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Abstract: Geocoding is a powerful tool for environmental exposure assessments that rely on spatial
databases. Geocoding processes, locators, and reference datasets have improved over time; however,
improvements have not been well-characterized. Enrollment addresses for the Agricultural Health
Study, a cohort of pesticide applicators and their spouses in Iowa (IA) and North Carolina (NC),
were geocoded in 2012–2016 and then again in 2019. We calculated distances between geocodes
in the two periods. For a subset, we computed positional errors using “gold standard” rooftop
coordinates (IA; N = 3566) or Global Positioning Systems (GPS) (IA and NC; N = 1258) and compared
errors between periods. We used linear regression to model the change in positional error between
time periods (improvement) by rural status and population density, and we used spatial relative
risk functions to identify areas with significant improvement. Median improvement between time
periods in IA was 41 m (interquartile range, IQR: −2 to 168) and 9 m (IQR: −80 to 133) based on
rooftop coordinates and GPS, respectively. Median improvement in NC was 42 m (IQR: −1 to 109 m)
based on GPS. Positional error was greater in rural and low-density areas compared to in towns and
more densely populated areas. Areas of significant improvement in accuracy were identified and
mapped across both states. Our findings underscore the importance of evaluating determinants and
spatial distributions of errors in geocodes used in environmental epidemiology studies.

Keywords: geocoding; positional error; rural location; spatial analysis; exposure assessment; envi-
ronmental epidemiology

1. Introduction

In environmental epidemiology studies of spatially- and temporally-referenced expo-
sures, geocoding of residential addresses is typically used to assign latitude and longitude
coordinates in a Geographic Information System (GIS) as a first step in an exposure assess-
ment. However, relatively few studies have compared geocoding methods or assessed the
accuracy of geocodes [1–5]. In rural areas, residential proximity to crop fields treated with
pesticides can increase pesticide concentrations in homes, with implications for the risk of
adverse health outcomes [6–8]. Positional errors and imprecision in geocoding may result
in exposure misclassification, with implications for exposure assessment of drinking water
sources [3,4], non-occupational agricultural pesticides [2,3,9], air pollution [5,10], and other
environmental exposures [11,12].

Positional accuracy is defined as the distance between the residence’s location, best
determined using a field survey method such as a Global Positioning System (GPS) de-
vice or digitally enhanced aerial orthoimagery [13–15], and the geocoded point location
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linked to the address [16]. Evaluating variability in the accuracy of geocoding methods
allows investigators to evaluate the potential impact of this variability on their analyses
of environmental exposures at the residence and human health [17–19]. The assessment
of geocoding accuracy is particularly important in rural areas, where studies have shown
greater positional error than in urban or suburban areas [20,21]. In addition to positional
accuracy, geocoding quality is quantified by a match rate that is the proportion of addresses
that can be geocoded [22]. Positional accuracy and match rates of rural addresses geocoded
using street databases tend to be worse than urban or suburban addresses due to the larger
street segments and distances between the house and public road, which may magnify
interpolation errors [2]. Match rates also tend to be lower in rural areas compared to urban
areas in part due to the prevalence of rural routes and Post Office (PO) boxes [16], which
cannot be located accurately by geocoding [3,23].

The match rate and positional accuracy of geocoding depend on the assumptions
behind the matching algorithms as well as the accuracy of the underlying reference (street)
datasets [24,25]. The address is matched to a spatial coordinate in the street reference dataset
through a matching process that enables matching at different levels of precision based on
the address input information available, while a minimum match score that reflects the level
of confidence in locating the address must be met or exceeded [26,27]. These algorithms
and datasets have improved over time, highlighting the need to assess how older geocode
coordinates correspond to newer geocode coordinates obtained with more accurate and
complete street databases [25]. In this study, we compared coordinates obtained from an
older geocoding effort (Geocode database Version 1: 2012–2016) to a newer geocoding
effort (Geocode database Version 2: 2019) in the Agricultural Health Study (AHS), a large
cohort of pesticide applicators and their spouses in Iowa (IA) and North Carolina (NC),
USA. The primary objective of this study was to compare the geocodes to gold-standard
coordinates (GPS and rooftop coordinates) in order to evaluate positional accuracy by
geocode match status and rurality and determine if geocodes improved over time. We
also conducted a spatial analysis to determine geographic areas with improvements in
positional accuracy between the two geocoding efforts.

2. Materials and Methods
2.1. Study Population

The AHS is a prospective cohort of 52,394 licensed private pesticide applicators resid-
ing in Iowa and North Carolina, 32,345 of their spouses, and 4916 commercial applicators
in Iowa. Details about the study design and cohort have been described [28]. Notably, over
80% of private pesticide applicators were enrolled in the study in Iowa and North Carolina,
two states with large farming populations in the Midwest and Southeast, respectively [29].
To date, the AHS has included four phases, starting with enrollment (Phase 1) in 1993–1997
and followed by three follow-up interviews. At Phase 1, applicators and spouses provided
the address of their current residence. Applicators and spouses also confirmed or provided
an update to their address (including updating rural route addresses with street addresses)
during follow-up interviews at Phase 2 (1999–2003), Phase 3 (2005–2010), and Phase 4
(2013–2015). Additionally, address changes were recorded during tracing efforts from 2012
to 2018. A street address from later follow-up surveys was substituted when an earlier
address was a rural route or PO Box if the participant had not moved. As spouses resided
at the same set of addresses as applicators at Phase 1, this analysis is limited to only private
and commercial pesticide applicators (N = 36,792 in IA; N = 20,518 in NC).

2.2. Geocoding Process

Phase 1 enrollment address geocodes are being used to assess environmental expo-
sures including nitrate in private wells and proximity to concentrated animal feeding
operations for studies of cancer incidence [11,30,31]. The Phase 1 addresses have been
geocoded several times and have been compiled into distinct geocode database versions.
In Version 1, IA and NC addresses were batch- and interactively geocoded with the Esri
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ArcGIS Geocoding Engine software using the NAVTEQ 2011 street database in 2012 for
IA and the HERE (formerly Navteq) 2015 street database in 2016 for NC [3]. During batch
geocoding, an input table of participant addresses was automatically matched to the refer-
ence street database, primarily using the Point Address (not widely used until 2014) and
Street Address locators. Point Address locators use a database of address points based
on land parcel data; matches return latitude and longitude coordinates for an address,
typically in the center of the land parcel for the property. Street Address locators use a
spatially-referenced street database that provides the range of possible addresses for a
street segment on the odd and even sides of the street. The input address number’s latitude
and longitude coordinates are assigned by interpolation within the address range on the
street segment. Street Address settings for batch-matched addresses included a street offset
of 30 feet (9.1 m) from the street centerline and an end offset (squeeze factor) of 10% of the
length of the street segment. The street centerline and end offsets are used to approximate
the distance of the home away from the center of the street and to avoid addresses at the
end of a street from being placed too close to an intersecting road, respectively [26]. The
minimum match score/tolerance, a setting with a range of 0 to 100 to control how closely
addresses match to their most likely candidate, was set to 80, the default value. Other
match status types (Street Centroid, ZIP Centroid, City Centroid) were typically returned
when only a partial address was available or if the street address did not exist within the
range of existing address numbers on the street.

In the first geocoding effort, we conducted interactive geocoding when a street address
was known but did not return a match with the Point Address or Street Address locators.
Interactive geocoding is the manual process of correcting address information and assigning
geographic coordinates. Addresses were searched using Google Maps® and other internet
sites to identify potential spelling errors, formatting inconsistencies, or areas where the
reference data were missing or incomplete. If the address was in the form of a rural route
or PO Box, interactive geocoding was not used because the location could not be improved
beyond the ZIP code centroid.

IA and NC Phase 1 addresses were batch geocoded again in 2019 (database Version 2).
Batch geocoding in 2019 used the Esri ArcGIS Geocoding Engine software and HERE
StreetMap Premium 2018 V1, a street reference dataset in which each locator had its own
default match score and offset. The Point Address locator was used for any address meeting
the minimum match score of 93. The minimum match score used for the Street Address
locator was 85. The Street Address locator used a default offset of 25 feet (7.6 m) from the
center line and an end offset of 10%. The quality of match statuses for both geocoding
efforts was considered good if the status was Point Address, Interactive (Version 1 only), or
Street Address; other match statuses were considered poor.

2.3. Positional Accuracy: Rooftop Coordinates for a Subset of Iowa Participants

Rooftop locations of enrollment addresses for IA AHS participants who resided in
14 counties in western Iowa (Supplemental Figure S1) were assigned by researchers at
the University of Iowa/Iowa Field Station by comparing geocoded participant addresses
(geocoded with ArcGIS) to latitude/longitude data from the Iowa Roof-top Coordinates
project. Orthoimagery, ESRI’s street database, Iowa E911 address data, and Iowa spatial
parcel information were also used to aid in the assignments [3]. A total of 3566 applicators
had rooftop coordinates linked to their geocoded address. Of these participants, 3467 and
3368 had a good match status for their Version 1 and Version 2 geocodes, respectively.

2.4. Positional Accuracy: Comparison to Home GPS Readings

The Biomarkers of Exposure and Effect in Agriculture (BEEA) study is a molecular
epidemiologic sub-study in the AHS (N = 1681), in which most participants had a GPS
reading taken at the front entrance of their home at the time of an in-home interview [32].
Residence locations were primarily in eastern IA but covered most of the state in NC
(Supplemental Figure S1). Quality assurance and quality control were performed on the
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GPS coordinates for participants if the geocode and GPS locations were ≥500 m apart
(n = 304). GPS readings were checked against the street addresses to ensure they were
located on the correct street and city. If address attributes did not match, the GPS locations
were not considered a gold standard for computing positional error. After excluding
participants who moved since enrollment and those without GPS coordinates or verified
coordinates at the Phase 1 address, 1258 participants (991 in IA, 267 in NC) were eligible
for inclusion in this analysis. Of these participants, 1234 and 1192 had a good match status
for their Version 1 and Version 2 geocodes, respectively.

2.5. Statistical Analysis

For participants with a good geocode match status in both geocoding efforts (N = 32,035
or 87.1% in IA, N = 16,919 or 82.5% in NC), we calculated distances between Version 1
and Version 2 geocodes in ArcGIS. Separately for Version 1 and 2 geocodes with a good
match status, we calculated positional error (Z), defined as the Euclidean distance between
the geocode and one of the three gold-standard coordinate datasets (GPS readings in IA
and NC and rooftop coordinates in IA). Means and distributions of these distances and
positional errors were calculated by the type of good geocode match status. Improvement
was assessed as the difference in positional error between Version 1 and Version 2 geocodes
if both were a good match status (calculated as ZVersion1-ZVersion2). Linear regression mod-
els were used to evaluate whether rural status and population density were predictive of
the positional error of Version 2 geocodes and improvement in positional error between
geocoding efforts. For modeling, positional error improvement was parameterized as a
natural logarithm-transformed ratio (ln(ZVersion2/ZVersion1)). Rural status was determined
based on whether the GPS or rooftop coordinates were located within a Census 2000
Incorporated Place (considered non-rural) or located outside an Incorporated Place (rural).
Block-level population density at the GPS or rooftop coordinates was obtained from the
2010 Census. Moran’s I statistic was used to examine the spatial autocorrelation of residuals
from the linear regression models (Euclidean inverse-distance weighting in meters with
p-values based on a normal approximation).

2.6. Spatial Analysis

Full details of the spatial analyses are presented in Supplemental Appendix A. For
linear regression models with significant spatial autocorrelation of the residuals, a simulta-
neous autoregressive error model was used with an adjacency matrix based on k-nearest
neighbors to determine the coefficients and p-values for the two predictor variables. To
provide a visual representation of areas with low and high positional error without show-
ing participant locations (which are protected identifiable information), positional errors of
the geocodes were spatially interpolated through kriging. The best-fitting semivariogram
of natural log-transformed positional error between each gold standard and geocoding
effort was selected using the gstat package in R (Ver 3.5.3). The improvement in posi-
tional error was evaluated spatially using a spatial relative risk function. We extended the
conventional approach of the spatial relative risk function to compare a binary temporal
grouping (Version 2 geocodes vs. Version 1 geocodes). We incorporated spatial densi-
ties that were weighted by the positional error (in meters); the “risk” is characterizing
the spatial distribution of positional error in the Version 2 geocodes relative to Version 1
geocodes across a study area. To accomplish this, the spatial density of study participants
for each of the three gold-standard coordinate sets was weighted by their positional error
(Z) for both Version 1 and Version 2 geocodes. Next, the spatial relative risk function of
the weighted spatial densities was calculated using the spatstat package in R (Ver 1.64-1).
We present the natural log-transformed relative risk estimate (ln(E)) and its standard error
(σln(E)), which we approximate using the delta method (σln(E) = σE/E) where the standard
error of the relative risk estimate (σE) is divided by the relative risk estimate (E) at each
smoothed grid location in the study area. Significance in positional error improvement
or deterioration, compared to an expectation of homogeneous relative risk (null value of
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E = 1), was determined as smoothed grid cells with a relative risk estimate (E) that exceeded
a two-tailed 95% confidence interval under a normal approximation for the spatial relative
risk function. This approach is based on similar assumptions by Hazelton and Davies
(2009) but implemented for weighted spatial densities [33].

3. Results
3.1. Geocoding Process

Match status and match quality for both geocoding efforts are presented in Table 1,
separately by state. Over 85% of addresses had a good geocode status with a higher
percentage in Version 1 (IA = 91.5%, NC = 85.4%) compared to Version 2 (IA = 88.7%,
NC = 82.5%) due to the interactive geocoding of Version 1 street addresses that did not
have a good match status after batch geocoding. Though the Point Address locator was
used minimally in the Version 1 effort, it was prioritized in batch geocoding processes
by 2019, and thus most addresses were geocoded to this match type in 2019 (IA = 72.1%,
NC = 68.8%).

Table 1. Geocode match status (number [N], percentage [%] for enrollment addresses, Agricultural Health Study applicators
in Iowa (n = 36,792) and North Carolina (n = 20,518)).

Version 1 a Version 2 a

Match Status N % Match Status N %

Iowa Good Match Status
Interactive 1730 4.7 — — —

Point Address 120 0.3 Point Address 26,528 72.1
Street Address 31,811 86.5 Street Address 6119 16.6

Total 33,661 91.5 Total 32,647 88.7
Poor Match Status

Street Centroid 828 2.3 Street Centroid 895 2.4
ZIP Centroid 2269 6.2 ZIP Centroid 3216 8.7
City Centroid 24 0.1 City Centroid 24 0.1

Total 3121 8.5 Total 4135 11.2
Unassigned b 10 0.0 Unassigned b 10 0.0

Overall 36,792 Overall 36,792

North Carolina

Good Match Status
Interactive 281 1.4 — — —

Point Address 3139 15.3 Point Address 14,112 68.8
Street Address 14,100 68.7 Street Address 2815 13.7

Total 17,520 85.4 Total 16,927 82.5
Poor Match Status

Street Centroid 53 0.3 Street Centroid 220 1.1
ZIP Centroid 1804 8.8 ZIP Centroid 2230 10.9
City Centroid 1 0.0 City Centroid 1 0.0

Total 1858 9.1 Total 2451 11.9
Unassigned b 1140 5.6 Unassigned b 1140 5.6

Overall 20,518 Overall 20,518
a Version 1: enrollment addresses were geocoded in 2012 for Iowa and in 2016 for North Carolina. Version 2: addresses were geocoded in
2019 for both states. b No coordinates were assigned during the geocoding process due to no match to any locator.

Distances between Version 1 and Version 2 geocoded coordinates with good match
statuses varied by state (Table 2). Overall, the median distance between geocode pairs was
170 m (interquartile range, IQR: 53–293 m) for IA and 87 m (IQR: 39–202 m) for NC. Median
distance between geocodes was generally lowest when match statuses were the same, such
as when both were Point Address (145 m in IA and 57 m in NC) or Street Address (2 m
in IA and 0 m in NC). Though 95% of the distances between pairs were under 936 m for
IA and 556 m for NC, there were several extreme values (maximums of 48.5 km in IA and
35.6 km in NC).



Int. J. Environ. Res. Public Health 2021, 18, 1637 6 of 13

Table 2. Distance between Version 1 and Version 2 geocodes for addresses in Iowa and North Carolina by match status.

Version 1 a

Match Status
Version 2 a

Match Status
Distance (m) between Geocodes

N Mean (SD) Min 5% Median (IQR) 95% Max

Iowa
Interactive Point Address 914 498 (1839) 1 14 186 (55–355) 1170 25,987

Street Address 279 1210 (2258) 6 21 284 (83–1129) 6348 16,728
Point Address Point Address 105 157 (112) 2 24 145 (60–208) 382 579

Street Address 8 170 (217) 6 6 74 (51–234) 640 640
Street Address Point Address 25,081 389 (1214) 0 26 202 (88–326) 933 48,535

Street Address 5648 241 (1658) 0 1 2 (2–45) 737 47,713
Total 32,035 372 (1338) 0 2 170 (53–293) 936 48,535

North Carolina
Interactive Point Address 80 307 (892) 0 4 75 (19–173) 1470 7318

Street Address 20 3530 (5394) 6 17 153 (46–9038) 14,202 15,237
Point Address Point Address 2922 112 (137) 0 18 57 (36–130) 379 1451

Street Address 12 567 (1652) 5 5 106 (14–192) 5809 5809
Street Address Point Address 11,105 255 (865) 3 30 121 (63–243) 600 35,568

Street Address 2780 196 (1228) 0 0 0 (0–23) 532 22,202
Total 16,919 225 (892) 0 0 87 (39–202) 556 35,568

a Version 1: enrollment addresses were geocoded in 2012 for Iowa and in 2016 for North Carolina. Version 2: addresses were geocoded in
2019 for both states.

3.2. Positional Accuracy

Positional error calculations for Iowa participants with rooftop coordinates are pre-
sented in Table 3 for both geocoding efforts. Ninety-seven percent had a good match status
in the Version 1 (mostly Street Address) and Version 2 (mostly Point Address) geocoding
efforts. Overall, the median positional error was 124 m (IQR: 60–290 m) for the Version 1
geocodes and 65 m (IQR: 30–171 m) for the Version 2 geocodes. For Version 2, Point Ad-
dress geocodes were more accurate than Street Address geocodes based on each percentile
cutpoint (5, 25, 50, 75, 95%). For participants with good quality geocodes in both efforts,
67.4% of geocodes had less positional error in the Version 2 geocoding effort; median
improvement between the geocoding efforts was 41 m (IQR: −2 to 168 m).

Table 3. Positional error (m) of and improvement between Version 1 and Version 2 geocodes compared to rooftop coordinates
for Iowa participants by match status.

Rooftop Coordinate vs. Geocode
Positional Error (m)

N Mean (SD) Min 5% Median (IQR) 95% Max

Version 1 Geocodes a

Interactive 130 315 (464) 4 23 162 (63–338) 1176 3809
Street Address 3337 386 (1074) 3 26 123 (60–287) 1227 15,172

Total 3467 383 (1058) 3 26 124 (60–290) 1218 15,172

Version 2 Geocodes a

Point Address 3038 102 (153) 0 6 64 (29–171) 247 6847
Street Address 402 417 (1506) 9 19 67 (37–176) 1266 14,796

Total 3440 139 (543) 0 6 65 (30–171) 265 14,796

Improvement b 3368 245 (1021) −14,317 −147 41 (−2–168) 1077 14,887
a Version 1: enrollment addresses were geocoded in 2012 for Iowa and in 2016 for North Carolina. Version 2: addresses were geocoded in
2019 for both states. b Improvement calculated as the difference between the positional error of the Version 1 and Version 2 geocodes and
limited to those with geocodes of good match status in both efforts.

Positional errors computed from the GPS readings are presented in Table 4. Overall,
geocodes were more accurate in the Version 2 geocoding effort than the Version 1 effort
as quantified by the mean, median, and other percentile distributions of positional error.
Geocodes were also more accurate for NC compared to IA for both Version 1 and Version 2
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datasets. Additionally, in the Version 2 dataset, the median positional errors of geocodes
assessed with the Point Address locator were more accurate than Street Address geocodes
for both IA (Point Address = 166 m; Street Address = 193 m) and NC (Point Address = 42 m,
Street Address = 178 m). For IA participants, the median improvement between efforts
was 9 m (IQR: −80 to 133 m), and positional error decreased for 53.2% of the participants.
For NC participants, the overall median improvement was 42 m (IQR: −1 to 109 m), and
71.4% had a more accurate Version 2 geocode.

Table 4. Positional error (m) of Version 1 and Version 2 geocodes compared to Global Positioning System (GPS) coordinates
for Iowa and North Carolina participants by geocode match status.

GPS vs. Geocode
Positional Error (m)

N Mean (SD) Min 5% Median (IQR) 95% Max

Iowa Version 1 Geocodes a

Interactive 43 249 (242) 12 22 192 (79–325) 703 1174
Point Address 3 138 (35) 99 99 147 (99–168) 168 168
Street Address 922 400 (1154) 5 30 149 (77–329) 1012 15,609

Total 968 392 (1128) 5 30 150 (78–328) 998 15,609

Version 2 Geocodes a

Point Address 866 199 (546) 3 17 166 (59–227) 467 15,567
Street Address 82 720 (1734) 10 27 193 (76–451) 3376 11,884

Total 948 244 (742) 3 17 167 (62–236) 508 15,567

Improvement b 934 148 (905) −1765 −302 9 (−80–133) 615 12,102

North Carolina Version 1 Geocodes a

Interactive 1 92 - - - - -
Point Address 43 97 (104) 10 24 61 (37–102) 320 550
Street Address 222 330 (1458) 7 32 131 (81–252) 682 19,324

Total 266 291 (1335) 7 27 117 (67–225) 616 19,324

Version 2 Geocodes a

Point Address 227 107 (166) 3 10 42 (23–122) 481 1147
Street Address 31 838 (3451) 24 27 178 (71–325) 931 19,404

Total 258 195 (1213) 3 11 46 (25–150) 515 19,404

Improvement b 258 61 (224) −1002 −205 42 (−1–109) 414 1316
a Version 1: enrollment addresses were geocoded in 2012 for Iowa and in 2016 for North Carolina. Version 2: addresses were geocoded in
2019 for both states. b Improvement calculated as the difference between the positional error of the Version 1 and Version 2 geocodes and
limited to those with geocodes of good match status in both efforts.

Supplemental Tables S1 and S2 show the positional error of geocodes by rural status
in both IA and NC as assessed by comparisons to rooftop or GPS coordinates, respectively.
Across both states, both geocoding efforts and both reference coordinate sets (rooftop or
GPS) geocodes for non-rural addresses were more accurate than geocodes for addresses in
rural areas. For example, the median positional error for rural addresses geocoded in the
Version 2 dataset in IA was 173 m (IQR: 73–242 m), but it was 25 m (IQR: 14–59 m) for the
non-rural addresses geocoded in the same effort. Though the positional error of geocodes
was comparable between non-rural addresses in IA and NC, the accuracy of rural geocodes
was much higher in NC (Median = 48 m; IQR: 25–158 m) than in IA (Median = 173 m; IQR:
73–242 m) in the Version 2 dataset. Improvement in geocoding accuracy between the 1st
and 2nd geocoding efforts was seen in both the rural and non-rural geocodes in both states.

Using linear regression models, we found that rural status and population density
were significant predictors of positional error in the Version 2 geocodes and of improvement
in positional error between geocoding efforts in IA (Table 5). For the IA rooftop coordinates,
increased population density resulted in smaller positional errors (est = −4.78 m per
100 persons/km2 change; p = 0.05) as well as improvement in positional error between
the two geocoding efforts (est = 0.98; p < 0.01). For the IA GPS comparisons, non-rural
location was predictive of lower positional error (estimate = −507.8 m; p = 0.04) and
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improvement (improvement ratio = 0.69; p = 0.06). For the GPS comparisons in NC, a
state with a higher overall population density, non-rural location and increased population
density decreased positional error; however, neither variable was significant. Significant
spatial autocorrelation of residuals was observed in the improvement models using the IA
rooftop coordinates (Moran’s I = 0.076; p < 0.01) and IA GPS coordinates (Moran’s I = 0.012;
p < 0.01); plots of the global Moran’s I are presented in Supplemental Figure S2.

Table 5. Regression models predicting positional error of Version 2 geocodes and the improvement ratio in positional error
between Version 1 and Version 2 geocodes.

Positional Error of Version 2 Geocodes Improvement Ratio a

Model Estimate p-Value Estimate p-Value

Iowa Rooftop
Intercept 158.1 <0.001 0.448 <0.001

Non-rural location b −53.1 0.131 0.892 0.246
Pop. Density

(100 persons/km2) c −4.78 0.048 0.986 0.025

Moran’s I of residuals 0.001 0.409

Iowa GPS
Intercept 564.1 <0.001 0.856 0.006

Non-rural location b −507.8 0.037 0.708 0.079
Pop. Density

(100 persons/km2) c 6.36 0.710 1.011 0.445

Moran’s I of residuals 0.004 0.140

North Carolina GPS
Intercept 375.2 <0.001 0.504 <0.001

Non-rural location b −281.6 0.606 0.955 0.906
Pop. Density

(100 persons/km2) c −28.1 0.596 1.022 0.572

Moran’s I of residuals −0.003 0.944 0.019 0.141
a Improvement ratio is calculated as the positional error of the Version 2 geocode divided by the positional error of the Version 1 geocode
(ZVersion2/ZVersion1). A simultaneous autoregressive error model was used for Iowa Rooftop and Iowa GPS improvement models, as aspatial
linear models showed significant spatial autocorrelation of the residuals based on the Moran’s I statistic (p < 0.001). b Non-rural location
defined as the location being within a Census 2000 Incorporated Place. Estimate represents the change in positional error associated with a
residence in a non-rural location. c Population density at the block level from the 2010 Census. Estimate represents the change in positional
error associated with an increase in population density of 100 persons per km2 at the residence.

Spatially smoothed maps of positional error and improvement for each of the three
reference sets are provided in Figure 1. No clear area-wide patterns emerged from the
positional error maps. We noted a significant improvement in positional error in several
clusters in Iowa using the GPS reference set, with the largest cluster located in central
Iowa, west of the city of Waterloo. There was also a significant improvement in positional
error in one area of eastern NC located southeast of the city of Raleigh. Based on Iowa
rooftop coordinates, there were multiple areas of significant improvement in positional
error, including the entirety of Kossuth County in north-central Iowa.
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Figure 1. Spatial distribution of positional error of Version 2 geocodes and positional error improve-
ment between Version 1 and Version 2 geocodesa for Iowa rooftop coordinates and Iowa and North
Carolina GPS coordinates. a Version 1: enrollment addresses were geocoded in 2012 for Iowa and in
2016 for North Carolina. Version 2: addresses were geocoded in 2019 for both states. b Figure denotes
the spatially kriged positional error of Version 2 geocodes. Darker colors denote higher values of
positional error. c Figure denotes significant improvement ratio, which is calculated as the estimated
spatial relative risk of Version 2 geocode and Version 1 geocode (ZVersion2/ZVersion1; weighted by
their respective positional error) that exceeds an asymptotic normal null expectation of homogenous
relative risk. Blue-colored areas denote significant improvement in positional error between Version 1
and Version 2 geocodes, grey-colored areas denote insignificant change, and red-colored areas denote
significant deterioration (which was not observed).

4. Discussion

In this comparison of two geocoding efforts in the AHS, we found that the positional
accuracy of the geocoded residential addresses improved in both IA and NC. We noted
smaller positional errors for addresses in NC compared to Iowa, and we found greater
positional error in rural and less densely populated areas. We found that positional
errors were spatially autocorrelated in IA and that certain regions of both IA and NC had
significantly improved geolocations between the two geocoding efforts.

Our findings show that the newer geocoding locators and street reference datasets
can more accurately capture the location of residences, which is important for exposure
classification in environmental epidemiology studies. Using gold-standard locations as
assessed by rooftop coordinates or on-site GPS readings, batch-matched geocodes showed
substantial improvement in the second geocoding effort in 2019 compared with the first
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effort in 2012 and 2016, for IA and NC, respectively. This improvement is partly explained
by the shift from the predominant use of the Street Address locator for the Version 1
geocodes (86.5% for IA, 68.7% for NC) to the more accurate Point Address locator for
Version 2 (72.1% for IA, 68.8% for NC). However, even addresses matched by the Street
Address locator in 2019 showed an improvement in accuracy. Accuracy may have improved
over time for several reasons, including data corrections or other updates, such as a change
in address ranges for a street segment.

Use of the Point Address locator has increased the positional accuracy of geocodes,
likely due to the inclusion of parcel data (property boundaries). When digital parcel data
are used for geocoding, coordinates are assigned to an address based on the parcel centroid
or the location of the major structure on the property [34]. However, our results may
illustrate limitations of geocoding using parcel data in rural areas. The large positional
errors for some Point Address geocodes in this study may have occurred due to the poor
geocoding accuracy for addresses located in large parcels, which are common in rural
areas [16,24,35].

The positional errors we observed for both time periods are comparable to geocoding
errors observed in other studies that evaluated geocoded addresses in Iowa [2,36,37] and
other US states and countries [16]. In a case-control study of non-Hodgkin lymphoma
in Iowa, Ward et al. compared two geocoding methods to GPS measurements at homes
and found similar positional errors (medians = 61 and 62 m) to those in our study [2].
Zimmerman et al. modeled the probability distribution of positional errors for 2354 rural
addresses in Carroll County IA and found batch-geocoding procedures to have a median
error of 168 m [36]. Ganguly et al. found median positional errors of 26 m for batch
geocoding using both Bing Maps and ArcGIS for 160 homes exposed to traffic-related air
pollution in Detroit, Michigan [35]. Comparing ArcGIS geocodes to residential coordinates
obtained using aerial orthoimagery for 506 urban addresses in Saint Louis, Missouri,
Schootman et al. found a median positional error of 31 m [13].

We observed greater positional error for rural addresses than for non-rural addresses
(located within US Census incorporated places) in both IA and NC. Median positional
error based on GPS for rural addresses in IA was more than three times that for non-
rural addresses (173 m vs. 23 m), whereas rural and non-rural median errors were more
similar in NC (48 m vs. 29 m). The positional error distributions by rural status that we
observed were similar to a previous comparison of AHS geocoded addresses that were
not limited to enrollment geocodes [3] and similar to the differences observed by Ward
et al. for residences located in incorporated places (medians = 50 to 56 m) and rural areas
(medians = 88 to 212 m). Others have also examined predictors that might explain the
increased positional error observed in rural areas in Iowa and found that street intersection
density was predictive of positional error [37]. Our regression models suggest that rural
status and population density were predictive of improvement in geocoding accuracy
between the two efforts in Iowa. Commercially available geocoding databases likely target
improvements to areas with higher population density, which might partly explain the
finding of lower positional error among rural NC addresses compared to those in IA. The
higher population density in NC may also explain the lack of associations between rural
status and population density with positional accuracy and improvement in our linear
regression models.

Inaccurate geocodes contribute to exposure misclassification in epidemiological stud-
ies [2–4]. In an analysis within AHS, Jones et al. found that positional errors comparable to
those in our evaluation reduced the sensitivity and specificity of environmental exposure
estimates (proximity to row crops and animal feeding operations) even at large buffer sizes
(5 km). In several exposure scenarios, they noted up to a 50% reduction in the odds ratio
for a hypothetical nested case-control study when address-matched geocodes were used
instead of gold-standard coordinates [3]. An analysis of proximity to corn and soybean
crops in Iowa by Ward et al. using home GPS coordinates as gold-standard locations found
that misclassification was greatest for distances of 100 m compared to 250 and 500 m [2].
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An analysis of exposure to concentrated animal feeding operations in Carroll County, Iowa
by Mazumdar et al. found median positional errors of 211 m and 46 m [12] that resulted
in modest attenuation of a true odds ratio from 1.21 to 1.18 and 1.17 depending on the
geocoding method [12]. In an investigation of geocoding methods in rural areas, Vieira
et al. evaluated addresses that were erroneously geocoded to street segments not receiving
public water supplies or to street segments serviced by a different public water system.
Geocoding errors were primarily due to incorrect street numbers and did not result in
much exposure misclassification as the entire lengths of the streets were serviced by the
same public water system [4]. However, for areas serviced by small public water supplies
such as the rural water cooperatives in IA and NC, connections to the public supply can
vary from address to address on the same street. Thus, small positional errors could result
in the assignment of the wrong drinking water source.

After accounting for population density and rural status, we found significant spatial
autocorrelation of positional error improvement in IA. Although clear patterns did not
emerge when mapping positional error in IA and NC, our findings of significant spatial
autocorrelation in IA and a high degree of spatial heterogeneity are important observations,
especially as this could result in spatial clustering of geocoding-related misclassification in
future observational studies. Though we did not find significant spatial autocorrelation
among models of positional error of Version 2 geocodes, other studies have shown spatial
autocorrelation among positional errors from automated geocoding in Iowa [38] and
Florida [24]. The clustering of improvements in positional error in certain areas in IA and
NC suggests that improvements in geocoding processes or reference databases maintained
by commercial geocoding firms are not uniform across large geographic areas.

The strengths of this study include the availability of gold-standard GPS and rooftop
coordinates across the study area of both states and the use of both spatial and aspatial mod-
els to visualize and determine significant predictors of geocoding accuracy and positional
error improvement. Though gold-standard coordinates were not available for all AHS
participants, our large sample size of reference coordinates allowed for an examination of
accuracy by state, rurality, and match status. The different years of geocodes for IA (2012)
and NC (2016) in the Version 1 dataset limit direct comparisons of improvements over time
between the states. We tested for spatial autocorrelation of model residuals to determine if
another spatial predictor (i.e., beyond rurality and population density) was contributing
to positional error and/or improvement. For the two models that showed spatial auto-
correlation in the residuals, we performed simultaneous autoregressive error models in
order to obtain unbiased coefficients and p-values for the effect of population density and
rurality on geocode improvement. Though we were not able to provide maps with local
Moran’s I because of our need to protect the confidentiality of participants’ locations, we
visualized geocode improvement with spatial relative risk functions and provided global
Moran’s I plots in the supplemental to further examine the spatial autocorrelation of the
residuals. Our interpolated surface maps provide an overview of positional error across
the study area; however, these maps should not be used to extract exact values. It should
also be noted that the GPS receivers we used to verify geocodes have positional error that
can range from 10 to 20 m [22]. Finally, this study was based in IA and NC in largely rural
populations, and all of our results may not be generalizable to other US states. However,
our findings of improvements in positional accuracy over time are likely to be relevant to
studies in other locations.

5. Conclusions

Recent improvements in the spatial datasets and technology underlying geocoding
processes have reduced the positional error in batch geocoded addresses, as demonstrated
for AHS participants. Our results indicate that researchers maintaining long-running
prospective cohorts may want to update participant geocodes as batch geocoding methods
improve over time. Additionally, if available, rooftop coordinates and GPS readings
are the most accurate locational data for residential addresses and should be utilized
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when available. These findings demonstrate the utility and importance of assessing the
positional accuracy of geocoding methods (past and present) that are often used in exposure
assessment for environmental epidemiology studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/4/1637/s1, Figure S1: Number of AHS participants per county with gold-standard rooftop and
GPS coordinates in Iowa and North Carolina, Figure S2: Global Moran’s I plots of residuals from
Iowa GPS and Iowa Rooftop linear regression improvement ratio models, Table S1: Positional error
(m) of Version 1 and Version 2 geocodes compared to rooftop coordinates for Iowa subcohort by
rural status, Table S2: Positional error (m) of Version 1 and Version 2 geocodes compared to GPS by
rural status.
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