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Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is more
common in females. Despite its high global incidence, the disease mechanism is still
unclear and therapeutic options remain limited. The sexual dimorphism in IBS incidence
suggests that sex steroids play a role in disease onset and symptoms severity. This review
considers sex steroids and their involvement in IBS symptoms and the underlying disease
mechanisms. Estrogens and androgens play important regulatory roles in IBS
symptomology, including visceral sensitivity, gut motility and psychological conditions,
possibly through modulating the gut-brain axis. Steroids are regulators of hypothalamic-
pituitary-adrenal activity and autonomic nervous system function. They also modulate gut
microbiota and enteric nervous systems, impacting serotonin and mast cell signaling. Sex
steroids also facilitate bidirectional cross-talk between the microbiota and host following
bacterial transformation and recycling of steroids by the intestine. The sex-specific
interplay between sex steroids and the host provides neuroendocrinology insight into
the pathophysiology, epigenetics and treatment of IBS patients.
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INTRODUCTION

Irritable bowel syndrome (IBS) is a common functional gastrointestinal (FGID) disorder that is
characterized by abdominal pain and disturbances in bowel habit. It is classified according to
predominant stool patterning into several subtypes, which include IBS with constipation (IBS-C);
IBS with diarrhea (IBS-D); IBS with mixed stooling patterns (IBS-M); and unsubtyped IBS (IBS-U).
Irrespectively of bowel habit, IBS is diagnosed based on symptoms experienced, notably using Rome
definitions that were recently updated to Rome IV criteria (1). The global prevalence of IBS is
estimated at 9.2% versus 3.8% based on diagnosis by Rome III and Rome IV criteria, respectively (2).
Not only do IBS patients suffer from abdominal discomfort, but their quality of life is also impacted
by extra-intestinal symptoms including anxiety, depression, headache and fatigue (3, 4). Major
limitations in the field include uncertainty regarding IBS disease etiology and limited therapeutic
options that show efficacy in subpopulations of patients only. Notably, females are more frequently
diagnosed with IBS and clinical symptoms tend to be more severe (2, 5). The sex-bias in IBS was
recently reviewed (6–8), suggesting that sexual dimorphism and sex steroids could be involved in
the pathophysiology, a view supported by symptoms being linked to estrous cycle (9) and the
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absence of X-linked genetic susceptibility (10). Building on this
previous body of work, here we provide a deeper dive into sex
steroids and their involvement in IBS symptoms, focusing on
their molecular mechanism of action and impact on the
microbiome-gut-brain axis.
CURRENT EVIDENCE ON SEX AND IBS
INCIDENCE

IBS is more common in females (2, 11). This trend was also
found in children (12), although some inconsistent results have
been reported (13). While IBS prevalence is constant with age in
males (14), disease prevalence in females is age and hormonal
status dependent. Some inconsistencies are reported, for example
a few notable studies report a reduction in IBS incidence after
menopause, whereas others show exacerbated FGID symptoms
(15, 16). Sex is also a determinant of IBS subtype, with
constipation being predominant in females, whereas diarrhea is
more frequently diagnosed in males (17, 11). Females are also
more likely to suffer from more severe clinical symptoms (5),
although other studies did not report a sex-bias in disease
severity. A number of confounding factors such as cultural
differences could contribute to this discrepancy. For example,
in India males are diagnosed with IBS more frequently than
females, but this may be linked to males being more likely to
consult a physician (18). Conversely, in Europe and North
America, physician IBS consultations are reported as female-
biased (11). Nevertheless, the literature generally supports sexual
Frontiers in Endocrinology | www.frontiersin.org 2
dimorphism in IBS and suggests that sex-related physiological
differences, such as sex steroids could be related to disease onset
and symptoms severity (Figure 1).
SEX STEROIDS

Sex steroids play an important role in reproductive system
homeostasis, as well as in other physiological processes. There
are three main types of sex steroids: namely estrogens, androgens
and progesterone. Among these, this review focuses mainly on
estrogens and androgens. Estrogens are mainly produced in the
ovaries in premenopausal women, whereas the testis or other
peripheral organs are involved in hormone production in men
(Figure 2). The major forms of estrogens are estradiol, estrone
and estriol. The estrogen forms exhibit varied potencies and play
different roles during development. For instance, estradiol is the
most abundant and potent estrogen during female reproductive
years, while estrone predominates after menopause (19).
Estrogens bind to and activate classical estrogen receptors
(ER), including receptor a (ERa) and b (ERb) isoforms which
belong to the family of nuclear hormone receptors (NHRs) that
translocate to the nucleus where they bind to DNA and mediate
the genomic effects of estrogens (20). Estrogens also bind to
membrane-bound receptors, such as G-protein-coupled estrogen
receptor (GPER) to exert non-genomic effects. Upon binding
and activation, GPER triggers downstream pathways and
regulates a wide range of activities, including cellular
differentiation and proliferation.
FIGURE 1 | Effect of estrogens and androgens on IBS symptomology and the microbiota-gut-brain axis in males and females.
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Androgenic steroids mainly include testosterone and
dihydrotestosterone (DHT). Androgens are mostly produced
by the testis in males, and are derived from the ovaries or
adrenal glands in females (Figure 2). Androgens bind to and
activate the androgenic receptor (AR), another member of
NHRs. Similar to estrogens, androgens also activate
membrane-associated receptors, including G protein-coupled
receptor class C group 6 member A (GPRC6A) and the zinc
transporter ZIP9 (21). Androgens can be converted into
estrogen, through an enzymatic process catalyzed by aromatase
that occurs preferentially in females (Figure 2).

The adrenal glands produce various adrenal C19 steroids, also
known as the adrenal androgens, including dehydroepiandrosterone
(DHEA), androstenediol, androstenedione and 11b-
hydroxyandrostenedione (22). These steroids are usually weaker
ligands of androgen and estrogen receptors, but they represent
significant circulating precursors for peripheral conversion to
potent androgen and estrogen forms. After release from the adrenal
cortex, adrenal steroids are converted to testosterone or DHT through
enzymatic reactions that contribute substantially to circulating
testosterone levels in pre-pubertal children and women. Furthermore,
the 11-oxygenated androgen 11b-hydroxyandrostenedione is released
in significant quantities by the adrenal glands, and contributes to the
synthesis of 11-keto-testosterone and 11-keto-dihydrotestosterone
which have similar androgen receptor activation potential compared
to testosterone and DHT (23–25). These studies demonstrate that
adrenal androgens are also important when studying the potential role
of sex steroids in IBS patients.
Frontiers in Endocrinology | www.frontiersin.org 3
Sex steroids play a critical role in many processes including
gender development, skeletal growth, brain function, etc. They
are also associated with various diseases, including obesity,
Alzheimer’s disease, autism in males and females. For instance,
testosterone deficiency is associated with obesity and insulin
resistance in males (26); while excessive testosterone is associated
with these traits in females (27). The decline in sex hormone
levels with advancing age also causes undesirable aging-
associated outcomes, for example reduced estrogen around
menopause leads to menopausal symptoms and osteoporosis in
females. Despite the low androgenic potency, adrenal C19
steroids are considered neuroactive due to their ability to
modulate neuroreceptors such as GABA A receptors (28).
These steroids play an important regulatory role in various
functions, for example cognition, anxiety and depression.
Detailed physiological studies that investigate how sex steroids
are associated with IBS disease onset and symptoms are
therefore warranted.
ASSOCIATION OF SEX STEROIDS WITH
IBS SYMPTOMS AND TREATMENT

The female predominance of IBS indicates that ovarian
hormones, particularly estrogens could act as disease
modulating signals. For example, a recent study reported
significantly higher serum estradiol in females with IBS than
FIGURE 2 | Major organs involved in sex steroids production. ACTH: adrenocorticotropic hormone; CRF: corticotropin-releasing factor; DHEA,
dehydroepiandrosterone; DHT, Dihydrotestosterone; FSH, Follicle-stimulating hormone; GnRH, Gonadotropin-releasing hormone; LH, Luteinizing hormone. Adapted
from “Primary and Secondary Endocrine Organs” by BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates.
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healthy controls (29). While most IBS-related studies have
focused on estrogen and ovarian hormones, several studies
have also investigated the role of androgens in disease
incidence. Males with IBS exhibited less male characteristics
when assessed using a male-trait score (30), demonstrating a
potential role for androgens. However, a study found higher
testosterone in male IBS patients compared to healthy controls
(31). In females, patients with polycystic ovary syndrome have
higher androgen levels and IBS risk than other females (32). A
more systematic evaluation of sex steroid levels in IBS, paying
careful attention to age and methodological variables is
therefore needed.

Visceral Hypersensitivity
One key clinical manifestation of IBS is visceral hypersensitivity,
which refers to the heightened sensation to physiological stimuli
in visceral organs. Females generally demonstrate higher
sensitivity to pain (33–35). Yet, a recent report questioned this
generalization after finding no sex differences in visceral
sensitivity in young healthy participants (36). Animal studies
show that sex steroids, in particular estrogen, are important
regulators of visceral hypersensitivity and contribute
mechanistically in a number of ways. Estrogens are generally
reported to increase visceral sensitivity (37–39). However, sex
and concentration of estrogens may affect their mechanisms of
action. For example, one study reported that administration of
high levels of estradiol is analgesic only in female but not male
rats (40). Expression and activation of estrogen receptors also
appears to be important, with ERa and GPER receptor
expression being upregulated and correlated positively with gut
pain in patients with IBS-D (41). Estrogen receptors are
distributed along the entire visceral pain sensation pathway in
rodents (42–44). It is therefore reasonable to assume that
estrogens modulate visceral sensitivity at both peripheral and
central nervous system levels. In the periphery, estrogens
modulate nociceptive responses through altering ion channel
opening, G-protein coupled signaling and nociceptive receptor
expression (45). Among the ion channels, the transient receptor
potential vanilloid-1 (TRPV1) channel is involved in thermal
and pain sensation and is well recognized to play an important
role in visceral hypersensitivity. TRPV1-expressing sensory
fibers are increased in colonic tissue from IBS patients and are
positively correlated with abdominal pain score (46), reflecting
the potential involvement of TRPV1 in IBS. After activation, the
entry of calcium ions transduce the release of neuropeptides or
excitatory compounds which activate pain transmission
pathways and eventually lead to visceral pain and IBS
symptoms (47). Estrogens sensitize TRPV1 and upregulate
TRPV1 expression in sensory neurons in rodents and in vitro
studies (48–50). This response could contribute to the sexual
dimorphism of pain perception. Estrogens can modulate TRPV1
expression via genomic or non-genomic regulatory pathways.
For genomic action, estrogens bind to ER, which translocates
into the nucleus, binds DNA estrogen response elements (ERE)
in the promoter region of the TRPV1 gene and upregulates
transcription of TRPV1 (51). Other mechanisms can also
Frontiers in Endocrinology | www.frontiersin.org 4
promote estrogen modulation of hypersensitivity, including
regulation of opioid receptors (52).

In contrast to estrogens, androgens are usually reported as
antinociceptive. In rats, estradiol increases stress-induced
visceral hypersensitivity in males, while testosterone reduces it
in females (38). In a study of male rats, testosterone negatively
correlated with rectal sensory threshold to balloon distension
(53), suggesting a protective role of androgens. However, other
studies reported that testosterone does not influence visceral pain
in either male or female animal models (40). Androgens also
modulate the TRP family, including TRPV1, but transient
receptor potential melastatin 8 (TRPM8) represents the main
target of androgens (54, 55). TRPM8 is a receptor involved in
cold perception and treatment with DHT elevates TRPM8
expression in vitro (56). Compared with TRPV1, the
involvement of TRPM8 in IBS and pain perception is less clear
and needs further study. A report investigating TRPM8
polymorphism found an association with increased IBS risk
(57). While TRPM8 is suggested to possess both pro- and anti-
nociceptive roles in the intestine (58), ligands of TRPM8 such as
peppermint are believed to possess analgesic effects in IBS
patients (59, 60). Mechanistically, these anti-nociceptive
properties could be mediated through activation of TRPM8 on
peripheral sensory neurons, which subsequently desensitizes
TRPV1 activation (58). Altogether, androgens possibly could
reduce visceral pain through enhancing TRPM8 expression and/
or activity.

Gastrointestinal Dysmotility
Another key clinical manifestation of IBS is altered
gastrointestinal motility, which also defines IBS subtypes. In
general, intestinal transit is slower in women than in men (61)
(62–64), and could contribute to the predominance of IBS-C in
females versus IBS-D in males. Estrogens delay intestinal
motility, possibly through modulation of the nitric oxide
(NO)/cyclic guanosine monophosphate (cGMP) pathway via
ER and GPER activity. Sex-related differences in gut motility
could also relate to higher ERa and ERb expression in females
(65). Elevated ER expression in females is linked to increased
responses to estrogens with stimulation of nitric oxide (NO) and
cGMP secondary messengers, resulting in activation of smooth
muscle relaxation. Similar to ER, GPER-coupling inhibits
intestinal motility by stimulating NO release (66). GPER
agonist G1 and estradiol prolong colonic transit times in both
male and female mice and inhibit colonic muscle contraction in
vitro (67). Also, administration of GPER antagonist G15 reduces
colonic transit time and inhibits the effect of estradiol in female
mice (66). Even though GPER mRNA levels are reported to be
higher in IBS-D compared with IBS-C patients or healthy
individuals (68, 41), the consensus opinion favors involvement
of GPER in alteration of bowel movement in IBS. In addition to
estrogen receptors, TRPV1 may also play a role in motility
disorders (69), although the results have been conflicting. A
study reported that activation of TRPV1 causes neuronal release
of tachykinins which mediate an increase in gut motility (70);
whereas another study showed inhibition of jejunal motility by
May 2021 | Volume 12 | Article 684096
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TRPV1 through the NO signaling pathway (71). The different
doses of agonist administered could represent a confounding
factor (72). Little evidence is available to understand the
regulatory role of androgens on gastrointestinal motility. The
impact of testosterone ranges from showing no influence on
intestinal motility in male rats (73), to more recent studies
reporting that androgens induce intestinal smooth muscle
contraction through a non-genomic calcium sensitization
pathway in intestinal tissues from male rodents (74, 75).
Further investigations are required to confirm whether and
how androgens influence gut motility.

Psychological Symptoms
Apart from gastrointestinal discomfort, IBS patients often suffer
from psychological symptoms, including depression, anxiety and
somatization (Figure 1). Women are more commonly affected
by these symptoms than men, in both IBS patients (76–78) and
healthy individuals (79–81). Low levels of hormones are closely
associated with these psychological symptoms and fluctuations
in ovarian hormones contribute to mood-related symptoms in
females. For instance, depression and anxiety are common
symptoms of premenstrual syndrome (PMS), which occurs
when estrogen and progesterone levels decrease during the
menstrual cycle (82). Estrogen receptors however exert
divergent effects, which could contribute to the inconsistent
effects reported for estrogen treatment on anxiety (83).
Meanwhile, androgen deficiency and AR dysfunction
contribute to anxiety and depression in male rodents, whereas
testosterone therapy alleviates the symptoms in men (84, 85).
Moreover, the adrenal androgen DHEA exhibits antidepressant
properties and is reduced during depression (86, 87).

Relationship Between Estrous Cycle and
Gastrointestinal Symptomatology in IBS
The female predominance of IBS highlights the potential role of
ovarian steroids in the pathophysiology. Fluctuations of
gastrointestinal symptoms during the estrous cycle demonstrate the
importance of ovarian steroids. The estrous cycle is mainly divided
into menstrual phase, follicular phase, ovulation and luteal phase.
Estrogens increase during the follicular phase, and drop rapidly at
ovulation. Levels of estrogen and progesterone then increase gradually
and dominate during the early luteal phase. Women have prolonged
gastrointestinal transit times at this stage compared to the follicular
phase (64, 88). During the perimenstrual phase when ovarian
hormones are generally at their lowest levels, women experience
enhanced visceral sensitivity and gut pain (89). Furthermore, IBS
patients often experience enhanced symptoms during menses (90).
Houghton et al. 2002 reported that rectal sensitivity was increased
during menses in IBS patients but not in healthy volunteers (91).
Other examples demonstrating the effect of sex steroids on
gastrointestinal function include hormone therapy and pregnancy
which are suggested to influence gut motility and visceral sensitivity
(92–94). How sex steroids impact motility and psychological
symptoms in IBS is likely closely related to gut-brain-axis
signaling and include mechanistic components such as serotonin
function and the HPA axis which are considered in the next section.
Frontiers in Endocrinology | www.frontiersin.org 5
Therapeutic Options
Sex-dependent efficacy of currently available IBS treatments has
been reported in various studies and was reviewed recently (95).
Males and females are found to respond differently to some
treatments. For example, alosetron which targets the
serotonergic pathway is more effective in females, possibly due
to sex differences in drug metabolism and receptor-signaling
(discussed in later section) (96, 97). However, there are limited
studies that directly evaluate how sex steroids affect the action of
IBS treatments. When considering their close association with
IBS symptomology, it is possible that sex steroids modulate
treatment efficacy. For example, peppermint oil efficacy against
IBS contains menthol, a TRPM8 activator, as the bioactive
ingredient (98). As androgens also target TRPM8, it could
influence the efficacy of peppermint oil through ion channel
competition. It is therefore important to evaluate how sex
steroids may influence and predict treatment outcomes.
SEX STEROIDS AND THE GUT-BRAIN
AXIS IN IBS

One of the major disease mechanisms proposed in IBS is gut-
brain axis dysregulation. Neuroimaging studies demonstrate that
patients with IBS have different brain morphology when
compared with healthy individuals (99, 100), suggesting
significant contributions of altered brain circuits in IBS
development. Researchers have focused on several components
of the gut-brain axis in IBS. Stress is one of the risk factors
associated with onset and exacerbation of IBS. For instance, a
recent study reported that stress during the COVID-19
pandemic exacerbated clinical symptoms in IBS patients (101).
Stress response mechanisms could therefore play an important
regulatory role in IBS pathophysiology.

Hypothalamic-Pituitary-Adrenal (HPA) Axis
IBS patients are more likely to have been exposed to stress as
early adverse life events (102–105), which is often related to
dysregulation of the HPA axis (Figure 1). Among IBS patients,
those who experienced childhood trauma are more likely to
suffer from somatization and psychological distress (106). The
HPA axis is an important component of the neuroendocrine
system and plays a pivotal role in mediating the stress response.
In response to stress, corticotropin-releasing factor (CRF) is
released from the hypothalamus. This results in the release of
adrenocorticotropic hormone (ACTH) from the pituitary gland,
which causes the adrenal cortex to release glucocorticoid
hormones, such as cortisol, which in turn downregulates the
pathway as a negative feedback loop (107). The HPA axis is
related to various stress responses, including visceral sensitivity
and depression, and is dysregulated in IBS (108), although the
exact association between IBS symptoms and the HPA response
is not consistently reported. In some studies the HPA axis
response is enhanced in IBS patients compared with controls
(109–111), while another study reported the opposite finding
May 2021 | Volume 12 | Article 684096
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(112). Yet another study reported that the HPA response in IBS
patients was enhanced in males but blunted in females (113),
demonstrating the importance of considering sex-bias when
considering the stress response in IBS.

HPA axis activation related to sex-bias is also controversial
(113, 114). Different hormonal status such as estrous cycle,
menopause and pregnancy are known to influence the HPA
axis. Despite numerous studies reporting alteration of HPA axis
signaling by sex steroids, their exact effect is still inconclusive. In
animals, ovariectomy which removes endogenous estrogens in
females reduces the HPA response to stimulation or stress, while
supplementation of estradiol increases and restores the response
(115–118). However, other studies reported an inhibitory effect
(119, 120). This discrepancy could be due to dose and duration of
treatment, as well as model differences and health status of the
animals (121). In humans, while a study reported that estradiol
enhanced the HPA response in men (122), studies in
postmenopausal women reported the opposite response (123).
In addition to the confounding factors referenced above, the type
of receptors involved also influence the effect of estrogens.
Activation of ERa exerts stimulatory effects on the basal state
and during restraint stress, whereas activation of ERb inhibits the
HPA-axis only when this is activated (117, 124).

In contrast to estrogens, androgens generally inhibit HPA axis
activity. Castration in male animals enhances HPA axis activity,
while androgen treatment inhibits the activity (117, 118, 125,
126). The same effect of androgen supplementation are found in
humans (127). In male mice with dysfunctional AR signaling, the
HPA axis response to stress is elevated (128, 129), demonstrating
that AR is involved in HPA axis suppression. DHT, a strong AR
ligand, is often used to examine the effect of androgens and is
shown to inhibit the HPA axis. As DHT cannot be converted into
estradiol, its effect is not likely due to aromatization. Conversely,
DHT can be metabolized into Androstan-3,17-diol (3b-diol)
which binds to ERb and could exert an inhibitory effect on the
HPA axis. Thus, the conversion of DHT into 3b-diol and ERb
activation could mediate some of the effects of DHT (117).

Autonomic Nervous System
In addition to the HPA axis, the autonomic nervous system is
also a major component of the stress response. It consists of the
sympathetic nervous system and parasympathetic nervous
systems. While the sympathetic nervous system prepares the
body for the ‘fight or flight’ response, the parasympathetic system
restores the body to a relaxed state. The autonomic nervous
system regulates body functions such as arterial pressure and
heart rate, as well as numerous gastrointestinal functions
including blood flow, peptide hormone release, visceral
sensitivity and gastrointestinal motility. The autonomic system
is reported to be disturbed in IBS. In general, sympathetic activity
is upregulated while parasympathetic signals are downregulated
in IBS (130), but the alterations could be dependent on IBS type
and sex. Generally, males have higher sympathetic activity, while
females have higher parasympathetic activity. Some studies
focusing on females reported elevated sympathetic signaling
with inhibition of the parasympathetic activity in IBS (131,
132). In another female IBS study, autonomic function was
Frontiers in Endocrinology | www.frontiersin.org 6
similar in IBS patients and healthy controls; while
parasympathetic activity was lower in IBS-C than IBS-D
patients (133). A separate study found that autonomic
imbalance in IBS preferentially occurs in males (130).

Not surprisingly, the sexual dimorphic findings in autonomic
neuronal function relate to sex hormones modulating this
system. For instance, sympathetic activity is often increased in
the luteal phase of the menstrual cycle or during menopause
when estrogen levels are reduced (134). A study reported that
surgical-induced menopause reduced parasympathetic nervous
system activity and shifted this towards sympathetic
hyperactivity (135). Although some studies found no effect
(136, 137), others reported that estrogens in hormone
replacement therapy facilitate parasympathetic activity and
suppress sympathetic signaling in postmenopausal women
(138–140). Estrogen may reduce sympathetic fiber density
directly through affecting ERa expressed in sympathetic
neurons, or indirectly through affecting target tissue or specific
molecules (141). However, another study reported that estrogen
is positively correlated to sympathetic activity in men (142).
Nevertheless, estrogens are generally reported to inhibit
sympathetic activity while sex could possibly influence the effect.

In contrast to estrogens, androgens are associated with
sympathetic hyperactivity in females. In polycystic ovary
syndrome patients, who often suffer from hyperandrogenism,
sympathetic activity was enhanced whereas parasympathetic
signaling was suppressed (143). Furthermore, excess neonatal
androgen in female mice increases sympathetic tone in
cardiometabolic tissues (144). However, several studies
reported that androgens are positively correlated with
parasympathetic activity in males (142, 145). Also, a study
found that males with low testosterone levels were unable to
maintain cardiosympathetic and cardiovagal responses (146).
These inconsistent findings suggest that autonomic control
mediated by sex steroids could be sex-dependent, as well as
modulated by health and hormonal status of the individual.

Enteric Nervous System
The enteric nervous system is often referred to as the “little
brain” or ‘brain-in-the-gut’ and is the largest division of the
peripheral nervous system. It is also considered as the third
division of the autonomic nervous system. A distinguishing
feature is it can act independently of the brain, but usually
communicates with the CNS for regulation of enteric function
and information transmission to the brain. The enteric nervous
system is generally organized into submucosal and myenteric
plexi that connect to the gut lumen via enteroendocrine cells in
the epithelial layer and to the brain by vagal, spinal and sacral
afferent nerves (147). The enteric nervous system regulates
secretion and absorptive capacity in the intestine, as well as
motility. In a rodent IBS model, animals exposed to stress
exhibited more secreto-motor neurons in the submucosal
plexus and less inhibitory musculo-motor neurons in
myenteric plexus (148). There are also sex-dependent
differences in the enteric nervous system, for example distinct
structural and functional characteristics of enteric neurons in
pigs (149, 150). Numerous components related to enteric
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nervous system function are influenced by IBS and sex steroids,
although these tend to be more subtle.

Serotonin (5-HT) is a neurotransmitter closely associated
with central and enteric nervous system function. It represents
a central regulator of diverse physiological activities, including
sleep, mood and cognition. It also plays an important role in
visceral sensitivity and gut motility (151). Although serotonin is
produced by central and peripheral nervous systems, the primary
source is from the gut enteroendocrine cells that also express
chemosensory receptors and transmit sensory signals from the
gut lumen to the nervous system. Upon local mucosal
stimulation, enteroendocrine cells secrete 5-HT which activates
5-HT3 and 5-HT4 receptors on enteric neurons to facilitate
motor and sensory responses (152). Serotonin levels are
affected by sex and hormonal status associated with estrous
cycle. Compared with females, males have higher 5-HT
synthesis rates in the brain after acute tryptophan depletion
(153). Female IBS patients show greater 5-HT synthesis in the
brain compared with healthy females, while this difference was
not evident in IBS males (154). The sex difference in 5-HT
signaling pathways in IBS can also be seen in response to drugs.
For instance, 5-HT3 receptor antagonists, including alosetron is
more effective in females than males (96). Estrogens promote
serotonin synthesis (155) and animals with an ovariectomy have
reduced serotonergic neuronal numbers and expression of 5-HT
related genes (156). It is believed that the drop in estradiol levels
during menopause or after giving birth reduces serotonin activity
and causes mood disorders (157). Estrogens also modulate the
expression of the serotonin reuptake transporter (SERT) (158),
which retrieves released serotonin into neurons and controls the
amount of bioavailable circulating neurotransmitter. This effect
was reported to be dependent on the drug exposure length (159).
Furthermore, estrogens affect 5-HT receptor expression. For
instance, estradiol upregulates the density and ligand binding
to the 5HT2A receptor in brain in postmenopausal women (160,
161). The 5HT2A receptor enhances smooth muscle contraction
(162), and its polymorphism is suggested as a risk factor in IBS
(163). Regarding the effect of androgens, a higher testosterone
level is associated with higher serotonin tone in healthy men
(164). Androgens upregulate 5-HT synthesis and SERT
expression and ligand binding (165, 166). At the same time,
serotonin modulates androgen reaction by suppressing AR
activity (167).

Another important cellular component that is closely related to
enteric nervous system differences in IBS are mast cells, which serve
as neuroimmune effectors in the intestine. After activation, mast
cells secrete mediators such as histamine and protease. These
mediators signal to enteric neurons and induce visceral
hypersensitivity or alter intestinal muscle contraction. In IBS,
mast cell abundance is correlated with clinical symptoms
including abdominal pain, bloating, and depression (168, 169)
(170). Mast cell activity is also influenced by gender and sex
steroids. In rodents, female mast cells release more histamine than
male-derived cells in response to sex hormones (171). Also, female
mice have higher mast cell capacity to synthesize and store
mediators such as histamine, as well as experience greater
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intestinal permeability and serum histamine responses to restraint
stress (172). In terms of hormonal effect, mast cells express estrogen
receptors and are activated by estrogens. A previous study reported
that estradiol binds to ER-a on mast cells and triggers activation via
enhancing influx of extracellular Ca2+ (173). This effect is likely
non-genomic due to the rapid onset of the response. Various studies
have also demonstrated that estrogens can enhance mast cell
numbers and their neuroimmune-targeted secretions (171–177).
In contrast to estrogens, androgens appear to inhibit mast cell
activity. A recent article reported that perinatal androgens reduce
mast cell secretion and impart protection in mast-cell associated
disease (178). Another study reported that exposure of human skin
mast cells to testosterone reduced pro-inflammatory cytokine
production, reflecting an anti-inflammatory response (179).
GUT MICROBIOTA

In recent years the notion of the gut-brain axis has been extended
to include the microbiome, termed the ‘microbiota-gut-brain
axis’ (180). The gastrointestinal tract harbors trillions of bacteria
that signal via the gut-brain axis through many diverse
interactions including serotonin release (181, 182). The gut
microbiota play an important role in host health, and
alterations in composition and function could contribute to
IBS pathogenesis and therapeutic efficacy (183). Despite a lack
of consensus on distinct microbial differences in IBS, intestinal
microbiome features such as community richness has been
proposed to correlate with severity of IBS symptoms (184,
185), but these findings are more often than not generalizable.
Not only does the microbiota influence gut development and
function, but it can also exert impact on extra-intestinal
symptoms including depression (186). Importantly, it is highly
likely that gut microbiota composition is influenced by IBS
symptoms, particularly bowel movement which affect time and
metabolic products that result from the interaction between the
gut microbiota, host and dietary components.

Gut microbiota composition is closely associated with sex
steroid levels in a reciprocal manner. In humans, systemic
estradiol and testosterone are correlated with gut microbial
diversity and profile in males and females (187, 188). The gut
microbiota plays a pivotal role in regulating steroid metabolism,
containing enzymes such as sulfatases and glucuronidases that
deconjugate steroids for reabsorption in the intestine (189).
Germ-free mice have high levels of fecal conjugated steroids
(190), which is also observed after antibiotic use in humans, for
example ampicillin use during pregnancy (191). Additionally, the
gut microbiota degrade steroids into other metabolic products.
Some bacteria influence the potency of estrogens by converting
estrone into a more potent form estradiol and vice versa (192)
(193). Specific bacteria e.g. Steroidobacter denitrificans and
Comamonas testosteroni transform and utilize sex steroids
(194, 195).

In addition to the modulation of steroid metabolism by
microbes, sex steroids may also regulate gut microbiota
community structure and function. Males and females exhibit
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different microbial profiles in animals and humans (196, 197).
For example, Akkermansia is reported to be more abundant in
females than in males (198, 199). Perturbations of sex hormones
after ovariectomy or administration of sex steroids to animals
shifts their gut microbiota profiles (200, 201). Steroids may also
play a role in changing microbiome profiles during pregnancy
and after menopause (202, 203), although several other factors
undoubtedly influence these microbiota communities. Sex
steroids influence gut microbiota by altering intestinal adaptive
immune responses, as well as bacterial function. For instance,
estrogens enhance the level of secretory immunoglobulin A (IgA)
that binds to and controls bacterial growth (204). Conjugated
estrogen and bazedoxifen reduce fecal b-glucuronidase (GUS)
enzyme activity, which is involved in microbial deconjugation of
steroids (205).

In view of the interplay between sex steroids and gut
microbiota, bacteria could play an important role in mediating
the effects of steroids and contribute to sexual dimorphism in
IBS. This possibility is supported by the example of type 1
diabetes. As reported by a study in rodents, the female-
predominant incidence of type 1 diabetes is dependent on
microbiota (206). Serum testosterone is higher in germ-free
female mice than in SPF females, while the opposite is evident
in males. Transfaunation of male cecal content into female
weanlings not only alters the recipients’ microbiome, but also
increases their testosterone level and protects them from type 1
diabetes and autoimmune disease. Another study in mice
demonstrated that the microbiota is closely associated with
sex-bias in type 1 diabetes (196). Apart from type 1 diabetes,
modulation of gut microbiota profiles by sex steroids also
mediates their impact on metabolic syndrome (207). These
studies provide insight for future studies to evaluate the
association between sex steroids and the gut microbiota in
IBS pathophysiology.
EPIGENETIC MODULATION OF THE
MICROBIOME-GUT-BRAIN-AXIS IN IBS

IBS is a complex and multifactorial gut-brain axis disorder and
epigenetics is believed to be one of the key mechanisms that links
environmental factors to genetics in IBS. Epigenetics is the study
of heritable changes of gene expression which are reversible and
do not alter DNA sequence. The changes often involve
mechanisms including DNA methylation, posttranslational
histone modification and non-coding RNA. In an epigenetic
model of IBS (208), it is proposed that early adverse life events
result in epigenetic changes of the HPA-axis that subsequently
alter responses to environmental stressor and enhanced cortisol
production. Altered cytokine responses and 5-HT signaling
pathways are affected and could contribute to the
manifestation of IBS symptoms. In humans, genome-wide
DNA methylation profiling of peripheral blood mononuclear
cells of IBS patients identified various genes with altered DNA
methylation status (209). In animal stress-induced IBS models,
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differentially methylated or expressed genes were identified,
demonstrating the influence of stress on the epigenome (210).
Furthermore, alteration of epigenetics by histone deacetylase
inhibitor reduced visceral sensitivity in stressed animals (211).
In our own studies, we have demonstrated that intestinal barrier
dysfunction, is associated with epigenetic signals to early life
stressors, and these mechanisms could be linked to intestinal
inflammation and abdominal pain (212, 213).

Epigenetic changes are evident in response to various factors
including dietary intake, physical activity and drugs. These
factors are also closely associated with the gut microbiome,
while the microbial metabolites influence epigenetics and drive
host-microbial interaction. The gut microbiome mediates the
effects of several environmental factors on enteric
neurotransmission via epigenetic regulation (214). Low
FODMAP diet, a low fermentable carbohydrates diet which
improves IBS symptoms, modulates gut microbiota
composition and reduces SCFAs which are recognized as
histone deacetylase inhibitors and affect epigenetic processes.
In a mouse study, gut microbiota regulated global histone
acetylation and methylation, while the effect is disturbed by
western diet consumption and is recapitulated by SCFAs
supplementation (215). In another study, the SCFA butyrate
contribute to the epigenetic effect on differentiation of colonic
regulatory T cells (216). Other studies also demonstrated SCFA
effects on histone modification in colon and brain in rodents
(217, 218). These reports demonstrate that SCFAs are microbial
products that can modulate epigenetic signals in IBS, possibly via
altered microbiome-gut-brain axis signaling.

Sex steroids are also important epigenetic modulators. The
crosstalk between the epigenome, sex steroids and their receptors
is proposed as a mechanism for sexual dimorphism of nervous
system and immune function. Estrogens and ER serve as
epigenetic modulators through different mechanisms including
alteration of DNA methylation (219) and histone modifications
(220). These signals can influence various sex-dependent
phenotypes, including enzyme expression, cognition and
reproductive function (221). At the same time, epigenetic
effects on ER result in changes in its gene expression and
response to estrogen (222), as well as host phenotype including
endocrine-resistance in breast cancer (223). Similar to estrogens,
androgens and AR also possess epigenetic modulating effects.
These signals are reported to be critical in polycystic ovary
syndrome, in which hyperandrogenism is the primary feature
(224, 225). Furthermore, epigenetic regulation of AR by DNA
methylation and histone acetylation was suggested to be
associated with endocrine disorder and prostate cancer (226,
227). Several studies have focused on association of early
androgen exposure and the epigenome during neuronal
developmental stages. Perinatal testosterone modulates histone
acetylation during brain development in mice (228). Disruption
of epigenetic modulation alters the masculinizing effect of
testosterone on sexually dimorphic brain structure
development in mice (229). Taken together, sex steroids and
gut microbiota modulate host phenotype and the gut-brain axis
through epigenetic mechanisms. Future studies investigating
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how epigenetics are involved in the interplay between microbiota
and sex steroids in IBS are needed.
CONCLUSION AND FUTURE
PERSPECTIVES

Sex steroids are closely associated with IBS onset and symptoms
in multiple aspects. However, results regarding their exact role in
IBS and underlying mechanisms have been inconsistent. At
present, it is not clear whether an increase in sex steroids is
beneficial or causative in IBS. This is partly explained by the
complicated nature of steroid chemistry and their mechanism of
action. Inconsistencies are also reflected in clinical cohort design
and animal models used for study interpretation, emphasizing
the need to stratify trial design by sex and standardizing
treatment dose when studying sex steroids. Furthermore,
whether gut microbiota can mediate the effects of sex steroids
on IBS is still unclear and warrants further investigation as a
precedent has already been set in other diseases. There is also
little information about how adrenal androgens and the
metabolic products of sex steroids are associated with IBS and
gut-brain-axis signaling. This review provides a basis to continue
Frontiers in Endocrinology | www.frontiersin.org 9
the exploration of the complex interplay between sex steroids
and metabolites, their receptors and the microbiome-gut-brain
axis in the pathophysiology of IBS.
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