, left eye; Euro, European descent; Oth, ethnicity other than
European or Asian.

* Cohort with an equivalent age distribution to Curcio and Allen’s cohort37 (P ¼ 0.845, unpaired t-test).

change over time. (E) The regression model derived from gridwise analysis, pattern recognition–derived classwise analysis, and normalized pattern
recognition data was used to convert the entire cohort into a 50-year-old equivalent. These converted results were compared to a 50-year-old
subgroup to assess the predictive value of each of these conversion models.

Pattern Recognition Analysis of OCT Retinal Measurement IOVS j June 2017 j Vol. 58 j No. 7 j 3089



Sum-of-squares F-test was conducted on the classwise
normalized GCL thickness data to determine if all of the
classes could be fitted to a single regression curve.

Agewise Conversion: Validation of Developed
Regression Models

To validate the predictive value and accuracy of the regression
models, GCL thicknesses for all subjects were converted to a
50-year-old equivalent using the previously developed regres-
sion models, specifically, the gridwise linear regression, class-
wise linear and segmented linear regression, and normalized
segmented linear regression (Fig. 1E). Each resulting thickness
plot was compared to the GCL thickness plots of a 50-year-old
cohort (n¼ 34, Table 1) to assess for accuracy.

GC Density per Volume

GC density per GCL tissue volume (mm3) was determined as
previously described in Raza and Hood.46 In short, GC density
per mm2 for the horizontal and vertical meridians was linearly
interpolated with polar coordinates for each of the 64 grid
locations using currently available histologic data of GC density
per area (mm2).37 A group of age-equivalent subjects to the
histologic data was selected from our cohort (n¼ 31, Table 1),
and the gridwise GCL thickness was obtained from this group.
GC density per mm2 value was divided by the GCL thickness in
mm to obtain the GC density in mm3. Furthermore, gridwise
estimate of the GC count for our age-equivalent subgroup was
derived by multiplying the GC density per mm3 to the average
GCL thickness and grid area (860 3 860 lm).

RESULTS

Defining Cohort

The majority of the study subjects were of European descent
(61%) with roughly a third of the cohort Asian and with a slight
bias toward females (57%; Table 1). The largest deviation from
these averages was observed in the eighth decade, likely due to
the small sample size (Table 1). GC density per mm2 was
interpolated from previous histologic data37 as described in
Methods (Fig. 2A). From this, GC density per mm3 (Fig. 2C) and
the GC count (Fig. 2D) within the macular area were obtained,
resulting in an estimated GC count for the total grid area of
4.68 3 105 cells, or 3.53 3 105 cells if restricted to the central
2.8-mm radius area.

Gridwise Analysis of Age-Related Changes in the
GCL Thickness

GCL thickness was greatest at the paracentral macula with
most areas exhibiting statistically significant rates of regression
over time on linear regression analysis (Fig. 3A; mean 6 SD:
�0.085 6 0.0311 dB, lm) and reasonable coefficients of
determination (mean R2 6 SD: 0.648 6 0.20). However, high
variance was observed for both the rate of regression (range,
�0.003 to �0.141 dB, lm per decade) and coefficient of
determination (range R2: <0.01–0.88) throughout different
regions of the measurement area. In general, the central and
paracentral points showed greater rate of regression with a bias
toward the nasal quadrant and areas with the lowest statistical
significance, and R2 values were primarily located peripherally,
although no clear trend could be identified (Fig. 3C).
Segmented linear regression analysis for the gridwise data
was unsuccessful as inflection point could be identified
successfully for only 23 of the 64 grid locations, while the

remaining 41 locations could not be adequately described
using this model.

Pattern Recognition Analysis

Applying a cluster algorithm based on pattern recognition
separated the investigated area into eight statistically distinct
theme classes (implementing a >98% chance of correct
classification: DT > 1.9) representing macular locations with
similar GCL thickness and change with age (Fig. 4A). These
classes were arranged in concentric configurations, which
were retained even when the number of theme classes was
reduced (Fig. 5). The location provided theme maps (Figs. 4A,
5), which, when combined with the average thickness data
(e.g., Supplementary Fig. S1), allowed the generation of theme
class–derived data sets of GCL thickness change over time
(e.g., Figs. 4B, 4C) for any theme–map combination. Theme
classes plotted with the segmented linear regression exhibited
negligible change in GCL thickness until the inflection point at
middle to high age range (48.41–72.11 years of age; Table 2),
after which greater regression rates were seen (average rate of
regression before inflection:�1.79 3 10�3 dB, lm/decade, after
inflection:�3.45 3 10�3 dB, lm/decade; Table 2). The average
coefficient of determination for each of the regression models
was found to be higher for segmented linear regression (R2 ¼
0.917) compared to linear regression models (R2¼0.663; Table
2, Figs. 4B, 4C). This difference in coefficients of determination
is to be expected, however, when comparing a simple model
to a more complex one. To determine if the more complex
model (segmented linear regression) is appropriate, F-test and
paired t-test of the absolute SST was conducted. F-test exhibited
F-ratios of greater than 4.75 (equivalent to P < 0.05) for the
first four theme classes, demonstrating that segmented linear
regression is a more appropriate model for these measurement
areas (Table 3). The paired t-test did not reach statistical
significance for all theme classes together (P ¼ 0.0543), likely
due to the high absolute SST exhibited by theme class 1, despite
reaching significance by itself. When this class was excluded
from the analysis, the relationship was found to be highly
statistically significant (P < 0.01), thus suggesting that a
segmented linear regression may be applied as a whole.

Sum-of-squares F-test was conducted on the normalized
GCL thickness data to determine if all of the classes could be
fitted to a single regression curve. Class 1 was analyzed
independently on the a priori assumption that the foveal area,
which it corresponds to, reflects an anatomically distinct
entity. A model consisting of a different regression curve for
each class was rejected by this analysis (P¼ 0.983), indicating
that a single curve can adequately describe the observed
regression pattern (Table 4).

Age Equivalent Conversion

To evaluate the predictive value of the aforementioned
regression models, GCL thickness values of the entire cohort
were converted to a 50-year-old equivalent using these models
and compared to age-matched clinical data (Fig. 1E). Regres-
sion data for the linear curve were derived from both gridwise
analysis (see Fig. 3) and pattern recognition analysis (Fig. 4B),
while the regression data for segmented linear curve were
derived from pattern recognition analysis (see Fig. 4C;
Supplementary Table S1) and normalized data (Table 4),
resulting in adjusted GCL thickness values (Supplementary
Figs. S2B–E). The difference in GCL thickness of these
converted values to the reference group (Supplementary Fig.
S2A; Table 1) was found to be identical between the two linear
regression models (average difference 0.67 6 0.638 lm for
both; Supplementary Figs. S2F, S2G). When segmented linear
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regression was used, the disparity was reduced with both

classwise and normalized analysis (0.50 6 0.446 and 0.42 6

0.344 lm, respectively; Supplementary Figs. S2H, S2I). Bland-

Altman plots confirmed the above with the greatest bias

introduced by the linear regression models (Fig. 6A; 0.51 6

1.11 lm, Fig. 6B; 0.51 6 1.10 lm: 95% limits of agreement)

followed by normalized regression data (Fig. 6D;�0.30 6 0.61

lm) and then by classwise segmented linear model (Fig. 6C;

0.19 6 0.92 lm). While the normalized data showed larger

amount of bias compared to the classwise segmented linear

regression, the confidence interval was lower. When the

disparity in GCL thickness between the classwise linear and

FIGURE 2. Pointwise estimation of ganglion cell density per mm2. Gridwise ganglion cell (GC) density per mm2 was linearly interpolated with polar
coordinates from histologic data obtained by Curcio and Allen37 along the horizontal and vertical meridian (A). This was divided by the ganglion cell
layer (GCL) thickness obtained from an age-equivalent cohort with the OCT (B) to obtain GC density per mm3 for each location (C). This was
multiplied by the grid area and the GCL thickness to obtain an estimation of GC count for each of the 64 locations (D).
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FIGURE 3. Gridwise linear regression pattern (A). Pointwise regression data of ganglion cell layer thickness plotted over age for the 64 grid
locations. (B) Magnified graph indicating for each grid location the rate of regression per decade in the top left corner and the coefficient of
determination (R2) in the top right and the relevant axis scales. (C) Heat map of the rate of regression for the 64 locations where red indicates
highest rates of regression and green indicates lowest rates of regression. Error bars show standard deviation. Statistical significance of rate of
regression (nonzero) *P < 0.05 and **P < 0.01, respectively.
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segmented linear models was compared directly in a Bland-
Altman plot as a function of eccentricity (Fig. 6E) and theme
class (Fig. 6F), the segmented linear model specifically
demonstrated superior accuracy for central retinal areas (i.e.,
classes 1–6), while at more peripheral grids, the two models
were comparable (i.e., classes 7 and 8).

DISCUSSION

OCT is able to provide information analogous to histology in
vivo,23–25 and the advancement in image analysis enables the
GCL to be assessed independently from the inner plexiform
layer (IPL), which arguably allows for better assessment of GC
integrity as the GCL undergoes greater absolute thinning than
the IPL.12,47 While a number of past studies have investigated
age-related retinal tissue loss with OCT,48–51 to the best of our
knowledge this is the first investigation that not only analyzed
the gridwise GCL thickness changes but also clustered them
into statistically separable theme classes according to temporal
regression signatures. This study demonstrated that pattern
recognition can be applied to retinal thickness measurement,
with the advantage of allowing a large number of data points to
be analyzed for multiobjective optimization over n dimensions
and, at the same time, statistically test the separability of the
clusters.

Conventional gridwise analysis has the advantage of
allowing analysis of an area without loss of spatial information.
However, in a data set with high population variability, such as
GCL thickness,6,9,37 the discriminatory power may be reduced.
Our result demonstrated this to be the case; the spatial and
temporal patterns of regression were not readily apparent with
the gridwise regression data, and only a third of the
measurement area could be modeled with segmented linear

FIGURE 4. Theme class defined age-related ganglion cell layer thickness change 64 macular grid locations divided into eight theme classes as
clustered using the ISODATA algorithm. The eight classes were well separated with a correct classification probability of >98% (A). Change in
average ganglion cell layer thickness for each theme class over time was fitted with linear regression (B) and segmented linear regression (C). Error

bars shown are standard error of mean. Asterisk and dagger indicate that these curves have been shifted by þ3 and þ0.5 decibel units up,
respectively, for better visibility.

FIGURE 5. Differential configuration of theme classes. Pattern recog-
nition analysis using ISODATA clustering and at DT > 1.9 found the
maximum number of statistical distinct groups (theme classes) as eight
(A). The number of clusters was restricted with K-means to assess the
robustness of the theme classes, allowing groups with similar
characteristics to be merged together (B–D) displaying ‘‘rings’’ of GC
locations that share similar densities and change in a similar way with
age.
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regression curve. Classwise analysis of pattern recognition–

derived classes, on the contrary, allowed for a more powerful

analysis by enabling statistically similar areas to be analyzed

together and revealing that GCL regression was better

modelled with a segmented linear regression than with linear

regression. It has also indicated the spatial signatures to be

arranged in a concentric pattern with a slight bias toward the

nasal side: This is consistent with histologic data.8 Further-

more, these data may be able to be applied in place of gridwise

regression potentially without appreciable reduction in accu-

racy or spatial resolution: The predicted 50-year-old equivalent

GCL thicknesses with linear regression model derived from

both the gridwise and classwise analysis were identical

(Supplementary Figs. S2B, S2C, S2F, S2G), and the bias and

confidence intervals were also similar (Figs. 6A, 6B).

Analysis of our normalized GCL thickness found the rate of
GCL change expressed as a percentage to be a constant over
the whole macula area (except the fovea; Table 4). In other
words, regression rate was proportional to the initial GCL
thickness, which also follows a concentric pattern (Supple-
mentary Fig. S1). Therefore, it may not be surprising that when
macular areas are clustered according to their pattern of
regression with age, they follow a similar concentric pattern.
This is consistent with a previous study that found the NFL
thickness rate of change to be proportional to the initial
thickness.18 To further verify the pattern of cluster found,
supplementary pattern recognition analysis was conducted on
selected age groups (20–29, 40–49, and 60–69) of the cohort to
determine if similar classes are still present through different
age groups when classified with GCL thickness alone instead of
multiobjective classification. The result demonstrated similar
clustering patterns to be present for all three age subgroups,
with only a few points being classified differently from the
original class (Supplementary Fig. S3). While a reduction in DT

TABLE 2. Ganglion Cell Layer (GCL) Thickness Regression Characteristic for the Eight Clusters Identified With Pattern Recognition Using the Linear
Regression Model and Segmented Linear Regression Model. The First Segmented Linear Regression GCL Thickness Regression Rate is the Regression
Rate Before Inflection, and the Second is for After Inflection (R2, Coefficient of Determination)

Linear Regression

Theme Class

RGCL Thickness

Regression, dB, lm/y

Intercept at

Age 0 R2

1 �1.04 3 10�2 16.26 0.339

2 �1.24 3 10�2 17.78 0.701

3 �9.61 3 10�3 17.53 0.686

4 �1.09 3 10�2 16.78 0.753

5 �1.02 3 10�2 16.07 0.754

6 �8.41 3 10�3 15.42 0.733

7 �7.64 3 10�3 14.43 0.695

8 �5.73 3 10�3 13.64 0.643

Average �9.41 3 10�3 15.99 0.663

Segmented Linear Regression

Theme Class

GCL Thickness

Regression, dB, lm/y

Intercept at

Age 0

Age of

Inflection

GCL Thickness

Regression, dB, lm/y R2

1 0 15.86 72.11 �9.76 3 10�2 0.933

2 �2.37 3 10�3 17.60 62.68 �3.86 3 10�2 0.995

3 �1.83 3 10�3 17.18 65.88 �3.59 3 10�2 0.987

4 �3.79 3 10�3 16.51 62.90 �2.82 3 10�2 0.954

5 0 15.71 50.86 �1.84 3 10�2 0.903

6 �3.66 3 10�3 15.23 63.00 �2.07 3 10�2 0.902

7 �2.70 3 10�3 14.24 63.00 �2.04 3 10�2 0.900

8 0 13.44 48.41 �9.56 3 10�3 0.765

Average �1.79 3 10�3 15.72 61.11 �3.45 3 10�3 0.917

TABLE 3. The Absolute Sum Square and the F-Ratio for Comparison of
the Two Regression Models, Linear and Segmented Linear Regression

Theme Class

Absolute Sum Square

F-RatioLinear Segmented

1 0.551 0.056 9.92*

2 0.171 0.003 49.71*

3 0.110 0.005 22.59*

4 0.101 0.019 5.40*

5 0.087 0.034 2.54

6 0.067 0.025 2.72

7 0.066 0.022 3.05

8 0.047 0.031 1.52

* Statistically significant difference in linear and segmented linear
model (F-ratio of >4.75, corresponding to P < 0.05).

TABLE 4. Sum-of-Squares F-Test of the Segmented Linear Regression
Model With Normalized GCL Thickness Rejected the Fitting of
Individual Curves for Each of the Nonfoveal Classes (P ¼ 0.983) and
Indicated That They Can Be Fitted to a Single Curve. The First GCL
Thickness Regression Rate is the Regression Rate Before Inflection and
the Second Is for After Inflection (R2, Coefficient of Determination)

Retinal Area

GCL Thickness

Regression,

%/y

Age of

Inflection

GCL Thickness

Regression,

%/y R2

Fovea (class 1) 0 72.11 �0.609 0.933

Nonfoveal classes

combined

0 53.35 �0.118 0.867
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is expected due to the smaller sample size, it dropped below
1.9 on only one to three occasions for each subgroup,
predominantly for the peripheral-most theme classes (data
not shown). Furthermore, the concentric pattern persisted

when clusters with similar characteristics were merged
together with the restriction of the number of theme classes
using the K-means algorithm (Fig. 5). Thus, these results lend
support to the concentric pattern of theme classes found on

FIGURE 6. Comparison of linear and segmented linear model. Bland-Altman plot of difference ganglion cell layer (GCL) thickness between 50-year-
old normative data and age-equivalent value converted with linear regression with gridwise analysis (A) and classwise analysis (B), classwise
segmented linear (C) model, and normalized segmented linear regression (D) as a function of average GCL thickness. Note that class 1 areas, which
constituted the foveal pits, are shown for reference but were excluded from analysis of the Bland-Altman plots as they are anatomically distinct from
other retinal areas. The difference in linear (gridwise) and segmented linear (classwise) conversion values as a function of eccentricity from the
fovea is shown in (E) and in relation to the theme classes shown in (F). Red fonts indicate areas where segmented linear model showed larger
deviation from the 50-year-old equivalent value.
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the initial ISODATA analysis as having biological meaning.
Additionally, we present a schema with varying number of
concentric theme classes, which allows macular area with
statistically similar GCL characteristics to be analyzed together.

The concentric nature of GCL distribution and rate of
change raises the question of the suitability of a uniform
gridwise measurement area for quantifying the macular area.
Arguably, measurement areas need to reflect the biology of the
tissue being investigated, and the difficulties of applying a
uniform grid are particularly evident in the foveal grids: It does
not allow one to appreciate the large thickness change gradient
present in this area (Figs. 1B, 1C). Previous histologic studies
for photoreceptor52 and GCL37 count reduced the density of
the sampling windows and increased window size with
eccentricity, and a similar approach with OCT measurements
needs to be explored.

The temporal regression pattern of macular GCL thickness
was often modelled as a linear regression in previous
studies,6,9,10,12,14–20 although there were some indications that
they may follow a segmented linear regression.6,9,11 Compar-
ison of the theme classes’ temporal regression pattern with F-
test suggested that segmented linear regression was a more
suitable model than linear regression for the determined
classes. Alternatively, the GCL thickness regression can be
expressed as a normalized percentage change, in which case,
the one formula can be applied to the entire macular area
(except the fovea). Both of these models demonstrated
accurate conversion of GCL thickness value to a given age;
the classwise model demonstrated greater accuracy (less bias)
while the normalized model showed greater precision (smaller
confidence interval). Depending upon the intended purpose,
models with greater accuracy or precision may be desired: For
instance, if converting a cohort’s GCL thickness data to a
desired age to facilitate direct comparison to another cohort
with a different age, the former may be preferable, although in
cases such as repeated measurements on the same subject, the
latter may be preferred. We therefore developed two alternate
segmented linear regression models, each of which could be
applied for different purposes. Combined with a spatial
clustering schema with variable number of theme classes as
shown in Figure 5, we present a framework with which future
investigation of GCL can be conducted. In particular, it may be
advantageous for application in structure–function studies, as it
may assist in the spatial translation of data to visual field, which
has different spatial distribution of data. The GCL thickness
measurement was represented as a decibel scale to further
facilitate future comparative study, as visual field data are also
expressed in decibel scale. While a linear scale has the
advantage of direct applicability to clinical scenario and a
uniform scale, it was shown by previous studies that a linear
relationship exists between structure and function when
decibel scale was used for both variables16 and better
correlation may be achieved compared to linear scale.39

Gridwise GCL thickness measurement may be used as a tool
for obtaining an estimate of the GC count in vivo for clinical
and scientific purposes. While this has previously been
investigated,46 a mismatch in age between the OCT and
histology cohort potentially leads to overestimation of the GC
count. To address this, we conducted a similar analysis with
age-matched OCT and histology data37 (Table 1). The total GC
count was estimated to be 3.53 3 105 cells within the central
2.8-mm radius, which was comparable to another OCT study
(3.81 3 105 cells)46 and histology (3.69 3 105 cells)37-derived
estimates. To further ascertain the impact of mismatch in age,
the GC count was recalculated with a cohort with similar
characteristics to that in Raza and Hood’s46 study (52.1 6 9.14
years of age, n ¼ 135, P ¼ 0.2024, unpaired t-test), which did
not considerably affect the estimate (3.57 3 105 cells). This is

perhaps not surprising given the nature of segmented linear
regression, which showed slower regression until middle age.
Disparities in GC count estimates may instead be attributed to
other sources such as differences in OCT analysis methods,
instrumentation, grid size, and analysis area. Additionally, the
impact of nonneural elements (glia)53 and displaced amacrine
cells must be considered.37,54–56 As acknowledged in the
original paper,37 the histologic data utilized for this study also
did not account for displaced amacrine cells and hence
potentially overestimate GC density, although the impact
within the macular region is expected to be low.57 Likewise,
they did not account for the presence of glial cells within the
GCL.53 Further investigation of displaced GC and glial cell
density in the GCL of human retina may be required to refine
the model further.

The temporal regression pattern for the GCL thickness was
found to resemble the pattern of contrast sensitivity loss for
high spatial frequency targets with age (Supplementary Fig.
S4).58 While age-related loss of contrast sensitivity is commonly
acknowledged, controversy exists regarding the extent to
which optical and neural changes drive the losses.58–65

Similarity in the temporal pattern of GC loss in our data and
contrast sensitivity loss suggests that age-related neural loss
could be a fundamental source of visual sensitivity loss. On the
other hand, comparison to visual field sensitivity with age
showed a disparity in the rate of regression; visual field
sensitivity within the central 108 regressed between�0.36 and
�0.77 dB per decade,66 while the rates of GC loss were less
when expressed as a linear model (approximately�0.1 dB, lm
per decade, Table 2). These conflict with histology studies
suggesting a direct relationship between GC count and visual
field sensitivity,16 and a more recent investigation directly
comparing GCL thickness measured with OCT likewise finding
a direct relation between the two, albeit with a significant floor
effect limiting the range where this is applicable.67 A possible
explanation is a compensatory increase in the nonneuronal
component, leading to a reduction of neural component
density per unit volume.10,14,22 While there are studies that
show the average GC soma diameter to decrease with
glaucomatous neuropathy, which may lead to reduction in
neural density,15,68,69 it does not alter significantly with age.9

Furthermore, recent studies have highlighted the limitation of
conventional visual field strategy utilizing stimulus size not
scaled for spatial summation area,70–72 a potential confounding
factor for any such structure–function comparison. Thus, a
structure–function study comparing GC density to appropri-
ately scaled visual stimulus and further analysis of GC density
per volume may be required to clarify the relationship.

Limitations

A limitation of the study includes the decreased sample size for
the higher age group, notably the 8th decade group due to the
higher prevalence of ocular disease in this age group. It was
found, however, that excluding the 8th decade group from the
analysis had negligible impact to the pattern recognition theme
classes or the regression model (data not shown).

The variability of the GCL thickness measurement with the
OCT is also a potential confounding factor. It was found by a
previous study that the variability of the Spectralis OCT for
GCL thickness is within 3 lm.73 While the variability does not
alter with eccentricity, this is expected to have a greater impact
on the peripheral areas than the central area due to the
decreased initial thickness and is likely to impact the analysis of
regression pattern peripheral locations, especially if rate of
regression is proportional to the baseline thickness.

Finally, since this study utilized pattern recognition to
cluster retinal areas, the representation of separable classes
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reflects the specific criteria chosen to define separability. As
such, application of different clustering algorithms may result
in changes to the statistically supported distinction of
individual groups or recognize additional subgroups. However,
the current clustering paradigm had been established by
previous studies,27,28,30,34,35,40 and we have further confirmed
the separability of the clusters using a validated statistical
method and cutoff value (DT > 1.9).27–35,40 Using this
paradigm, we identified a maximum of eight clearly distinct
classes arranged in a concentric pattern. This was consistent
with the GCL thickness pattern, which was also arranged
concentrically and, given that GCL regression rate is propor-
tional to the initial thickness, the concentric arrangement of
the theme classes likely reflects the biology of the GCL rather
than an artefact caused by the clustering process or criteria.
The robustness of these classes could be further supported if
they are reproducible using different measures of separability,
such as DK,74 which will be an important future step in this
area once larger sample sizes are available.

CONCLUSIONS

Our study has demonstrated the advantage of pattern
recognition for analyzing retinal OCT data, with the 64 grid
locations rigorously grouped into a varying number of
statistically separable theme classes and accentuating the
temporal trend in decreasing GCL thickness. Specifically, we
present two temporal regression models, one based on pattern
recognition–derived theme classes and the other on normal-
ized thickness data, and proposed a spatial clustering schema
composed of a varying number of theme classes. These tools
may form the basis of future investigations. For instance, either
of the temporal regression models may be applied for
conversion of GCL thickness data to a given age equivalent
in a similar fashion to visual field regression data66 used in
previous studies.70,75–77 The spatial theme class schema may
be implemented in structure–function concordance study by
allowing multiple measurement areas to be analyzed together
and facilitate spatial translation of GCL data to visual field data
points. A preliminary result on similar pattern recognition
study on visual field revealed a similar spatial pattern to be
present when stimulus size was adjusted for spatial summation
area (Kalloniatis M, et al. IOVS 2016;57:ARVO E-Abstract 4745),
and further comparison of spatial and temporal characteristics
of the two modalities may shed further light onto structure–
function concordance. Finally, similar to a previous study,46 our
study presents a framework with which GC population
estimates can be derived from Spectralis OCT measurement.
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