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Abstract: The industrial manufacturing sector is undergoing a tremendous revolution moving from
traditional production processes to intelligent techniques. Under this revolution, known as Industry
4.0 (I40), a robot is no longer static equipment but an active workforce to the factory production
alongside human operators. Safety becomes crucial for humans and robots to ensure a smooth
production run in such environments. The loss of operating moving robots in plant evacuation
can be avoided with the adequate safety induction for them. Operators are subject to frequent
safety inductions to react in emergencies, but very little is done for robots. Our research proposes
an experimental safety response mechanism for a small manufacturing plant, through which an
autonomous robot learns the obstacle-free trajectory to the closest safety exit in emergencies. We
implement a reinforcement learning (RL) algorithm, Q-learning, to enable the path learning abilities
of the robot. After obtaining the robot optimal path selection options with Q-learning, we code the
outcome as a rule-based system for the safety response. We also program a speech recognition system
for operators to react timeously, with a voice command, to an emergency that requires stopping all
plant activities even when they are far away from the emergency stops (ESTOPs) button. An ESTOP
or a voice command sent directly to the factory central controller can give the factory an emergency
signal. We tested this functionality on real hardware from an S7-1200 Siemens programmable logic
controller (PLC). We simulate a simple and small manufacturing environment overview to test our
safety procedure. Our results show that the safety response mechanism successfully generates paths
without obstacles to the closest safety exits from all the factory locations. Our research benefits any
manufacturing SME intending to implement the initial and primary use of autonomous moving
robots (AMR) in their factories. It also impacts manufacturing SMEs using legacy devices such
as traditional PLCs by offering them intelligent strategies to incorporate current state-of-the-art
technologies such as speech recognition to improve their performances. Our research empowers
SMEs to adopt advanced and innovative technological concepts within their operations.

Keywords: autonomous moving robot; obstacle-free path planning; Q-learning algorithm;
reinforcement learning (RL); safety response; smart manufacturing; speech recognition

1. Introduction

Today’s manufacturing automation trend, the so-called Industry 4.0 or smart manu-
facturing, is characterized by the application of intelligent technologies and concepts to
create smart factories [1]. Under Industry 4.0, modern factories face an increasing level
of automation to achieve more efficiency and quality in production processes. One of
the key elements of smart manufacturing is the use of robotics technologies in various

Sensors 2022, 22, 941. https://doi.org/10.3390/s22030941 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2994-0699
https://orcid.org/0000-0003-3025-336X
https://doi.org/10.3390/s22030941
https://doi.org/10.3390/s22030941
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s22030941
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030941?type=check_update&version=2


Sensors 2022, 22, 941 2 of 23

applications varying from basic to advanced tasks such as parts processing in production
lines, product transportation, material handling, logistic warehousing, rescue services,
inspection, surveillance, data collection, and more collaborative activities with human
operators [2–4]. The implementation of collaborative robots (cobots) aims to enhance the
cooperation and the shared workforce between humans and robots in smart manufacturing
environments [5,6]. Cobots are usually programmed with an extent of autonomy where
the robots themselves can perform certain duties without relying on human intervention.
When dealing with a moving robot, the concept of autonomy becomes more critical since
the robot must safely navigate through the factory from the starting point to the destination
by avoiding any obstacle along the way [7]. Obstacle avoidance for moving autonomous
robots has been a challenging topic among researchers. One of these researches’ goals is
to provide robots with an intelligent behavior system to make appropriate decisions in
their working environment. Robot obstacle avoidance falls within the robot path planning
procedure [8]. Robot obstacle avoidance has two main categories: obstacle avoidance
in a totally or partially unknown environment and obstacle avoidance in a predefined
environment [9]. To give robots the ability to make autonomous decisions like human
beings, researchers used the great potentials of machine learning to build intelligent robot
systems. Machine learning (ML) is a field in the domain of artificial intelligence (AI) [10]
that focuses on providing machines (robots) with learning abilities like humans. ML has
various eminent applications in the areas of medical treatment [11], speech recognition [12],
natural language processing (NLP) [13,14], image processing and signal processing [15].

Reinforcement learning (RL) is a ML approach widely used in robotics to allow
autonomous robots to learn obstacle-free trajectories to their destinations in a complex and
uncertain environment without necessarily prior knowledge of the working environment.
With RL techniques, autonomous robots can improve their performance through trials-
and-errors interactions with the environment learning from their experiences to make the
most appropriate decision in the future without external assistance. Hence, RL provides
the robot a tool to learn and adapt in a dynamic environment [7]. Another essential
concept in the human–machine or human–robot interaction in smart factories is speech
and language application via speech recognition [16]. Speech recognition [17] is another
machine learning function through which machines can understand human speech and
languages. Speech recognition eases the communication between humans and robots in a
modern factory where the interaction between them is inevitable [18]. Thanks to speech
recognition applications, voice instructions and commands can be given directly from
human operators to robots.

Our research novelty lies in implementing frontier technologies such as speech recog-
nition and AI in factory floor automation to create an enhanced safety mechanism for small
manufacturing plants. Our research is suitable for small manufacturing SMEs intending to
adopt advanced technological concepts to improve their operations. We apply a speech
recognition process to transform a legacy S7-1200 Siemens PLC into a more intelligent
device controlling its output via voice commands to strengthen a factory security interlock.
We accomplish voice interfacing to the PLC from the computer microphone without a
third-party device. Our voice command to PLC integration contributes in reducing the
risks of delayed system stopping response using a central ESTOP far from the operators
at the time of emergency. We implement RL to develop a basic safety induction routine
for AMR. The safety routine enables co-robot agents to find an obstacle-free path to the
closest safety exit in an emergency. We use an RL algorithm called Q-learning to make
an autonomous learner (robot) take the most effective path to the closest safety exit. The
safety exit can change depending on the robot’s location when the emergency signal is
received. The voice command that controls the PLC directly is advantageous for the plant
when the operator is far away from the system emergency stop (ESTOP) or stop buttons
when the emergency signal needs to be activated. The voice command is an enhancement
to an existing emergency stopping interlock.
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1.1. Motivation of the Study

Safety is a crucial factor in any working organization. In the industrial manufacturing
environment, safety has become one of the highest priority areas to ensure an effective
production system. Production factories contain several tools, pieces of machinery, and
hazardous materials that could easily cause incidents without proper safety measures.
An unsafe working environment results in frequent accidents, injuries, and machine
failure [19]. One of the well-known emergency responses is to abruptly stop operations
using system emergency stops (ESTOPs), often wired in control panels and other strategic
locations. Unforeseen disastrous events are almost inevitable, requiring proper emergency
responses to be observed by all factories personnel whenever they occur. In a smart factory
context, where safety is a cyber-physical production system function [20], all production
stakeholders should be involved in safety responses [21]. In an environment where humans
and robots collaborate, the emergency procedure should apply to humans and robots. As
much as humans go through safety inductions to be instructed on disasters’ best safety
measures, robots should comply with the same principle.

Our study proposes a safety enhancement measure for an industrial manufacturing
environment in which we equip an autonomous moving robot with an emergency proce-
dure that is activated in case of disaster. We also incorporate a voice command (via speech
recognition) as an additional emergency stopping interlock to the central controller (a PLC),
improving the emergency stop responses for situations where the operator is far from the
ESTOP push button.

1.2. Contributions and Limitations

Our primary contribution is developing a safety response system in an intelligent
manufacturing environment where humans and machines (robots) collaborate. With the
help of a reinforcement learning algorithm, Q learning, we make an autonomous moving
robot to go through a “safety induction” to learn by itself the path to the closest safety exit
based on its current location instead of relying on a single path to evacuate (that could
be very distant from its location at the time of emergency) the place. In an emergency,
the shorter the traveling distance to the exit, the better as more incidents could happen
along the way. Our experimental factory environment has a total of four safety exits. The
destination of the autonomous robot is dynamic and depends on its current location. Our
study also contributes to enhancing a PLC emergency stopping interlock by incorporating
a voice command as an additional stopping input for the system in case of emergency. The
voice command is captured from a microphone directly to the PLC via a python script
without any other third-party controller like a Raspberry Pi.

Limitations: We based our study purely on software simulations. It was not tested in
a physical manufacturing factory. Our safety response mechanism is suitable for planning
purposes before implementation to a real-world application. The voice command to the
PLC is an enhancement to an existing ESTOP system. It should not be installed as the only
emergency stopping mechanism.

2. Previous Works Findings

Several studies have been conducted to implement RL in robotics: Ref. [9] imple-
mented an obstacle avoidance scheme for a mobile robot using an RL algorithm called
Q-learning. This study applied two different Q-learning methods with an extensive tuning
of the algorithm hyperparameters to obtain the best obstacle avoidance approach. This
research was part of robotic competition. Reference [8] developed another study on robot
path planning (including obstacle avoidance) using an advanced version of the Q-learning
algorithm: an experience-memory Q-Learning (EMQL) through which the agent can re-
ceive two types of rewards (static and dynamic rewards). This method improves the
robot’s learning ability by utilizing two Q tables that allow the robot to remember a task
in case of a change of destination. Another path planning research with Q-learning was
carried out by [22], where the robot can safely and effectively navigate in an unknown
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environment by capturing images (with an onboard robot camera) of the environment and
computing the shortest path to the destination. This study applied machine learning to
process the captured images. Research by [23] applied RL has in robotics for information
gathering in a hazardous gas leakage environment. They implemented an RL framework
for the robot to learn how to get gas sources in a known environment. Reference [24]
extended RL application to a multi-robot system where several robots are interoperating
and moving in a single environment performing different tasks without colliding with
one another. They combined Deep Q learning and Convolution Neural Network (CNN)
for image analysis to achieve their goal. In order to protect the robot from making fatal
decisions during the learning process. Reference [25] defined a new RL approach with
two safety algorithms to guide robots when learning their paths. This approach aimed to
prevent robots from dangerous states that could destroy them. Reference [2] implements
RL to solve a scheduling problem of robots moving from one cell to another loading and
offloading production parts. RL allowed creating an effective moving scheduling policy
for the robots in real-time to avoid production losses.

The speech recognition field for robotics technology has also been widely exploited
with several works such as: Reference [26] who develop an intelligent system that gives
robots the ability to detect human emotions by voice input or vision using speech recogni-
tion and deep neural networks. Reference [27] created a system to control robot actions
and give it instructions at a distance with voice commands. They built the system with
a Raspberry Pi as the base controller to process the speech recognition algorithm and
send commands to the robot. Another speech recognition for robot command work was
conducted by [28]. This study aimed to develop an intelligent robot capable of dressing
an individual (disabled people) with speech instructions. Speech recognition was just one
of the multiple technologies included in this design, together with gesture and posture
recognition. Reference [29] implemented a voice recognition system for an autonomous
driving robot in a noisy environment. The system can effectively recognize different
voice textures from adults to children despite the noise in the system. They used wireless
microphones to capture the voice input and inserted multi-channel voice cancellers to
reduce noise. A similar work designed to improve voice command quality in a speech
recognition robotic system was conducted by [30]. They improved the output signal of a
speech recognizer installed in a control automation environment by applying an intelligent
particle swarm optimization approach that tunes the speech recognizer and suppresses
environmental noises.

Previous Researches Gaps Summary

Most previous works on Q-learning (RL algorithm) in robotics have not tackled robots’
safety regarding their working environment. Unlike in traditional factories, where robots
are considered static production equipment, their role in a smart factory is more interactive,
and they are part of the production workforce. It becomes essential to include them in safety
responses in case of emergency. To date, the safety approaches covered in previous research
have been on preventing robots from going into dangerous states while interacting with
their environment. The fate of the robot in case of plant evacuation or emergency has not
been widely explored. Various studies have been done on speech recognition applications
in home environments,office environments, and even robotics for communication between
humans and robots, but very few have been integrated directly into the process controllers’
structures. A speech command incorporated into the central controller program has the
advantage of controlling all other plants’ operations in a single instruction. This feature
could be convenient in emergencies. We address these gaps by creating a safety response
mechanism (that we consider as a safety induction) for an autonomous moving robot to:

• Find an obstacle-free path to the closest safety exit based on its current location.
• Receive a voice command from the main plant PLC. The voice command is imple-

mented as an additional stopping interlock for the PLC. It means that it can stop all
ongoing plant operations in case of emergency.
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3. Short Theory and Background Overview
3.1. Reinforcement Learning (RL)

The reinforcement learning (RL) [31–33] algorithm is a ML method created in the
early 1990s. The RL algorithm is built based on the enhanced learning principle where an
“agent,” the object undergoing the learning process, continuously tries all possibilities of
actions and decisions to determine the most optimal one (the best strategy to adopt) [34].
The RL algorithm utilizes five main elements: the agent, the environment, the reward, the
state, and the action. In its learning process, the agent performs several interactions with its
environment by making some actions that will cause a change of state in the environment
and result in a positive or a negative reward (penalty) [35]. Over the years, RL has been the
subject of many kinds of research in various applications such as chemical reaction [36],
resource management [37], traffic-light management [38], autonomous driving [39], dam
management [40], surgery [41] and robotics [42].

Our study focuses on the robotic area where we use RL to equip an autonomous robot,
the agent, with an appropriate routine to learn the shortest and safest way to a secure
location in case of a disaster that requires evacuation in its working environment. One of
the most popular model-free reinforcement learning algorithm we use in this research is
the Q-learning algorithm. Model-free algorithms have been successfully implemented in
robotics problems because of their ability to reuse information effectively [43].

Q-Learning Algorithm

The Q-learning (QL) algorithm is a model-free RL algorithm introduced by by Watkins
CJ and Dayan P [44]. It has been developed based on the psychological behaviourism
of offering reward or encouragement for good actions and penalties or punishment for
wrong actions. The agent performs all possible actions in every state and records the
values generated in a Q table. The values in the Q table are computed based on a Bellman
Equation [8]. In this research, we implement the QL algorithm to build a safety mechanism
for an autonomous robot.

Limitation: It is worth mentioning that the QL algorithm is only suitable for discrete
states and actions. Its learning processing time depends on the size of the Q table. The
larger the Q table, the longer the learning processing time for the agent [45].

3.2. Speech Recognition

Speech recognition is an AI process that converts a voice signal (usually a human
voice) into instructions that computers can understand and further manipulate for diverse
applications. The voice signal’s conversion involves a transformation of an analog signal
(the original voice input) into a digital sequence of sentences or words from the voice
instruction [46]. If computer vision [47] is an AI method that allows computers to recognize
patterns with the sense of vision or by seeing like humans, speech recognition permits
machines or computers to interact with each other and with humans through language
or speech.

In recent years, various applications using speech recognition technologies have been
developed mainly to substitute traditional input methods like clicking or typing with
voice commands. The creation of virtual assistants’ voice-enabled applications such as
Google Home assistant, Apple home pod, and Amazon Alexa has become quite popular
in home and office environments. However, very few speech recognition applications
have penetrated the industrial manufacturing sector. Our study aims to enhance an indus-
trial manufacturing plant’s security by incorporating a voice command as an additional
emergency or safety input signal to a traditional PLC. Therefore, we apply the speech
recognition process to an industrial manufacturing environment.

Limitation: One of the most significant limitations of speech recognition is that it
requires a noise-free input command to carry out its process efficiently. Obtaining a
clear input can be challenging because of different language accents and intonations that
sometimes the system has difficulty recognizing. Several types of research exist to reduce
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the noise level in speech recognition input systems. It is not advised to use a speech
recognition application as a single input for safety control [48]. In our study, we use the
voice command input as an enhancement to an existing safety mechanism.

3.3. Programmable Logic Controller (PLC) Functions in the Era of Industry 4.0

Programmable Logic Controllers (PLCs) have been widely used in the industrial
sector as the base element for controlling and monitoring field components and production
processes. Not many researches talk about this powerful controller [49]. PLCs have been
successfully established as the platform of choice for industrial process outline and factory
automation conducted by the so-called IEC 61131 standard [50].

Although the industrial and manufacturing sector is undergoing a smart manufac-
turing revolution, encouraging the utilization of more general-purpose devices, tools,
networks, and software, the use of PLCs is not yet ready to vanish. In smart manufacturing,
the PLC role evolves from traditional controllers’ tasks to decentralized and integrative
functions [51,52]. One of our study goals is to integrate a voice command input via speech
recognition to a traditional PLC that initially does not support any voice command. Hence,
we transform a traditional isolated PLC system into a smart controller in an Industry
4.0 environment.

4. Safety Response Mechanism Methodology

Our experimental safety mechanism for an autonomous robot consists of:

• An automatic path finding section to safety exits in case of emergency: We build this
section based on the Q-learning algorithm.

• A voice command input to a Siemens S7-1200 PLC to activate the emergency signal:
Speech recognition is the key feature of this segment.

4.1. Q-Learning Algorithm to Find Obstacle Free Paths

Q-learning is a reinforcement learning algorithm. One of its working principles is
that the agent (the autonomous robot in our research) learns the best policy to adopt for a
given scenario based on its interactions with the environment and the rewards gained [35].
According to its current state, a policy in Q-learning is how the agent chooses to behave,
react, or make decisions at a given time. Therefore, the policy is a result of the agent’s
action and state [50]. A policy can be represented by (1):

β = a|s. (1)

where a is the action taken by the agent at a given time and s is the state of the agent when
taking the action. β formulates the probability an agent takes an action a based on its
state s.

During the learning process, the Q-learning algorithm computes values generated by
pairing each possible action the agent may take based on different states. These calculated
values are called Q-values. The agent picks the action that produces the highest Q value.
The Q values are stored in a Q Table until the best possible policy is determined by the
algorithm [53]. As mentioned previously, the QL algorithm originated from the Bellman
equation. The Bellman equation can be applied in a deterministic environment where it
is assumed that the agent has 100% chances to go through the desired direction and end
up in the desired state when instructed to do so. Euqation (2) is the bellman equation for
deterministic environment. The Bellman equation can also be implemented in a stochastic
or non-deterministic environment in which there is a probability that the agent may end
up in a different state than expected. Euqation (3) represents the Bellman equation for
stochastic problems, also referred to as Markovian decision trees [8].
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G(s) = max
a

(r(s, a) + γG(sn)) (2)

where G(s) is the value obtained at a given state s, r(s,a) is the reward obtained by perform-
ing an action a at a state s, γ is an hyperparameter called the discount factor, and G(sn) is
the value obtained at the next state sn.

G(s) = max
a

(r(s, a) + γ ∑
sn

P(s, a, sn)G(sn)) (3)

where P(s, a, sn) is the probability of getting into the next state sn from the initial state s by
performing an action a. The final Q-learning equation is presented by (4).

Q(s, a) = (1− α)Q(s, a) + α[r(s, a) + γ(max
an

)Q(sn, an))] (4)

where Q(s,a) is the Q value computed by an agent performing an action a at its current state
s. α is a Q-learning algorithm hyperparameter that represents the learning rate. Its value is
defined in the interval α ∈ [0, 1] and it determines the impact of new information learnt
compared to old stored ones. r(s,a) is the reward obtained by performing an action a at a
state s. γ is the discount factor. Its role in the Q-learning algorithm is to give importance in
future rewards. Like its counterpart α , the value of γ ∈ [0, 1] [9].Q(sn, an) is the Q value of
the next action an at the next state sn. maxan Q(sn, an) calculates the maximum Q value of
the next action based on the next state. We can summarize the general operations of the
Q-learning algorithm (4) in Algorithm 1.

Algorithm 1 Q-learning general algorithm for operation summary

Input: Agent states s
Output: Q values

Initialize Q(s,a) = 0 and Q(sn, an) = 0
Set α and γ
1. Record a state s
2. Choose an action a based on the state s
3. Examine the reward received r(s,a)
4. Record the next state sn
5. Find the maximum Q value based on (sn, an)
6. Find the value of Q(s,a)
7. Go back to 1
8. End

The Q-learning algorithm allows our autonomous robot to find an obstacle-free path
to the closest safety exit in an emergency. The choice of the safety exit is dynamic and
depends on its current location. We create an algorithm (Algorithm 2) to find the route
from the current robot location to its destination. This algorithm is a result of our research
findings. The computed route should contain the indexes of all the locations through which
the robot passes going to the destination. This algorithm utilizes Q values stored in the
Q table.

4.2. Speech Recognition Process to Activate a Voice Command Input to the PLC

Under the smart manufacturing era, the human–machine interface (HMI) concept
has considerably expanded from simple push buttons, light indicators, and graphical user
interfaces (GUI) to more advanced interfaces [54] driven by voice and gestures. A new
concept called natural human–machine interface (NHMI) is developing enabled by gesture
recognition, enhanced reality, and speech recognition [55]. Our research focuses on the
implementation of speech recognition to create a new interface for a traditional PLC. The
speech recognition principle’s theoretical summary is the ability to recognize and identify
patterns of information contained in a speech wave [56]. On the technical side, speech
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recognition aims to predict the best word sequence B based on a speech wave signal S and
can be represented by (5) for its statistical expression [57]:

B∗ = arg max
B

PΨ,λ(B|S) (5)

where Ψ is the acoustic model and λ is the language model. Equation (5) can be transformed
and presented as (6):

B∗ = arg max
B

pΨ(S|B)Pλ(B). (6)

where pΨ(S|B) represents the probabilistic quantity generated by the acoustic model and
Pλ(B) is the probabilistic quantity that originated from the language model.

Equation (6) can be further expanded in (7) by assuming that a time sequence t is
inserted and some observations of the word sequence bt are generated with hidden states
δt by the hidden Markov models (HMMs).

B∗ = arg max
B

Pλ(B)∑
δ

T

ä
t=1

pΨ(bt|δt)PΨ(δt|δt−1) (7)

The speech recognition system’s first step is to process a feature extraction module,
also known as the speech recognition front-end, that produces an acoustic feature. The
second step is to transfer an acoustic feature into a language and an acoustic model to
obtain the probability of the received initial word sequence. This step constitutes the
back-end section of a speech recognition model. The back-end’s output is a sequence of
words generated from an acoustic and a language model [57].

Algorithm 2 Finding the obstacle free path from the current location to the safety exit

Input: Agent current location s
Output: Path to closest safety exit

Initialize the system, set the Q table
Read current location index
Set the current location as start
Determine the closest safety exit location index
Set the closest safety exit as Destination
while (start! = Destination) do

1. next location = Location [max Q value (start)]
2. route = start index + next location index
3. start = next location index

end while
return Route

We use the existing google application programming interface (API) to provide the
language and acoustic models for the design of our speech recognition system. The
operator’s expected voice command goes through the speech recognition system and is
converted into an action enabler for emergency or evacuation cases. We present an outline
of a general voice command to controller algorithm, adapted to our voice command input
system, in Algorithm 3.

A summary of the procedure of our overall safety mechanism combining the Q-
leaning path finding method and the voice command input is presented in Algorithm 4.
We assume that:

• θ is the emergency/evacuation signal.
• X is the autonomous robot.
• η is a safety exit.
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Algorithm 3 Voice command to PLC input via speech recognition

Input: Voice command
Output: Control PLC output

Import all important libraries (speech recognition and PLC connection)
Define write and/or read functions for PLC
Establish connection with the PLC
while (True) do

1. Listen to Microphone (sound source)
2. Recognize the language using Google API
voice command == emergency command
Write Instructions to PLC variable

end while

Algorithm 4 Safety mechanism procedure summary

Input: Voice command and X current location
Output: System stop and robot path to closest η

1. Activate θ
2. Send θ to X from PLC.
3. X initiates the safety routine.
4. X determines the closest η.
5. X finds the obstacle free path to η
6. X reaches η
7. end

5. Experimental Environment Architecture and Workflow Diagram

We present our simple experimental manufacturing location overview in Figure 1
with its legend describing all essential components. The autonomous robot should travel
from one location letter to another, avoiding obstacles until it reaches one of the safety exits.
In this research, we assume that the obstacles are static. The experimental manufacturing
environment has 24 locations (from A to X) with four safety exits (E, G, S, and W). It also
has three offloading stations (A, F, and X) to which the AMR moves to offload parts it
carries. We assume that the location ’I’ controller is the central S7-1200 Siemens PLC that
controls the manufacturing operations. The same controller sends an evacuation signal
to the AMR in an emergency. Using Q-learning, our safety enhancement method enables
the autonomous robot to choose the correct path to the closest safety exit (E, G, S, or W
depending on its current location) when it receives an emergency evacuation signal. We
assume that a push-button input generates the emergency evacuation signal to a Siemens
S7-1200 PLC or voice command from a microphone directly to the PLC.

Figure 2 is a graphical overview of our research work and contribution. It displays
the conversion architecture from the voice command to the PLC to activate the emergency
signal that triggers the AMR to initiate an evacuation process to one of the four safety exits
listed in the above section. (1) represents an emergency voice command signal sent as a PLC
input, (2) is an emergency signal originating from the ESTOP button, and (3) represents
the emergency plant signal sent to the AMR. As per Figure 2, our research idea and
contribution consists of converting a voice command captured by a computer microphone
to an evacuation signal sent to an AMR operating in an environment as displayed in
Figure 1. The evacuation signal can be given by a plant ESTOP wired as a PLC input.
We process the captured voice signal through a speech recognition code, programmed
in Python, empowered by Google API (the computer has internet access to integrate the
Google API easily). The python script activates a PLC variable programmed to control one
of the PLC outputs (sets off the evacuation signal). We assume that the same PLC output
instantly triggers the AMR evacuation signal.
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Figure 1. Experimental manufacturing environment for autonomous moving robot
Figure 1. Experimental manufacturing environment for autonomous moving robot.



Sensors 2022, 22, 941 11 of 23

Figure 3 represents another summary of our research work and contribution presented
in a workflow diagram with a detailed focus on the AMR response in case of emergency.
Figure 3 displays our safety response mechanism once an evacuation signal is received
from the voice signal or the plant ETSOP. Our speech recognition code runs an endless
loop waiting to receive the voice command to trigger the PLC variable. Once the voice
signal arrives, the PLC variable activates an output that sends the robot’s evacuation signal.
As soon as the AMR receives the signal, it looks upon its current location to compute the
obstacle-free path to the closest safety exit. As part of our assumptions, we considered
that the AMR has required functionalities to capture its current location (based on sensors
or GPS signal). We divided Figure 1, the experimental manufacturing environment, into
four sections, each with its allocated safety exit. This division eases the AMR trajectory
computation to one of the closest safety exits. As the AMR always moves from one location
index (one letter) to another, its current location will always be one of the 24 locations (no
room available for an intermediate location).
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Figure 3. Safety response mechanism flow diagramFigure 3. Safety response mechanism flow diagram.

6. Experimental Results
6.1. Experimental Background and Assumptions

• Every industrial plant has or should have a safety protocol to activate in case of emer-
gency. It could lead to evacuating the plant and pressing one of the emergencies stop
interlocks (ESTOP or Stop buttons depending on the disaster’s severity) that usually
halts the whole system. The stop interlocks are wired inputs of the plant controller
(a PLC for this experiment) that are programmed to control several outputs. These
stop buttons (including ESTOPS) are connected to the control panels and sometimes
on different strategic locations.

How to palliate to emergencies where none of the operators is nowhere near to the stop buttons?
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We answer this problem by incorporating a voice command as an additional stop
interlock programmed in the PLC. The operator can use the command “emergency”
to alt to the system via a microphone. We apply a speech recognition algorithm to
convert the operator’s voice command to a PLC’s instruction. A Siemens S7-1200 PLC
is used for testing the program via the TIA portal software. We develop the speech
recognition code in a python integrated development environment (IDE).

• Significant modern buildings are constructed with different safety exits located at
different areas to ensure smooth and efficient evacuations in case of emergencies. It
could be more dangerous for people to always go out through a single safety exit that
could be far away from their current location, risking getting more injured on the way.

What happens to autonomous robots in a smart manufacturing environment when a signal
to evacuate the plant has been given, and they were busy performing one of their tasks at the
plant’s location?

We address this problem by implementing the same principle of decentralized safety
exits for an autonomous robot. We simulate different safety exits for the autonomous
robot based on its current location, and we apply the Q-learning algorithm for the
robot to learn the obstacle-free path to the closest safety exit when an evacuation
signal is received. We, therefore, reduce the risk of undesired incidents on the robot
in an emergency evacuation. We use python to program our Q-learning method for
safety exits.

We make the following assumptions:

• In the design of our safety procedure response system, we assume that the autonomous
robot has been equipped with onboard means like sensors and cameras to interact
with other field components (such as the main plant PLC) and knowledge of its
current location.

• We also presume that the microphone used to capture the voice command is power-
ful enough (wide range) to detect the operator’s emergency command from a long
distance and has a noise suppression scheme.

• Another assumption we make in this research is that the autonomous robot has a
designated route that does not interfere with human operators’ paths.

• We assume that during the evacuation procedure, the AMR only encounters static
obstacles. All other moving obstacles have been stopped accordingly due the state
of emergency.

6.2. Finding Robot Paths to the Closest Safety Exits Using Q-Learning

From the simulated plant environment layout in Figure 1, we use the Q-learning algo-
rithm to determine the path to the closest safety exit for the autonomous robot depending
on its current location in case of an emergency signal that requires a complete exit. Finding
the correct paths to the emergency exits include avoiding fixed obstacles in the plant. At the
beginning of our design, we assume that the autonomous robot does not know anything
about the environment. We divide the plant floor into four segments having each a safety
exit of its own. The four segments and their safety exits are as follows:

• For segment 1—locations A, B, C, G, H and I: safety exit G
• For segment 2—locations M, N, O, S, T and U: safety exit S
• For segment 3—locations P, Q, R, V, W and X: safety exit W
• For segment 4—locations D, E, F, J, K and L: safety exit E

One this design’s vital steps is to translate every detail of the experimental plant
environment, R, into a matrix of size m x m, with m the plant’s number of locations. The
Q-learning algorithm is applied in this matrix format. As per Figure 1, the features of our
experimental environment are as follows:

m = {A, B, C, . . . , X} = 24
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Rsize = 24× 24

Figure 4 is the corresponding environment matrix for segment 1 before applying the
Q-learning algorithm. In the matrix R, a ’1’ signifies two neighboring locations, in the
intersection of a row and a column, with no obstacles. A ’0’ means that two locations (row
and column) do not share a border or have an obstacle between them. A different value
such as ’10’ represents the location designated as the safety exit for a specific segment.
The value to insert in the safety location is arbitrary and must be greater than 0 and 1.
Representing the working environment by its corresponding Q-learning matrix is crucial
in generating the obstacle-free path to the desired safety exit. In other words, Figure 4
encrypts locations of our experimental manufacturing environment into a language that
the Q-learning algorithm can interpret and use.

After applying the Q-learning algorithm to the matrix R, we obtain different reward
values for each neighboring location. For segment 1, the safety exit location G has a higher
reward value of 33. When moving from one location to another, the autonomous will use
the path that gives the highest reward until it reaches the safety exit. From the Q-learning
algorithm Equation (4), we chose the Hyperparameters’ following values: α = 1 and
γ = 0.7. After computing the Q-learning reinforcement learning, Figure 4 is converted to
Figure 5. Figure 5 is another significant step for the computation of the AMR obstacle-free
path. It contains reward values that control the robot path selection based on the RL
principle. The AMR chooses the location routes that give higher rewards.

Values in Figure 5 are the rewards given to the autonomous robot for each location
visited. The number 33 is the highest reward at location G, the safety exit. We apply the
same principle for the three other segments where the main difference is the safety exit
location. The safety exit moves from G to S for the second segment, from G to W for the
third segment, and from G to E for the fourth segment. From the experimental environment
in Figure 1, the rewards values from one location to another for segment 1, based on values
in Figure 5, are:

• From A to B or from B to A—Reward value 0. The reward value is 0 because of the
obstacle between the two locations

• From A to G—Reward value 24.
• From G to A—Reward value 17. The difference in reward is because going from G to

A, the robot moves away from the safety location (G) but from A to G, it moves closer
hence a higher reward.

• From B to C—Reward value 0.
• From C to B—The difference in reward is because going from B to C, the robot

moves away from the safety location (G) but from C to B, it moves closer hence a
higher reward.

• From C to D—Reward value 0. The reward value is 0 because of the obstacle between
the two locations.

• From C to I—Reward value 13.
• From I to C—Reward value 10. the difference in reward is because going from I to

C, the robot moves away from the safety location (G) but from C to I, it moves closer
hence a higher reward.

• From I to J—Reward value 10.
• From I to O—Reward value 0. The reward value is 0 because of the obstacle between

the two locations.
• From I to H—Reward value 17.
• From H to I—Reward value 13. The difference in reward is because going from H to

I, the robot moves away from the safety location (G) but from I to H, it moves closer
hence a higher reward.

• From H to N—Reward value 13.
• From H to G—Reward value 24.
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• From G to H—Reward value 13. The difference in reward is because going from G to
H, the robot moves away from the safety location (G) but from H to G, it moves closer
hence a higher reward.

• From G to M—Reward value 0. The reward value is 0 because of the obstacle between
the two locations.
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Figure 4. Experimental environment matrix for segment 1 before Q-learning
Figure 4. Experimental environment matrix for segment 1 before Q-learning.
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Figure 5. Autonomous robot Q Table for safety response in segment 1
Figure 5. Autonomous robot Q Table for safety response in segment 1.

When learning the best path to the closest safety exit, the robot cumulates the best
possible rewards to get in each location until it reaches the destination. We implement
Algorithm 2 in our python code to display paths selected by the autonomous robot based
on any location it finds itself when the central controller receives the emergency exit signal.
The simulation of the current location is done by receiving an input (one of the location
letters) and observing the path displayed by our code after computation. This procedure is
how the autonomous robot determines the path to the closest safety exit using Q-learning.
The Q Table values in Figure 5 are critical elements of the algorithm operation. For an input
location (variable loc) equals to location ‘C’, a path to the safety exit ’G’ is set forth. Figure 6
is the graphical representation of the generated path. The same simulation can be tested for
any of the 24 locations of the environment. A summary of Algorithm 2 results for location
C from the Q Table in Figure 5 can be described as follows: from row C, the highest reward
(maximum reward) in line is 13 for both columns B and I. In other words, the autonomous
robot can choose to go through location B or I on its way to the safety exit G. Since B is
the first column it encounters in the Q table, it chooses B as the following location after C
the starting point: C-B. After designating B as the following location, B becomes the new
row in which the maximum reward (highest reward) value is selected. As per Figure 5
the highest reward in row B is 17 from column H. H is, therefore, the following location
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after B: C-B-H. The exact process is applied to H until the autonomous robot reaches the
destination, the safety exit, G: C-B-H-G.

The programming code portion to display the robot path from C to G can be summa-
rized as Listing 1:

Listing 1. The programming code portion of the robot path from C to G.

i f l o c == ’A ’ or l o c == ’B ’ or l o c == ’C ’

or l o c == ’G ’ or l o c == ’H’ or l o c == ’ I ’ :
print ( route ( loc , ’G ’ ) )

e l i f l o c == ’M’ or l o c == ’N’ or l o c == ’O’

or l o c == ’ S ’ or l o c == ’T ’ or l o c == ’U ’ :
print ( route ( loc , ’ S ’ ) )

e l i f l o c == ’P ’ or l o c == ’Q’ or l o c == ’R ’

or l o c == ’V ’ or l o c == ’W’ or l o c == ’X ’ :
print ( route ( loc , ’W’ ) )

e lse :
print ( route ( loc , ’E ’ ) )

[ ’C ’ , ’B ’ , ’H’ , ’G ’ ]
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6.3. Using a Voice Command to Control a Siemens S7-1200 PLC Emergency Stop Interlock

An emergency stop interlock is usually programmed in a controller to abort a system’s
operation in case of emergency or unforeseen events requiring an immediate stop. In a
traditional installation, a stop button or an emergency stop button is wired in the control
panel where the operator can stop operations whenever required. For more flexibility in
the safety measure, if the operator is far away from the control panel in an emergency, we
add a voice input command directly to the PLC controller as an additional interlock to stop
the system. Traditional PLCs still operational in several plants have not been designed to
receive voice command inputs. Usually, third-party controllers are needed to receive the
voice input and interact with the PLC. In this research, we do not use any external controller
to receive the voice command; we compute the speech command from the microphone
straight to the PLC via a python speech recognition code. We use an S7-1200 Siemens PLC
to receive operators’ instructions from a microphone and control its outputs relays with
no voice commands capabilities. A simple ladder logic program is written in the Siemens
PLC for the stopping and starting interlock. We explain the function and the role of basic
required variables for the stopping and starting interlock in Table 1. We performed voice
command testings on a physical S7-1200 Siemens PLC hardware to control its outputs.

Table 1. PLC start and stop interlock variables.

Variable Address Variable Function

M0.0 This is the start signal for the system. It is usually a ON-OFF action directly
wired to a PLC input IX.X. For this simulation, we use a memory bit M.
When the memory bit is ON the system starts if M0.1 and M0.2 are OFF.

M0.1 This is the memory bit controlled externally by our python speech
recognition code that converts the voice command to a ‘ON’ bit value.
When M0.1 is ON the system is in stop mode.

M0.2 This is the memory bit controlled by an emergency stop signal. In real
plant applications it is usually an input signal IX.X. For simulation,
we use a memory bit variable M.

Q0.0 This is a physical PLC output that controls the plant.

Q0.2 This is a physical PLC output that controls the plants robots.

The start and stop interlock is usually written in a “latch” programming format
where a push-button signal (ON-OFF) starts the system (via M0.0), and the outputs (Q0.0
and Q0.2) remain activated until one of the stop commands is activated (M0.2 or M0.1).
Necessary experimental settings for the S7-1200 PLC are available as supplementary infor-
mation. These settings can be implemented to replicate the processor adapted to achieve
similar results.

We translate the voice command into an input to the PLC via a speech recognition
python code (using a google Application Programming Interface (API)) and a python to
siemens PLC library. The speech recognition library converts the voice signal from the
microphone into a text that we manipulate in our code to set the PLC variable M0.1. The
supplementary article information provides the required settings to achieve a successful
speech recognition command to the S7-1200 PLC in the python code.

We present in the article’s supplementary information a representation of a healthy
running system monitored from a live S7-1200 PLC when no stop signal is received as
well as an explanation summary of each variable’s value in a healthy running system. In
case of a fault that requires an emergency shutdown, the voice command can be given via
the microphone and directly affect the PLC code. A summary of the variables’ updated
values after the stop voice command is presented in Table 2. If we assume that the voice
input command is also programmed as a plant evacuation signal, the PLC that controls
operations in the whole plant sends a signal to the autonomous robot (via Q0.2 turned
OFF) to start the emergency procedure finding their closest path to the safety exit.
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Table 2. PLC healthy running system start-stop interlock variables values meaning.

Variables Values Comment

M0.0 0 Because of the latch programming format. M0.0 does not have to remain
ON (‘1’) for the system to run continuously.

M0.1 1 An external voice command is received to stop the system.

M0.2 0 No stop signal has been sent by the emergency stop button.

Q0.0 0 The plant control signal is stopped.

Q0.2 0 The robot control signal is stopped.

6.4. Results Summary and Discussion

Our study was about providing additional practical measures to enhance the safety
procedures of a smart manufacturing plant. Safety in a manufacturing plant remains a
priority for every organization to ensure a smooth run of their production activities [58]. In
an era of smart manufacturing and digitalization, the word safety is no longer limited to
employees or operators working in the plant but to machine interacting and collaborating
with them daily, such as collaborative robots (cobots) and autonomous robots. Firstly,
we tackled the safety of autonomous robots moving in a manufacturing plant to perform
specific tasks, such as offloading parts to different working stations, by implementing
the robot’s Q-learning algorithm to learn the best trajectory to the closest safety exit in
case of disaster. Secondly, we incorporated a voice command, with the speech recognition
algorithm, as an additional interlock to stop the operation of a plant directly via its control
PLC in case of an emergency.

The Q-learning algorithm allows the autonomous robot to learn the most efficient
route to the desired target by accumulating the highest rewards along the way. The target
has the highest reward. Our experimental environment has twenty-four locations (from
A to X) through which the autonomous robot travels. As a strategy to find the closest
safety exit for the robot, we divided the environment into four sections where each has its
safety exit. In that way, the robot does not have to travel very long distances to get to a
designated safety exit when an emergency signal is received from the central controller.
During the learning phase, the four targets have the highest reward for the autonomous
robot to find its way to any of them depending on its current location. We assigned every
location to its specific safety exit. Our Q-learning method’s simulation results demonstrate
that an autonomous robot, on its own, finds the best path to the closest safety exit from
any location it is based in case of emergency. The trajectory computed by the algorithm
is obstacle-free. The emergency routine can be activated as soon as the central controller
(PLC) sends an emergency signal.

An emergency stop (An ESTOP) button is a critical component of a plant. It is helpful
to stop operations in case of emergency or disaster. It is usually wired on the central
controller’s panel and bigger plants in different locations to maximize accessibility. Hence,
the closer the operator to the ESTOP at the time of emergency, the quicker the response.
We implemented the speech recognition algorithm to use a voice command as a stopping
input for the plant if the operator is not close to the ESTOP. In this simulation, the word
“emergency” is the command that activates the stopping process. We implemented the
speech recognition algorithm directly from a python script running in a computer to a
Siemens S7-1200 PLC connected in the same network without going via a third-party device
such as a Raspberry Pi.

6.5. Research Implications

We summarize the implications of our research as follows:

• In society: Some studies [59,60] highlighted that safety measures and procedures in a
manufacturing environment have a direct impact on the frequency of accidents in the
plant, to the overall production performance (which in return affects the economy)
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and to the workers’ well-being. Operators are performant in an environment where
they feel safe and comfortable working. Our research offers additional practical
strategies for manufacturing plants to enhance their safety procedures in an intelligent
manufacturing scenario where human operators and intelligent equipment such as
autonomous robots are at risk in emergencies.

• In research: On one hand, our study converts the theoretical concept of the Q-learning
algorithm into a practical application directed in the area of safety where much more
applications can be developed. On the other hand, we make a traditional controller
(a PLC) more intelligent by enabling its ability to receive external voice commands
using the Speech-recognition algorithm. The research area of speech recognition for
PLCs is still quite open and presents many opportunities for the enhancement of
traditional processes in an era of smart manufacturing. Reference [60] states that there
is a crucial need for more practical research in manufacturing safety in the way people
and external factors or situations can influence the overall safety. Our study is a new
addition to this research area.

7. Conclusions

In this research, we designed an experimental safety response mechanism for an AMR
running in a small manufacturing environment. Our safety mechanism allows the robot
to generate a trajectory free of obstacles from its location at the evacuation time to the
closest safety exit. We implemented the Q-learning RL algorithm for the robot to grasp
the best path to one of our four experimental environment’s safety exits through trials
and errors. The robot determines the path to its destination by choosing a location with
the best rewards cumulating them until it gets to the exit. We also integrated a voice
command, developed with a speech recognition system, as an additional stopping interlock
for the manufacturing plant PLC (a Siemens S7-1200). The voice command is captured by
a computer microphone processed by a python script in a network computer connected
to the S7-1200 Siemens PLC to control its outputs with no additional hardware. Our
research novelty lies in applying frontier technologies such as speech recognition and AI
(RL algorithm) in factory floor automation to create an enhanced safety mechanism for
small manufacturing plants.

We intend to adapt and apply our experimental safety mechanism to a real running
factory with all the required parameters changes for future works. We also expect to design
a safety mechanism for AMR including moving obstacles instead of static as done in this
research. Our safety response mechanism could also be adapted to applications where, in
their regular routines, autonomous robots can identify the closest charging spots whenever
their batteries are running low. Depending on the working environment’s design, the
robot could choose to go to the closest charging location instead of aborting its mission or
deciding to go back to the source location.
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