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Abstract: Mobile crowdsensing (MCS) is a sensing paradigm that allows ordinary citizens to use
mobile and wearable technologies and become active observers of their surroundings. MCS services
generate a massive amount of data due to the vast number of devices engaging in MCS tasks, and the
intrinsic mobility of users can quickly make information obsolete, requiring efficient data processing.
Our previous work shows that the Bloom filter (BF) is a promising technique to reduce the quantity of
redundant data in a hierarchical edge-based MCS ecosystem, allowing users engaging in MCS tasks
to make autonomous informed decisions on whether or not to transmit data. This paper extends the
proposed BF algorithm to accept multiple data readings of the same type at an exact location if the
MCS task requires such functionality. In addition, we thoroughly evaluate the overall behavior of our
approach by taking into account the overhead generated in communication between edge servers
and end-user devices on a real-world dataset. Our results indicate that using the proposed algorithm
makes it possible to significantly reduce the amount of transmitted data and achieve energy savings
up to 62% compared to a baseline approach.

Keywords: mobile crowdsensing; Bloom filter; multi-access edge computing; mobile edge computing

1. Introduction

The Internet of Things (IoT) reached the peak of expectations, according to Gartner
in 2016 [1], and we are witnessing a consolidation of the developed technologies and
paradigms beyond initial trials and prototype solutions. IoT platforms are increasingly
deployed to support and connect many heterogeneous IoT devices and store and con-
tinuously process the generated data streams. Thus, the digitalization of our everyday
environment resulted in a vast number of novel IoT services addressing the needs of
citizens (e.g., monitoring of personal pollution exposure or live traffic data). Eventually,
this has evolved into a concept called mobile crowdsensing (MCS), which utilizes many
users to create knowledge from data generated by moving devices with various sensing
capabilities without requiring the deployment of a particular physical infrastructure. Guo
et al. proposed a formal definition of MCS as “a new sensing paradigm that empowers ordinary
citizens to contribute data sensed or generated from their mobile devices, aggregates, and fuses the
data in the cloud for crowd intelligence extraction and people-centric service delivery” [2]. In other
words, users carry mobile sensing devices while moving through the city to become a rich
source of contextual information about their environment. Although citizens sense local
environments, the collective usage of sensed data can enable dense spatiotemporal sensing
coverage and create awareness about specific large-scale phenomena, thus improving life
quality and knowledge about their local community [3]. A wide range of MCS applications
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that rely on the power of the crowd to collectively sense the environment and share data of
common interest have been used across several domains, from environmental and traffic
monitoring to healthcare and social networks [4]. The main goal of such applications is to
extract knowledge about the sensed phenomena by using different data analytic techniques
and informing citizens about their surroundings, which can affect their decisions and
behavior while being mobile. Due to the large number of devices that can be active in
parallel, the MCS ecosystem must efficiently process data. At the same time, it also has to
quickly disseminate information to interested users, as their context changes frequently,
and information can become stale if it is not delivered as soon as it becomes available.
Furthermore, users’ inherent mobility leads to dynamic sensing coverage of geographical
areas, where some areas may be densely covered with measurements. In contrast, others
may remain unexplored or with insufficient data readings, posing additional challenges for
data acquisition and device management [5].

Due to the volatile volumes of sensor data, in the beginning, a cloud infrastructure
seemed suitable for the implementation of an elastic, scalable, and modular MCS ecosystem.
All components responsible for processing integrated data streams were located in the
cloud, while various data sources and consumers were deployed on mobile devices with
connections to the Internet, as presented in [6]. Even though cloud-based architecture
provides enormous computing capabilities and storage capacity, continuous processing of
incoming data streams might become relatively inefficient in large-scale MCS ecosystems
when there are numerous concurrent connections between user devices and cloud servers.
Data processing and business intelligence are eventually brought closer to end-users to
resolve these issues. With the help of 5G technology, which adds powerful processing
capabilities to the radio access network [7], the MCS ecosystem design nowadays shifts
to a distributed architecture where the cloud service is only responsible for coordinating
processing components deployed at the network edge. Multi-access edge computing (MEC),
previously known as mobile edge computing, has already been acknowledged as a critical
enabler of improved context-aware services that move computationally demanding tasks
previously executed on the central server in mobile users’ proximity, thus lowering data
propagation latency and bandwidth consumption. In our previous work [8], we proposed
an edge-based architecture for MCS. In such distributed environment, mobile edge (ME)
servers, placed between physical sensing devices and the cloud, take responsibility for
device management in their geographical area. In particular, they keep track of available
(and connected) devices, monitor sensor data acquisition, and aggregate received data
readings before sending a final result to the cloud. Such hierarchical processing reduces
the amount of raw data that is transmitted over the network, as edge MCS components
(i.e., ME hosts) control the data acquisition process in their deployment area by providing
instructions to mobile devices on whether to send their data readings or not.

In this paper, we address the problem of data optimization, which entails reducing
the amount of data transmitted over the network while also providing adequate data
coverage following application requirements because collecting and transmitting all data
is resource-intensive and usually not necessary. Specifically, we present a distributed
algorithm based on the Bloom filter (BF) data structure, which tries to filter redundant data
close to its origin and thus reduce the amount of transmitted raw data as much as feasible.
By using the BF structure, we enable mobile devices to autonomously decide whether to
collect and transmit data readings or not, without the need for cloud-based supervision and
coordination. More specifically, each end-user device can independently decide whether
sensed data is redundant (and should be discarded) or valuable (and should be sent to
the ME host for further processing) based on its BF data structure filled with sent data
readings. At the same time, the edge MCS service performs data aggregation, keeps the
BF structure up-to-date, and disseminates BF to mobile devices located in its deployment
area when it recognizes that a data source is not synced. The BF data structure carries
information about data readings obtained from physically collocated devices (i.e., located
in the same geographical area), and it does not provide a significant overhead in terms
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of processing, memory, and bandwidth consumption. An initial version of our BF-based
distributed algorithm was introduced in [9]. In contrast to the previous publication, this
paper includes the following new contributions:

• We present an extended version of the BF algorithm which can accept multiple data
readings of the same type at the same location, both at the end-user device and ME
host, as otherwise, the data production will be immediately stopped on all devices due
to a BF structure inherent characteristics (i.e., inserted elements cannot be removed
from a BF structure), to allow to compare similar data readings from multiple sources if
MCS task requires such functionality in the edge-based distributed MCS environment.

• We outline the main procedures of the proposed BF algorithm.
• We run the same experiments as in [9] to evaluate BF regarding filter size and proba-

bility of false positives and analyze the number of lost data readings on a new and
significantly larger real-world dataset collected in Seoul, South Korea [10], and confirm
our initial findings.

• We include novel evaluation results on the same dataset to understand the overall
behavior of the proposed BF approach by considering the overhead generated in
communication between edge host and end-user devices when a user changes its
location or sends redundant data reading.

Our results on a real-world dataset indicate that a BF is a valuable data structure to
orchestrate autonomous data acquisition on users participating in MCS tasks. In particular,
we show that using the proposed BF algorithm makes it possible to obviate redundant user
activity and achieve energy savings up to 62% compared to a baseline approach requiring
all generated data. The main advantage of the proposed hierarchical architecture is that
there is no central point of failure as the data processing is distributed across multiple ME
hosts, and all end-user devices can autonomously decide when to transmit data. At the
same time, the actual energy savings depends on a specific MCS application and its setup.

The remainder of this article is organized as follows. First, in Section 2, we briefly
survey related work addressing hierarchical fog and MEC solutions focusing on energy-
efficient sensing, and the usage of Bloom filter across different domains. Then, we explain
in detail a distributed edge-based architecture for MCS and present an algorithm that
enables mobile devices to control the data acquisition process autonomously in Section 3.
Finally, we extensively evaluate the applicability of the proposed approach and overhead
introduced by filter control messages on a real-world dataset in Section 4 and conclude the
paper in Section 5.

2. Related Work

This section gives a brief overview of the issues discussed in the paper. We first present
notable works from the literature related to the hierarchical edge-based MCS environment,
then energy-efficient sensing techniques in MCS, and, finally, the applicability of BF data
structure across different applications domains.

2.1. Edge-Based MCS Environments

In recent years, edge computing has been recognized as a promising approach to
facilitate data processing and reduce the amount of raw data transmitted to the cloud
servers in distributed MCS environments. One of the early works presented in [11] is
Mobile Edge Capture and Analytics (MECA), a middleware for data collection from mobile
devices, in which an edge layer is used to receive requirements from the back-end servers,
manage the data collection among a subset of local devices, and run edge analytics for
primitive data processing. RedEdge is a novel big data processing solution that enables
the processing of big data streams near the data source in mobile edge cloud computing
environments [12]. In contrast, ref. [13] focuses on preserving privacy and dealing with
malicious participants in edge computing enhanced MCS systems. Bonomi et al. proposed
Fog Computing [14], a hierarchical and distributed platform that provides computational
resources and storage to enable new services at the network edge. At the same time,



Sensors 2022, 22, 879 4 of 27

Jayaraman et al. presented a distributed data analytics platform for MCS applications in
which a fog layer is responsible for local computing and data storage [15]. Luan et al. [16]
presented a three-tier Mobile–Fog–Cloud architecture that deploys highly virtualized
computing and communication facilities at the proximity of mobile users. In contrast, Tang
et al. [17] proposed a four-layer hierarchical distributed fog computing architecture that
enables parallel data processing at the edge of the network and is, therefore, suitable for
deploying smart city services. Another relevant approach described in [18] proposed an
IoT-enabled MCS framework based on the oneM2M standard architecture. In contrast,
in [19], Bellavista et al. proposed human-driven edge computing (HEC) as a new model
to ease the provisioning and extend traditional MEC coverage solutions. They further
extended their work in [20] by introducing the concept of social MEC (SMEC) proxies in
the MCS environment, i.e., they add SMEC nodes between other devices and cloud, based
on the incentives and centrality measures concerning other people in the group. In [21],
the authors focused on the synergy between MCS and MEC and considered a possible
extension of the HEC architecture by introducing mobile edge nodes operated by the
users’ devices that can be selected as substitutes for fixed edge servers. In particular, they
proposed a probabilistic model to estimate the number of nodes that need to be promoted
as mobile MEC nodes to assist the MCS data gathering. Chen et al. [22] proposed a three-
layer MCS architecture in which edge servers are used to process raw data, protect users’
privacy and improve response time, and propose a pricing incentive mechanism to address
the problem that users may not actively participate in completing tasks by maximizing
social welfare. Similarly, in [23], the authors proposed ParticipAct, an edge-enabled MCS
platform that uses edge nodes to identify possible emergency crowd scenarios and deal
with users’ rewards using a federated blockchain network. In contrast to the identified
papers, which mainly deal with data processing at the network edge, in this paper, we
focus on sensing process management to reduce the amount of redundant data transmitted
over the network without the need for additional user actions.

2.2. Energy-Efficient Sensing in a Distributed MCS Environment

Liu et al. [24] proposed to leverage emerging deep reinforcement learning techniques
for directing multiple mobile devices to collect data in a target area for MCS while ensuring
geographical fairness and minimizing the energy consumption in a fully distributed man-
ner. In [25], the authors proposed a new computing paradigm, named Edge Mesh, which
distributes the decision-making tasks among edge devices within the network instead of
sending all data to a centralized server, while in [26], the authors used game theory princi-
ples to select tasks and manage their scheduling on the network edge. Valerio et al. [27]
considered a fog-based architecture for MCS and analyzed the trade-off between accuracy
and consumed energy for collecting data from IoT sensors and performing distributed data
analytics on mobile nodes passing by IoT devices, in addition to fog gateways at the net-
work edge. They have shown that it is possible to significantly reduce the system’s energy
consumption by using some short-range communication technologies while maintaining a
satisfactory accuracy compared to a centralized cloud solution. Similarly, Alenazi et al. [28]
aimed to minimize the total power consumption of the network by using a distributed
machine learning approach in which the processing can take place in intermediary devices
such as IoT nodes and fog servers in addition to the cloud. Another interesting approach is
presented in [29], where authors proposed a distributed algorithm for adaptive scheduling
of the video sensor node’s activity that enables each node to decide when to enter a sleep
mode based on the neighbors’ activity, without compromising the coverage of its monitored
region. A work presented in [30] introduced a distributed data collection framework for
opportunistic MCS systems intending to minimize the sensing cost and data delivery to
the participants while at the same time maximizing data collection utility. Similar to ours,
the proposed mechanism prevents users from contributing too much data, and each device
can decide the timing and duration of the sensing process.
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2.3. Bloom Filter

In this paper, we focus on the applicability of BF data structure in the MCS domain, i.e.,
to determine whether a data item is already submitted to the system or not. The BF structure
is well-known and widely used among different domains, especially for efficient testing of
whether an item exists in a set. For example, Bloom filters are extensively used in spell-
checking software to determine if the word is a member of the particular language [31],
or they can be used for bar code recognition and processing [32]. Furthermore, they are
applied for distributed search and caching in the web [33] and P2P environments [34],
where the main goal is to find the exact location of resources, while we aim to determine
whether the data is being produced on some of the devices at a specific location and
time. In addition, one interesting approach is presented in [35], where BF is used to
ensure efficient and secure matching of sensing users and tasks on end-user and fog nodes,
while we want to ensure that end-user devices can autonomously decide to transmit only
valuable data through the network. Xue et al. [36] tried to achieve secure and fine-grained
MCS data sharing in which forward secrecy is based on the BF data structure. Similarly,
Jinbo et al. [37] dealt with the MCS data privacy and proposed a BF-based user-union
matching scheme to protect it, while Siddiqui et al. [38] proposed a BF-based secure data
provenance mechanism suitable for resource-constrained devices in IoT networks. A secure
cloud storage service for an IoT environment is presented in [39], where BF is used to verify
the integrity of data saved in the cloud. The context-aware addressing and routing method
described in [40] uses BFs along the routing protocol to express context information inside
the IoT domain. In [41], the authors proposed a fog-based new technique for distributing
certificate revocation information across IoT devices in which BF is used to reduce the
size of the revocation list while maintaining an acceptable overhead. Another approach
closely related to ours is presented in [42], where the authors employed BF to minimize
the amount of data transmitted during the tag identification in large-scale RFID-based
IoT systems. Amoretti et al. [43] proposed a distributed naming service for the IoT that
relies on BFs to generate compact names from node descriptions, while Singh et al. [44]
proposed the Accommodative Bloom filter approach to deal with massive data streaming
from IoT sensor devices. In [45], the authors deal with an efficient broadcasting mechanism
in IoT networks. In particular, they used BFs to prevent IoT nodes from being flooded
with unwanted packets previously received. The concept most similar to ours is presented
in [46], where BFs are used to identify the items for data dissemination in wireless sensor
networks without global topology information. Additionally, BFs are used for packet
routing and forwarding to improve network router performance [47], to increase network
security (e.g., virus detection [48]), and in many other applications.

3. Materials and Methods

This section describes an edge-based architecture for MCS and algorithms used to
achieve autonomous data acquisition in such a distributed environment. More precisely, we
first present an edge-based decentralized MCS ecosystem. Then, we give a brief overview
of the Bloom filter data structure that we use to communicate existing sensor readings
between data sources and edge MCS services. Then, we present an algorithm that runs on
mobile devices and enables them to autonomously control the data acquisition process by
monitoring their local filter structure and deciding whether a reading is valuable to the
system or not. Finally, we outline the main algorithm procedures.

3.1. Decentralized Edge-Based MCS Environment

MCS takes advantage of the widespread availability of mobile devices to monitor a
variety of phenomena of common interest in which citizens can act as both data sources
and consumers. An MCS ecosystem consists of two categories of users who communicate
through an MCS service: those who are interested in a specific data (requesters) and those
who can create the data of interest (workers), where the interest in sensor data can be seen
as an MCS task. We denote workers as data sources in the MCS ecosystem. Data sources
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can be both humans and devices, typically mobile, and change geographical location
over time. The data produced by workers needs to be geo-tagged, either by a precise
location determined by GPS or cell identifier (e.g., a mobile network cell or MGRS area
identifier—Military Grid Reference System (MGRS) is the geo-coordinate standard used
by the North Atlantic Treaty Organisation (NATO) for locating points on the Earth.) as
location represents the essential contextual information of the worker’s result (e.g., sensor
data reading). At the same time, mobile devices can be used by task requesters, denoted as
data consumers, to define new tasks and to receive the data of interest from the cloud. In
general, entities in the MCS ecosystem interact as follows: A requester creates a new task,
which is forwarded to the MCS service responsible for locating at least one eligible worker
capable of collecting data for this task. Each task has related conditions (the geographical
region of interest, required sensors, incentives, etc.) that must be met within a particular
time frame, or the task will expire. The MCS service disseminates the task to all potential
workers who can accept it and begin the sensing process if a good match exists between
workers’ available sensors and task requirements. After collecting data, workers transmit
their results to the MCS service, which aggregates all incoming data and disseminates
it to interested parties (i.e., task requesters) in near real-time. As mobile devices usually
provide limited filtering and aggregation mechanisms, workers generally deliver all raw
data readings to the MCS service, governing the data production process. In addition,
worker mobility patterns often result in a dynamic sensing coverage, with some locations
extensively covered by data readings and others suffering from a lack of available data.
Furthermore, the demand for MCS data fluctuates throughout time, so certain places
may not require data coverage at all. Therefore, in order to conduct the data acquisition
process in an energy- and bandwidth-efficient manner while preserving MCS application
quality requirements (in terms of required data accuracy and frequency of data readings),
intelligent data acquisition methods need to be applied in the MCS ecosystem to optimize
the number of collected data readings.

In our previous [8] work, we have shown that MCS services can be decentralized
by using multi-access edge computing (MEC) principles and moving computation in the
proximity of mobile users. In such architecture, edge servers, located between physical
sensing devices and the cloud, take responsibility for the management and coordination of
MCS users in the geographical area under their supervision, as shown in Figure 1. Such
distributed hierarchical edge-based MCS ecosystem consists of one cloud coordinator,
several ME hosts deployed in different regions of interest, and multiple end-users acting as
both workers and requesters in the system. The cloud coordinator has global knowledge
about the MCS ecosystem because it knows all users and ME hosts connected to the system
and all existing tasks. When a new task is submitted to the system, the coordinator forwards
it to the corresponding ME host(s) based on its geographical area of interest, so an ME
host knows all active tasks in its deployment area. Similarly, the first time a new worker
enters the system, the coordinator looks for an ME host in the geographical region where
the worker is currently situated. If there were no users in this area before, the coordinator
dynamically deploys a new ME host in the area. Each ME host is responsible for one
square-shaped geographical area with a side length of 10 km which has a unique MGRS
identifier. Afterward, the worker announces his/her presence and capabilities (i.e., type
of sensed data) to the corresponding host, so an MCS service operating on this ME host is
aware of all possible workers in its deployment area and their capabilities. As a result, the
ME host will assign active tasks to the new worker only if he/she can potentially complete
them, thus preventing the worker’s device overload. Then, the new worker can start the
sensing process and submit data to the MCS service running on the corresponding ME
host. ME hosts have substantial computational power compared to mobile devices, so
they can perform data aggregation and processing of all data produced by workers under
their responsibility, disseminate results and control the data acquisition by managing all
workers in the area. Each ME host sends the aggregated data for its deployment area to the
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cloud coordinator, who performs different analytics and correlates received data to extract
knowledge about the sensed phenomena for a larger area.

Figure 1. Decentralized edge-enabled MCS architecture.

3.2. Bloom Filter

To enable autonomous decision-making of a mobile device regarding its participation
in sensor data acquisition, processing, and transmission to both edge and cloud servers, we
have used a well-known Bloom filter (BF) approach. BF is a probabilistic data structure
invented by Burton Howard Bloom in 1970 and is used to determine whether an element
belongs to a set or not [49]. The fundamental feature of this structure is that it has a low rate
of false positives, claiming that an element is part of the set when it is not, but never false
negatives, stating that an element was not in the set when it was inserted [50]. A BF is an
array of m bits that represents a set S = {r1, r2, . . . , rn} of n elements, which are all initially
set to 0. The idea is to evenly map elements of a set to random integers in the range 1, . . . m
by using k independent hash functions, hi(r), 1 ≤ i ≤ k. In the context of MCS, an element
is each data reading produced by the end-user device, and the set represents readings
created by all devices in an km MGRS area. To encode data reading in the BF, we use the
information about a measured property and location where this reading was produced. We
need to discover the bits hi(r) that should be set to one for 1 ≤ i ≤ k to add a reading (i.e.,
an element) r in a filter (and submit it to the ME host, so that the host can process it and
disseminate it to all interested requesters). To test whether reading has previously been
submitted to the ME host, we need to see if it has been encoded in a BF. To phrase it another
way, we need to compute the k hash functions over the element and check if all bits in the
array’s relevant places are set to 1. If at least one bit is set to 0, the reading r is valuable as
it almost certainly does not exist in the ME host. If all bits are 1, either r is already sent
to the ME host, or bits were set to 1 during the insertion of other elements, resulting in a
false positive. The number of hash functions determines the likelihood of a false positive
p, the number of added elements, and the length of the BF, where k is typically a constant
much smaller than m and proportional to n. To calculate p, we first assume that each array
position is chosen with equal probability by a hash function. As a result, if a BF has m bits
and k hash functions, the probability that a bit is not set to 1 by any of the hash functions is
(see Equation (1)):

p(b=0) = (1− 1
m
)k, (1)

where p(b=0) is the probability that a bit is 0, m is the number of bits, and k is the number of
independent hash functions in a BF structure. After inserting n elements to the filter, the
probability that a certain bit is still 0 is (see Equation (2)):
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p′b=0 = (1− 1
m
)kn, (2)

where p′(b=0) is the probability that a bit is 0 after the insertion of n elements, while the
probability that it is 1 is (see Equation (3)):

p′b=1 = 1− (1− 1
m
)kn, (3)

where p′(b=1) is the probability that a bit is 1 after the insertion of n elements. To decide if a
reading has already been produced (i.e., an element belongs to a set), we must determine
whether or not all of the k array positions in the filter computed by the hash functions are
set to 1. When the element is not part of the set, the probability of this happening is (see
Equation (4)):

p = (1− (1− 1
m
)kn)k ≈ (1− e−kn/m)k, (4)

where p is the probability of false positives, i.e., all of the k array positions in BF are set to 1.
That is, as the number of bits m increases, the chance of false positives drops and grows
when the number of inserted items n increases. We have to minimize Equation (4) to get
the optimal number of hash functions k. As a result, the value of k that minimizes the false
positive probability p for a given m and n is (see Equation (5)):

k =
m
n

ln 2. (5)

The number of bits in a BF m must expand linearly with the number of elements
inserted in the filter n to maintain a stable likelihood of false positives. As a result, for
the desired number of items n and false positive probability p, the filter length m is (see
Equation (6)):

m = − n ln p
(ln 2)2 . (6)

We can calculate the number of hash functions k and filter size m based on those
parameters using Equations (4)–(6), as the expected number of different readings that must
be inserted into a BF can be obtained from MCS service requirements and a priori known
data, and we can set the desired probability of false positives p for an MCS service.

Removing an element from a BF is not possible because false negatives are not permit-
ted. To remove an element from a filter, we need to set any of hi(r) bits to 0. However, if
other elements in a filter are mapped on that bit, they would also be removed, introducing
the possibility for false negatives. This BF characteristic is in line with the MCS behavior, as
only readings that have already been sent to an ME host are encoded in the Bloom filter
(and processed by the ME host), and therefore they cannot be revoked.

3.3. Decentralized BF Algorithm

The algorithm’s fundamental idea is to utilize a BF membership test on a mobile node
to determine whether or not a new data reading should be reported to the ME host in the
period under consideration. As already stated in Section 3.1 in the proposed hierarchical
edge-based MCS ecosystem, each ME host is responsible for one square-shaped MGRS area
with a side length of 10 km. As this is a pretty large deployment area, it is unlikely that a
single user (i.e., worker) can cover it in a short period. Therefore, a worker’s geolocation
is mapped to an MGRS area of 1 square kilometer (referred to as a km MGRS area from
now on) where a user is currently located, depicted as the dark blue cell in Figure 2. In
cases when redundant workers are available in cells of interest, we need only a subset of
workers to collect and transmit data, while others may be deactivated to achieve battery
savings and reduce unnecessary data reporting. Each worker maintains a BF structure
for the km MGRS area where it is currently located, while an ME host takes care of all
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BFs in its corresponding MGRS area with a side length of 10 km. When a user enters in
a new km area and announces his/her capabilities to the corresponding ME host, in the
assign message, he/she will receive the active tasks and current state of the BF for this area.
Note that each km MGRS area is associated with the one BF structure, which is created
and maintained by the ME host and represents the union of BFs of all workers in that km
MGRS area. The proposed architecture uses a BF structure both on mobile nodes and edge
servers to minimize redundant worker activity while at the same time keeping uniform
data density within the area.

Figure 2. A setup for decentralized energy-efficient MCS from an ME host’s perspective.

In more detail, each worker queries its local filter structure to choose whether or not
to produce more results in the area where it is now positioned. If the filter already contains
data readings of the same type (note that it does not have to be the same value, but the same
measured property) in the same MGRS area with a side length of 100 m in the observed
period (shown as the light blue cell in Figure 2), data production will be suspended. Note
that from now on, we call this 100 × 100 m2 cell the small MGRS area. (We opted for a
small MGRS area in the process of encoding produced data readings because we want to
collect data with greater density and equally distributed within a km MGRS area.) The
data reading should be discarded if a BF membership test results positively. Otherwise,
it is valuable, and a worker should transmit this reading to the ME host. In addition, a
worker inserts the combination of reading data type and the ID of the small MGRS area
where data was produced in its BF. Since such procedure would immediately stop a data
acquisition on a worker node for this small area after submitting the first valuable result for
a required data type, a worker can be instructed to produce multiple results of the same
type in this area before updating its BF structure. That can be achieved by using a special
variable ks, indicating the required number of results per small area. Analogously, when the
corresponding ME host receives a new data reading, it will use its BF to determine whether
the reading is redundant (shown as “new data reading” which falls in the green cell in
Figure 2). If the filter membership test is negative, the ME host will add the combination
of reading data type and ID of the small MGRS area where the reading was created to its
filter, ensuring a uniform density of data readings inside a km MGRS area. This procedure
enables the synchronization between the two filters (i.e., the ME host’s and worker’s BFs).
If the filter membership test reports positive, then the worker’s BF structure is inconsistent,
and the ME host will send the current state of its BF to the worker that produced this
data reading in a BFupdate message. In other words, the worker’s filter is out-of-date and
has to be updated, as the submitted reading is redundant in this period. An ME host can
be configured to require multiple results of the same type in the small MGRS area before
updating its BF structure, but after a certain amount of time, the data production will
be stopped on all workers as inserted elements cannot be removed from a BF structure.
Therefore, a BF maintained by an ME host must be periodically reset and delivered to
possible workers in the area in a BFreset message to avoid a scenario in which a filter
membership test always finds that a received reading is redundant. Note that by sending
the reset filter structure to favored workers first, an ME host can preference some workers



Sensors 2022, 22, 879 10 of 27

based on predetermined parameters. The BF’s validity period (i.e., the time between two
consecutive filter resets) is strongly dependent on the type of MCS service and can be
defined in the configuration prior to the deployment.

Figure 3 illustrates a scenario in which two workers enter the system and ask the
coordinator about the ME host responsible for their geographical location. As they are in the
same km MGRS area, the coordinator directs them to the ME1 host. After announcing their
capabilities to the ME1 host, it finds currently available tasks to which they can potentially
answer and assigns those tasks to workers, together with the current state of the BF for the
area. First, worker uwn produces a result and queries its BF structure to decide whether to
transmit this result to the ME1 host or not. As this is the first result in the area, the filter
membership test reports negative, and uwn inserts rn in the filter and submits rn to the ME1
host. After receiving the result, the ME1 host queries its filter, decides that this result is
not redundant, and inserts rn in the filter. At the same time, worker uw1 produces a new
result r1 and queries its BF structure to decide whether to transmit this result to the edge
server or not. As its filter is not up-to-date, it decides that r1 should be submitted to the
ME1 host, although it is redundant. Upon receiving r1, the host realizes that the worker’s
filter should be refreshed and sends the current filter state to uw1 . Afterwards, worker uw1

updates its BF.

Figure 3. An algorithm for autonomous decision-making of a moving worker regarding its participa-
tion in the data acquisition process.

3.4. Main Algorithm Procedures

Hereafter, we briefly explain five main procedures in our algorithm. First, in Algorithm 1,
we show a procedure when a worker uw arrives in a km MGRS area operated by the MEi
host. MEi identifies an area in which uw is currently located (line 2) and checks if he/she
can potentially answer to any task in that area (lines 3–7). If any potential tasks are available,
MEi sends a BF for this area and assigns all potential tasks to the worker uw (lines 8–13).

Next, we present a procedure when a worker uw submits a new result r to the MEi
host in Algorithm 2. Before sending the data, a worker uw has to check if a similar result
has already been produced in a small area of 100 m2 by querying the Bloom filter associated
with the km MGRS area where he/she is currently located received from the corresponding
ME host. Note that from now on, we call this worker’s BF. If a filter membership test
reports positive, the result r contains redundant data and should be skipped (lines 4–6).
Otherwise, the produced result should be sent to the MEi host. Worker uw submits data
until a sufficient number of results are produced for this small MGRS area and adds this
result in his/her BF (lines 7–13).
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Algorithm 1 Arrival of a new worker in the area covered by the ME host

1: procedure WORKER ANNOUNCE(uw, a)
2: area← f indArea(`a)
3: workersInArea(area).add(uw)
4: for each τ in activeTasks(area) do
5: if µτ(a) == > then
6: potentialTasks(uw).add(τ)
7: end if
8: end for
9: if potentialTasks(uw) == ∅ then

10: break
11: else
12: sendBF(bloomFilter(area), m)
13: assign(uw, potentialTasks(uw))
14: end if
15: end procedure

Algorithm 2 Submission of a new result to the ME host by a worker w

1: procedure SUBMIT RESULT(uw, r)
2: smallArea← f indArea(`r)
3: property← getProperty(r)
4: if workerBloomFilter.membershipTest(smallArea + property) then
5: break
6: else
7: if resultsCounter(smallArea + property) < ks then
8: resultsCounter(smallArea + property) + +
9: submitResult(r)

10: else
11: submitResult(r)
12: workerBloomFilter.add(smallArea + property)
13: end if
14: end if
15: end procedure

Algorithm 3 shows a procedure when the MEi host receives a new result r submitted
by the worker uw. First, MEi identifies an area in which uw is currently located (line 2) and
analyzes features of a produced result (lines 3–4). Then, it checks whether its BF for the
corresponding km MGRS area contains an element with the same combination of data type
and small MGRS area as r. If yes, the result r contains redundant data, and the MEi host
has to update the BF of the worker uw (lines 5–7). Otherwise, the submitted result is new
and should be stored by the MEi host and delivered to the interested users. When the MEi
host collects sufficient number of results k per small MGRS area, it adds this result in its BF
(lines 8–13). In Algorithm 2, a worker maintains the resultsCounter, while in Algorithm 3,
the resultsCounter is maintained by an ME host. An ME host will first reach the counter
threshold (k) as it collects all measurements in the small MGRS area (from multiple workers),
and then it will send the filled BF structure to all workers who reported redundant data
reading, because the worker’s counter still did not reach the threshold value (ks). Note that
when an ME host accepts multiple data readings, a detection or filtering mechanism can
be built on top of an ME host because it receives numerous readings per small MGRS area,
and it can perform preprocessing of received data readings (e.g., to detect faulty values).
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Algorithm 3 Arrival of a new result in the area covered by the ME host

1: procedure RECEIVE RESULT(uw, r)
2: area← f indArea(`r)
3: smallArea← f indArea(`r)
4: property← getProperty(r)
5: if bloomFilter(area).membershipTest(smallArea + property) then
6: sendBF(bloomFilter(area), ks)
7: else
8: if resultsCounter(smallArea + property) < k then
9: resultsCounter(smallArea + property) + +

10: results(smallArea + property).add(r)
11: else
12: bloomFilter(area).add(smallArea + property)
13: end if
14: end if
15: end procedure

Algorithm 4 shows a procedure when the MEi host receives a new task τ submitted
by the requester ur. First, MEi finds a km MGRS area in which τ is created and adds τ in
the set of active tasks in this area (lines 2–3). Then, it checks if any of the workers who are
currently located in the area can answer to τ (lines 4–5). If yes, MEi sends a current BF for
this area and assigns τ to the worker uw (lines 6–7).

Algorithm 4 Arrival of a new result in the area covered by the ME host

1: procedure RECEIVE TASK(ur, τ)
2: area← f indArea(`τ)
3: activeTasks(area).add(τ)
4: for each i in workersInArea(area) do
5: if µτ(a) == > then
6: sendBF(bloomFilter(area), m)
7: assign(uw, τ)
8: end if
9: end for

10: end procedure

As already stated, a classic BF structure does not support the deletion of an element.
As typical MCS service is time-dependent, i.e., sensor data becomes obsolete during the
time, we overcome this problem by periodically resetting the BF structure maintained
by an ME host, as presented in Algorithm 5. The MEi host periodically resets BF for
its corresponding areas (lines 2–3) and finds potential workers in each area who will be
activated upon receiving an empty filter (lines 4–6).

Algorithm 5 Bloom filter reset on the ME host

1: procedure BLOOM FILTER RESET(bloomFilter)
2: for each area in bloomFilter.keySet() do
3: f ilterReset(bloomFilter(area))
4: for each i in workersInArea(area) do
5: sendBF(bloomFilter(area), m)
6: end for
7: end for
8: end procedure

This section proposed a decentralized and edge-compliant architecture for MCS,
which uses a well-known Bloom filter data structure to orchestrate autonomous data
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acquisition on mobile workers participating in MCS tasks. In the remainder of this paper,
we extensively evaluate the proposed algorithm to determine if it can be used to reduce
energy consumption in a distributed MCS environment.

4. Results and Discussion

In our previous work [9], we report on an initial evaluation of the BF approach.
Hereafter, referring to [9], we further analyze our system with a real-world dataset to verify
our initial findings that maintaining a BF structure does not incur a significant burden in
terms of processing, memory, and bandwidth consumption and can be used for encoding
MCS data in Section 4.1. In addition, we include novel results and evaluate the overall
behavior of the proposed BF algorithm for different input scenarios by considering the
overhead incurred in communication between ME host and end-user devices when the
user changes its location or transmits redundant data readings in Section 4.2. We have
also extended our initial solution so that multiple data readings of the same type can be
accepted simultaneously on the user device and the ME host.

We used a real-world dataset presented in [10] for the evaluation purpose, which
contains locations collected from 85 users in South Korea from March 2011 to September
2012. On average, a single user utilized a mobile application for tagging sites for 79 days.
In total, users have tagged 13,500 different locations. The dataset was initially designed
for autonomous place detection. Therefore, we had to modify it to model the motions of a
broad user base suitable for MCS deployments. We note that the dataset does not include
information about energy consumption. First, we initially filtered the dataset to exclude
entries that did not have an accurate location or timestamp associated with them. There
were 151,649 user check-ins from 67 different individuals in the filtered dataset. Because
the number of unique users is too small to analyze a realistic MCS scenario, we separated
the filtered set based on user identity and date. As a result, we generated numerous virtual
user traces from a single genuine user’s trace for a single day. Each slice (a user-day slice is
a sequence of user check-ins for a single day) represented a virtual user’s movement pattern
for that day. Our evaluation is based on a total of 7724 virtual users and their accompanying
user-day traces. We constructed additional check-ins (similar to the linear interpolation
method presented in [51]) with a sampling frequency of 1 min by interpolating the expected
user location between two consecutive check-ins because the data collection did not contain
user location information with a high sampling frequency as required in MCS. That resulted
in a realistic MCS data-trace with 4.7 million user-location records in total (on average,
600 location entries per user).

4.1. Evaluation of BF Parameters

As already stated in this section, referring to [9], we further evaluate a BF structure for
the MCS domain with a different input dataset. In contrast to our previous work, where
we have used just a tiny dataset containing 200,605 sensor readings (in total), hereafter, we
use a dataset that is 23 times larger to thoroughly evaluate the applicability of BF structure
in the MCS scenario containing realistic data traces. In Section 3.2, we have already shown
that an optimal BF size and the number of hash functions can be calculated from the
number of inserted elements n and the probability of false positives p. Therefore, in this
part of the evaluation, we observe the behavior of a BF structure when encoding MCS data
concerning those two parameters. Our goal is to identify distinct data readings which need
to be inserted in a BF during its validity period (i.e., a period prior to filter reset), where a
distinct reading is defined as a unique combination of parameter name and a small MGRS
area identifier in the observed time slot. In other words, two data readings are redundant if
they are collected in the same time slot (e.g., 5 min period), inside the same MGRS area of
100 × 100 m2 (i.e., small MGRS area) and associated with the same parameter (e.g., CO),
and only one of them should be inserted in a BF structure during that period. A BF is
reset upon the end of each time slot (e.g., 5 min period), meaning that a new empty BF
structure, which will be used in the next time slot, is initialized. As we can assume the
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expected number of data readings that need to be inserted in the filter (i.e., n), and we can
set the desired probability of false positives p for an MCS service, in all experiments, a filter
structure is initialized with an optimal number of bits m and hash functions k calculated
from Equations (4) and (5). Note that in our previous work described in [9], we have used
just one filter for the evaluation purpose, meaning that all data readings have been inserted
in the same BF structure, while in the remainder of this section, we use multiple BFs, one
for each active km MGRS area following the proposed algorithm as described in Section 3.3.
In addition, to give a reader true insight into the error rate caused by using the BF structure
for encoding MCS data, it is not realistic to insert all of the 4.7 million data readings that
have been placed in a single day (as previously described) in just one filter structure.

First, we investigate the impact of parameter n on the number of distinct data readings
that were lost because the BF membership test failed and concluded that a reading (i.e., the
combination of observed parameter and small MGRS area identifier) is already inserted
in the structure (although it was not) when a predefined probability of false positives p is
in the range from 0.1% to 10%. In the experiment, we use just a subset of data collected
in the afternoon during a 3 h period between 4 p.m. and 7 p.m., as shown in Figure 4,
and reset each BF structure every 10 min (i.e., a BF validity period is 10 min). Each yellow
bar in the graph shows the total number of data readings in the observed time slot (e.g.,
there are 30,227 readings in the time slot from 4:30 p.m. to 4:40 p.m.), while the orange
segment in the bar represents the total number of distinct data readings that must be
inserted in BFs during this period. In general, overall users have gathered between 30 and
42 thousand data readings in each time slot, but a relatively small proportion of them are
indeed valuable and should not be lost during the BF encoding process (i.e., between 4.4
and 7.2 thousand data readings are unique in each time slot, while other data readings are
redundant and can be discarded). Figure 5 demonstrates how the parameter n affects the
number of distinct (useful) data readings lost in each observed time slot. In particular, the
number of lost elements is represented by blue, green, dark blue, and violet segments in
the bar when the probability of false positives p was 0.1%, 1%, 5%, and 10%, respectively.
As expected, when we compare the number of lost readings for different values of p, we
can see that the lowest error is attained in every observed time slot when the probability of
false positives p is 0.001 (i.e., 0.1%). Furthermore, when we compare Figure 5a,b, we can
see that a larger value of the expected number of different elements n will considerably
minimize data loss, even when p is 0.1, as a Bloom filter will be initialized with a greater
number of bits and hash functions. For example, when p is 0.1, and n is raised from 50 to
100, the number of lost data readings drops from 79 (out of 6976) to 22 in a period between
6:20 p.m. and 6:30 a.m., while for p = 0.001 it drops from 2 to 0 for the same time slot. In
addition, as shown in Figure 5b, there are no lost elements in the entire observed period
when p = 0.001 and n = 100; however, for n = 50, the total number of lost elements is 18,
as shown in Figure 5a. In general, we can conclude that if we initialize BFs with a higher n
and lower p, we will obtain greater precision (i.e., higher accuracy) because the vector will
employ more bits and hash functions for mapping elements (i.e., data readings).

Then, we investigate how the duration of the filter reset period impacts the number of
data readings lost because the BF membership test failed. More precisely, we analyze the
total number of distinct elements (i.e., readings) that were lost throughout 24 h, depicted
as an error rate (in per mille, ‰) in Figure 6, with regards to the BF validity period (i.e.,
each BF is periodically initialized at the beginning of every time slot throughout a day).
It is critical to minimize this error as each of these lost elements is valuable and does not
have a replacement in the observed time slot. As expected, we can see that the error rate is
generally lower with a shorter window as the BF structure is more frequently reset. When
we analyze the worst-case scenario, i.e., we expect to insert only 50 elements in the BF and
the probability of false positives is 0.1 (i.e., 10%), around 1.1‰ of distinct data readings are
lost throughout the day when the window duration is 1 min (see Figure 6a), while the error
rate is round 7.6‰ when we reset BF every 15 min (see Figure 6b), and finally it goes up to
17‰ when BF reset period is every 60 min (see Figure 6d). In other words, although we
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allow having 10% of false positives, the actual error rate is significantly below this border
because it goes from just 0.1% for a 1 min BF validity period up to 1.7% in the worst-case
scenario when the BF validity period is 60 min. On the other hand, when we also expect to
insert only 50 elements in the BF, but the allowed probability of false positives is a hundred
times lower (i.e., 1‰), the actual error rate is less than 0.5‰ even when the window
duration period is 60 min. Note that we expect to encode only 50 elements in each BF, but
the actual number of inserted data readings is significantly higher in each time slot, and we
are still below this very low allowed error rate, even when filters are reset every 60 min. As
the BF validity period depends on the type of MCS service, our goal is to find parameters
n and p that will keep the number of lost data readings to a minimum, regardless of the
filter validity period duration. For example, noise levels need to be measured more densely
than air pollutants, meaning that noise pollution monitoring will require a more frequent
BF reset. It is self-evident that when n increases and the probability of false positives p
decreases, the error rate will also decrease because the BF vector size is larger, and more
hash functions are used for the mapping of elements (e.g., for n = 50 and p = 0.1 vector
size is 239 bits and number of hash functions is only 3, while for n = 200 and p = 0.001
vector size is 2875 bits and number of hash functions is 10). As mobile phones also need
to monitor Bloom filter structure in a distributed MCS architecture, we want to keep the
vector size as small as possible while maintaining the number of hash functions to avoid
losing too much data. Our analysis of a real dataset shows that this requirement can be
met when the expected number of inserted elements n is 100 and the probability of false
positives p is 0.001 (resulting in vector size of 1437 bits and ten hash functions), as the
percentage of lost data readings will be around zero regardless of the BF validity period, as
shown in Figure 6c,d, where the error rate is 0.006‰ and 0.008‰, respectively. Therefore,
we use those values as BF input parameters in the remainder of our evaluation described
in Section 4.2. Note that we did not use complex evaluation metrics such as area under
the ROC curve (AUC) to evaluate BF because it does not apply to our approach as the BF
data structure by definition does not contain false negatives, which is part of the receiver
operating characteristic (ROC) curve.

Figure 4. Ratio between all and distinct data readings in the period from 4 p.m. to 6:50 p.m.
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(a) n = 50 (b) n = 100

Figure 5. The influence of parameter n on the number of lost elements.

(a) window = 1 min (b) window = 15 min

(c) window = 30 min (d) window = 60 min

Figure 6. Percentage of elements that were lost during a 24 h period for different BF validity periods.

Finally, for each BF associated with an active km MGRS area, we analyze how many
bits in the BF structure are set to 1, as setting too many bits to 1 can lead to an increased
number of false positives, which can result in the lost data readings in our MCS service, i.e.,
measurements can be discarded because they were marked as redundant. Figure 7 presents
the number of bits that have value of 1 when n equals 50 and parameter p = 0.1 (Figure 7a)
and p = 0.001 (Figure 7b). We measured the BF occupancy (number of bits set to 1) for
different time windows during 24 h to obtain the distribution of the number of bits that
are set to 1. It is important to note that the total size of BF is 239 bits when the parameter
p = 0.1, and m is 718 bits for the scenario when the parameter p = 0.001. We can see that
the structure occupancy for each observed BF validity period is not close to the maximal
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number of bits. As expected, the results show that when the BF validity period is just 1 min,
the structure occupancy rate is the lowest compared to longer BF validity periods because
the least number of elements is encoded in the filter, and there is no significant difference
in the BF structure occupancy for longer BF validity periods. In addition, it is interesting
to observe that the cumulative distribution of occupancy per BF validity period is not
primarily affected by the probability of false positives p, i.e., Figure 7b does not change its
shape significantly compared to Figure 7a. That means that the occupancy ratio remains
stable despite the increase in the BF size (only absolute numbers correlated to the number
of hash functions are affected). Even though the presented graphs show that the maximal
number of bits set to 1 is not going beyond 40 (Figure 7a) and 132 (Figure 7b), one should
note that there are some points located outside the whiskers of the box plot (i.e., above
the ninth decile which are not depicted on the graph). These points indicate that in some
periods during a day, some individual filters have more bits set to 1 due to the increased
number of data readings encoded in the BF, causing that actual BF error to be greater than
the allowed probability of false positives. For example, when the filter validity period is
15 min, n = 50 and p = 0.1, there is a km MGRS area with 100 distinct data readings in
the observed period of which 85 are successfully encoded in the BF, and the filter has 174
out of 239 bits set to 1 resulting in an error higher than allowed. However, one should
also note that in this specific case, 1.7 times more data readings were encoded in the BF
than expected (i.e., BF expected to receive maximum n = 50 elements). We have confirmed
our initial findings from [9] that the BF overall size and memory footprint allow it to be
employed on tiny devices, indicating that the structure is suitable for mobile devices to
determine whether or not reading should be transmitted to an ME host.

(a) p = 0.1

(b) p = 0.001

Figure 7. BF structure occupancy for different BF validity periods when n = 50.
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4.2. Evaluation of BF Algorithm

One of the main characteristics of our decentralized MCS ecosystem is that it sup-
presses redundant and possibly irrelevant data readings by using the BF structure to
deactivate some of the workers. However, this is achieved at the expense of filter control
messages. Therefore, in this section, we first overview the messages exchanged between
workers (i.e., their mobile devices) and ME hosts in our solution and then evaluate the
proposed algorithm on a real-world dataset.

As already stated in Section 3.2, an ME host is deployed in an MGRS area of 10 square
kilometers and maintains BFs for all km MGRS areas under its responsibility. It is aware
of all user requests (tasks) and workers in the area. Whenever a worker moves to a
neighboring km MGRS area, it will send an announce message to the corresponding ME
host and receive an assign message as a reply if at least one task is assigned to a worker,
and it will start a data acquisition process and submit results to the ME host until its BF
membership test reports a positive match. In case the corresponding ME host determines
that the submitted result is redundant (i.e., it has already received all required data readings
in the meantime), it will send a BF update message to the worker who submitted this result.
Additionally, a BF maintained by the ME host is periodically reset and delivered to the
potential workers in the area. Therefore, the total number of exchanged messages equals
the sum of all messages explained above (see Equation (7)):

MMEC = Mann + Mass + Msub + MBFupdate + MBFreset, (7)

where MMEC is the total number of messages that are exchanged within our MCS ecosystem,
Mann is the number of announce messages, Mass is the number of assign messages, Msub
is the number of submit messages, MBFupdate is the number of BF update messages, and
MBFreset is the number of BF reset messages in the system.

Next, we observe the possible energy savings achievable with our approach compared
to the baseline approach when all results produced by workers are transmitted to the ME
hosts. Given that the energy consumption is in a linear relationship with the number of
generated messages, the savings can be calculated as the percent decrease in the number of
transmitted messages generated by our solution as compared to all produced results (see
Equation (8)):

SavingsMEC =
MallResults −MMEC

MallResults
, (8)

where SavingsMEC is the energy savings, MallResults is the number of all produced results
that are transmitted in a traditional baseline MCS system, and MMEC is the total number of
messages that are exchanged within our MCS ecosystem.

We analyze the behavior of our solution concerning parameters mworker, mMEC, and
window, where mMEC indicates a required number of results (of the same type) per small
MGRS area of 100 m2 under the authority of an ME host, mworker indicates the number
of results that a worker needs to submit per each small MGRS area of 100 m2 before
updating its BF, and window indicates duration of the observation time slot in which a
BF structure on the ME host is valid prior to reset (i.e., a day is divided into sequential
independent time windows with a fixed duration, and upon the end of each time slot,
a BF structure is reset). The initial parameter configuration is shown in Table 1. Note
that the number of all produced results, as well as the number of announce messages,
are obtained from the dataset, while the default values chosen for mworker, mMEC, and
window are hypothetical. The actual values for these three parameters in a real-world case
would depend on the geographical configuration of a city, its population distribution, user
mobility, and implemented application.
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Table 1. Default parameter values.

Symbol Values

allResults 4,709,259

announcements 579,040

mworker 1; 2; 3; 5

mMEC 1; 2; 3; 5; 10; 15

window (in minutes) 1; 5; 10; 15; 30; 60; 120

First, we analyze the influence of parameters mMEC and window on the amount of
sent data when the parameter mworker has a fixed value of 1 (i.e., a worker updates its BF
structure after submitting the first result in the small MGRS area). In other words, Figure 8
depicts the cumulative number of results that were sent by all workers in our distributed
system when an MCS service deployed on the ME host requires up to 15 results per each
small MGRS area, and each worker is instructed to submit only one result per small area.
As expected, the results show that with a longer window duration (i.e., the BF validity
period), the number of sent results will be lower because the time between two consecutive
filter resets is longer, and workers discard more results. In particular, when the filter reset
period is 1 min, the percentage of useful data sent by all workers is between 18% and 19%,
while with the reset period of 120 min, this percentage drops to values between 11% and
15.5%, depending on the required number of workers per small MGRS cell. We can see that
when mMEC has the value of 1 (i.e., ME host requires only one result per every 100 m2), the
amount of generated data is the lowest, because hosts update their BF immediately after
they receive the first result for the small MGRS area. In contrast, for bigger mMEC, hosts
expect to receive more results and update their filters less often, which leads to a higher
amount of data sent by workers. When the filter validity period is 1 min, the influence of
the parameter mMEC on the percentage of sent data is not significant because there are not
many workers located in the same area in such a short time interval, and the amount of
redundant data is similar regardless of the required amount of data per small MGRS area.
On the other hand, when filter reset occurs every 120 min, it is very likely to find more
workers in the same area who can submit data during the observed period, which results
in greater differences in the percentage of sent data for different values of the parameter
mMEC. For example, when mMEC is 1, the required amount of data on the ME host is
collected very soon. Suppose other workers come to the same area in the remaining period.
In that case, they will be instructed not to produce measurements because they receive an
updated version of a BF (i.e., the host has already inserted received results in the filter),
while when mMEC is 15, more workers who send an announcement later in the time slot
will also receive an initial (empty) version of the BF, and the ME host will receive more data
readings. Overall, we can conclude that more than 80% of data readings produced by all
workers in the system are never sent to edge hosts even in the worst-case scenario when the
filter validity period is only 1 min, and MCS service requires up to 15 results per each small
MGRS area. That is a significant reduction in the number of transmitted data compared to
a baseline approach where all produced data readings are sent to the cloud server.

Next, we observe trends in energy savings (8) with respect to parameters mMEC,
mworker, and window. We analyze the number of all transmitted messages in our distributed
MCS architecture compared to the baseline approach in which all produced data readings
would be sent to the edge hosts. We modify two parameters for each analysis, while the
third parameter is fixed to one of the default values given in Table 1. First, in Figure 9,
we show how parameters mMEC and window influence the savings when workers are
instructed to transmit only one data reading per 100 m2. In general, the results indicate
that the advantage of our approach drops when increasing the value of parameter mMEC
because the required number of workers per small MGRS area increases, consequently
leading to a greater number of submitted results per cell, as already shown in Figure 8. If
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more workers are required per small area by ME host, worker self-deactivation by updating
their BF has less influence because there is a need to satisfy application requirements (i.e.,
ME hosts need to collect mMEC results before updating their filters). In addition, the results
show that savings are generally lower when the BF validity period is shorter due to the
increased number of transmitted data readings between workers and ME hosts. Although
one might expect that energy savings will follow trends in the number of results submitted
by workers (i.e., when the number of useful data increases, the total savings drops), we can
see a slight deviation when mMEC is one due to the overhead introduced by filter update
and reset messages. Whenever a worker submits a redundant result to the corresponding
ME host, it receives a global filter for the km MGRS area where it is currently residing (i.e.,
an updated BF which contains all results received by the ME host in the area), and when
ME hosts require just one result per small area, this can occur quite often. That is especially
visible for short filter validity periods (e.g., 1 min) when the number of reset messages also
increases. Overall, we can see that the total savings are above 53% even in the worst-case
scenario when the filter validity period is just 1 min, while it can go up to 62% if filter reset
occurs every 120 min.

Figure 8. Percentage of data sent by all workers when mworker = 1.

Figure 9. Energy savings when mworker = 1.
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Figure 10 shows how BF validity period and MCS application requirements influence
the total energy savings when the required number of results, which a worker has to
produce per small MGRS area before updating its BF (i.e., mworker), is fixed to one of the
default values from Table 1. The results confirm that savings drop when ME hosts require
more data readings per small MGRS area and the time between consecutive filter resets
is shorter. In particular, the results indicate that a filter validity period of just 1 min
significantly reduces the total saving compared to longer filter validity periods (e.g., 5 min)
due to the overhead caused by many reset messages. Furthermore, when we compare
the total savings in Figure 10a,d, we can see that savings significantly drop with higher
values of mworker. If workers are instructed to transmit more results to the edge host, then
filtering mechanisms have less influence to reduce the total savings. However, even in the
worst-case scenario shown in Figure 10d, when we need high redundancy per small MGRS
area (i.e., up to 5 results for every 100 m2), the energy savings is around 35% when the time
between consecutive filter resets is just 1 min, and can grow up to 55% when filter validity
period is 120 min.

Next, we analyze how the number of results a worker needs to submit per small MGRS
area and the length of BF validity period influence the total savings while keeping the
fixed value of mMEC, as shown in Figure 11. The results indicate that when increasing the
time between consecutive filter resets (i.e., window), the influence of the parameter mworker
drops. In other words, when the filter validity period is just 1 min, the difference in savings
for mworker = 1 and mworker = 5 is around 18% (i.e., the total savings is 18% lower when
workers are instructed to submit five results per small area), while this difference drops to
only 7.5% when filter reset is every 120 min when the parameter mMEC has a fixed value
of 5. Similarly, when mMEC is 10, the difference in savings for mworker = 1 and mworker = 5
is around 18.5% when window is 1 min, and drops to 9.3% when filter validity period is
120 min. In addition, we can see that the total savings slowly increases with a decrease in
the value of parameter mMEC because an MCS application deployed on ME hosts requires
fewer results. In particular, when workers submit only one result per small MGRS area and
the filter validity period is 120 min, the total savings goes up to 61.2% when mMEC is 5 (see
Figure 11a), while it is less than 1% lower when ME host needs up to 10 results per small
area (see Figure 11b). That is a significant result because savings remain pretty high even
for many data readings required by an ME host.

Our findings are summarized in Tables 2 and 3, which show the absolute difference in
total savings for different input parameters. The first table shows the influence of parame-
ter mworker on total savings, where column mworker_x,y presents the absolute difference in
savings (expressed as percentage) when we compare the savings result for mworker = x and
mworker = y for different values of parameters window and mMEC (e.g., the result in the first
row of column mworker_1,2 shows that the total savings is 6.73% higher for mworker = 1 when
filter reset is every 1 min and ME host requires 5 results per small area), while the second
table shows the influence of parameter mMEC on total savings, where column mMEC_x,y
presents the absolute difference in savings when mMEC = x and mMEC = y for different val-
ues of parameters window and mworker (e.g., the result in the fifth row of column mMEC_5,10
shows that the total savings is 0.95% higher for mMEC = 5 when filter reset is every 120 min
and worker submits only 1 result per small area). The results indicate that the parameter
mworker has significant influence on the total savings when compared to the parameter
mMEC. We can conclude that mMEC is used to control the number of workers who can
produce data in each small MGRS area during an observed time slot (i.e., BF validity period),
while mworker is used to control the amount of data that each worker is going to produce per
area. In other words, the significance of the parameter mMEC is manifested only in cases
when many redundant workers are located in the same 100 m2 area during the same period.
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(a) mworker = 1 (b) mworker = 2

(c) mworker = 3 (d) mworker = 5

Figure 10. Energy savings with respect to the parameter mworker.

(a) mMEC = 5 (b) mMEC = 10

Figure 11. Energy savings with respect to the parameter mMEC.

Finally, we analyze the influence of parameter mworker on the cumulative amount of
redundant data received by all ME hosts for different filter reset periods and application
requirements in Figure 12. As already stated, a data reading is redundant if an ME host
already contains the same combination of the observed parameter and small MGRS area
identifier in its BF structure. Note that the percentage of redundant results is expressed
concerning the total data received by ME hosts. As expected, the highest percentage of
redundant data is received when hosts require only five data readings per small cell before
updating the global filter for the area. The lowest amount of redundant data is received
when hosts require 15 results for all observed scenarios, regardless of the time window
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in which BF is reset and parameter mworker, because for smaller values of mMEC, hosts
will update their filters very soon, and subsequently received results will be redundant.
When we compare savings for different BF validity periods, we see that the amount of
redundant results received by ME hosts grows when the time between BF resets increases.
If the filter is valid only for a short period, the probability that more workers will be within
the same small MGRS area during the same time slot is low. In other words, likely, hosts
will not collect the expected number of results per each small area because the filter will
quickly reset. At the same time, it is quite possible that within, for example, 120 min, more
workers will pass through the same small area, and because of the relatively high values of
the parameter mMEC, a filter they receive may still not be updated with recently received
results, which may later cause a more significant amount of redundant data in that area.

Table 2. Influence of the parameter mworker on the total savings.

Window mMEC mworker_1,2 mworker_2,3 mworker_3,5

1 min

5 6.73% 4.91% 6.09%

10 6.86% 4.91% 7.11%

15 6.93% 5.02% 7.34%

120 min

5 3.41% 1.96% 1.93%

10 3.98% 2.39% 2.92%

15 4.34% 2.68% 3.27%

Table 3. Influence of the parameter mMEC on the total savings.

Window mworker mMEC_5,10 mMEC_10,15

1 min

1 0.06% 0.01%

2 0.19% 0.08%

3 0.19% 0.19%

5 1.21% 0.42%

120 min

1 0.95% 0.55%

2 1.52% 0.91%

3 1.95% 1.20%

5 2.84% 1.65%

Similarly, when we compare the percentage of redundant results received by ME hosts
for different values of the parameter mworker, we can see that the amount of redundant
results grows with mworker because workers are instructed to produce more readings per
small area and need to wait longer before updating their filters. Therefore, a worker may
send a redundant result because its version of the filter shows that this result is valuable
and should be submitted, while in the meantime, the corresponding ME host has already
received enough results for that small area from other workers. Overall, the results show
that even in the worst-case scenario, when workers are instructed to submit five results per
each small area, as shown in Figure 12d, the percentage of redundant results received by
ME hosts never exceeds 6%, which proves that the proposed algorithm works exceptionally
well for different input scenarios.
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(a) mworker = 1 (b) mworker = 2

(c) mworker = 3 (d) mworker = 5

Figure 12. Percentage of redundant data received by ME hosts with respect to the parameter mworker.

To conclude, we have shown that our hierarchical edge computing architecture, en-
hanced with the algorithm for autonomous decision-making of a mobile worker, shows
great potential for energy savings in distributed MCS environments while retaining the
desired sensing quality due to decreased messaging between workers and ME hosts. The
main advantage of the proposed hierarchical architecture is that there is no central point of
failure because the data processing is distributed across multiple ME hosts, and all workers
can autonomously decide when to transmit data. At the same time, the actual savings
depend on an actual MCS application and its setup. Our analysis showed that the edge
architecture is suitable for massive-scale MCS services. The amount of transmitted data
between mobile workers and edge hosts can be significantly reduced using the proposed BF
algorithm because workers independently decide when to send data instead of periodically
transmitting all data readings. Consequently, it is possible to achieve energy savings of up
to 62%.

5. Conclusions

Mobile crowdsensing refers to a set of human-driven IoT applications that allow users
to detect phenomena of personal, communal, or even societal importance by sharing sensor
data about their surroundings while being mobile. Typical MCS service deployment has
a cloud-based centralized design that requires many computing resources and creates a
lot of network traffic, both on mobile networks and towards cloud-based MCS services.
Furthermore, MCS applications produce large amounts of data collected and preprocessed
by devices with limited energy supply. Hence, there is a need for solutions that will reduce
the energy consumption of such devices while satisfying application requirements in terms
of the quality of acquired datasets.



Sensors 2022, 22, 879 25 of 27

This paper proposes a hierarchical MCS deployment suitable for edge computing
environments. Because ME hosts are responsible only for workers and MCS tasks inside
their deployment area, such architecture allows parallelizing and segmenting the problem
space based on the location. In particular, we propose a decentralized algorithm that allows
mobile workers to engage in data collection and transmission processes on their own (i.e.,
independently) without requiring cloud-based supervision and coordination. The proposed
algorithm uses a Bloom filter structure, both on mobile nodes and ME hosts, to minimize
redundant worker activity while at the same time keeping uniform data density within the
area. We evaluate the BF algorithm on a real-world dataset and show that it is a valuable
data structure to orchestrate autonomous data acquisition on workers participating in MCS
tasks. In particular, our results indicate that the proposed approach shows great potential
for energy savings in distributed MCS environments due to decreased messaging between
workers and edge hosts while satisfying application requirements. We have shown that the
overall energy savings go from 35% up to 62% compared to a baseline approach. Because
data processing splits over many ME hosts and all workers may autonomously determine
when to send data, the proposed hierarchical edge-based MCS deployment has no single
point of failure. However, the actual energy savings are highly dependent on the MCS
application and its setup.

We have proposed a generic solution for a distributed data collection in the MCS
system, but additional savings can be achieved if the algorithm considers application-
specific requirements. For example, in some cases, it could be better to reset BF after it has
been filled to a certain extent instead of periodical reset in predefined time intervals. Such
algorithm adjustment can further reduce communication between ME hosts and mobile
workers, as filter reset messages are sent when required. Finally, we plan to investigate
user traces obtained from cellular network providers to obtain a better insight into user
mobility patterns and identify popular areas. In areas with many workers, one can expect
high data redundancy, especially after BF reset, because all workers would simultaneously
start data transmission to the corresponding edge host. Additional savings can be achieved
by choosing only top-k workers in the area, based on a valuation function, who will receive
an empty filter after reset. Such an approach would reduce the amount of sent data and
messaging between edge hosts and workers in the area and consequently increase system
energy savings.
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