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THE BIGGER PICTURE Methods that group genes into functional units to quantify pathway activities are
critical in the analysis of biological systems. Although many components of biological pathways have
been described in detail, these tend to be limited to well-studied genes. In contrast, the majority of
possible components remain unexplored. Here, we present a machine-learning tool for constructing
and predicting tissue-specific components of biological pathways from large biological datasets. Our al-
gorithm, ACSNI, can tackle incomplete pathway descriptions and enhance current pathway analysis
methods’ performance. We anticipate that, by dissecting the complex signals in biological data in a flex-
ible and context-specificmanner, ACSNI can facilitate the full characterization of physiological systems of
interest.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of
molecular biology. Many components of these biological pathways still remain unknown, hindering the full
and accurate characterization of biological processes of interest. Here we describe ACSNI, an algorithm
that combines prior knowledge of biological processes with a deep neural network to effectively decompose
gene expression profiles (GEPs) intomulti-variable pathway activities and identify unknown pathway compo-
nents. Experiments on public GEP data show that ACSNI predicts cogent components of mTOR, ATF2, and
HOTAIRM1 signaling that recapitulate regulatory information from genetic perturbation and transcription fac-
tor binding datasets. Our framework provides a fast and easy-to-use method to identify components of
signaling pathways as a tool for molecular mechanism discovery and to prioritize genes for designing future
targeted experiments (https://github.com/caanene1/ACSNI).
INTRODUCTION

One feature common to all cells is the dynamic ability to coor-

dinate activities through many pathways that receive and pro-

cess signals from the environment and different cell regions.1

Hence, there has been a persistent interest in developing

pathway analysis approaches that group genes into functional

units and elucidate molecular mechanisms. Most approaches,

especially the techniques of pathway enrichment analysis and

network-basedmodeling, require accurate and comprehensive

pathway descriptions with annotated regulatory components
This is an open access article und
(genes). However, the identities of the components within these

biological pathways and their regulatory interactions remain

either wholly unknown or partially understood.2 Even among

well-studied pathways, detailed annotations are scarce for

their disease- and tissue-specific components. This unmet

need argues for an expanded effort to identify these unknown

components.

Genetic, biochemical, and biophysical techniques such as

small interfering RNAs, small molecular inhibitors, immune pre-

cipitation, and gel filtration are common procedures for identi-

fying molecular functions and pathway components.3–5 The first
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step toward designing these experiments is the identification of

candidate genes and their interacting partners. The large volume

of public gene expression profile (GEP) datasets, such as the tis-

sue RNA expression profiles in the Genotype-Tissue Expression

(GTEx)6 and The Cancer Genome Atlas (TCGA)7 projects, allow

for initial inference of pathway circuits and prediction of their un-

known components in a tissue- and disease-specific manner.

One popular approach applied to these large datasets involves

using pairwise correlation to represent the relationships between

genes.8 Visualizing these interactions as a network annotated

with external functional information such as STRING9 and Gen-

eMANIA10 reveals interactions of known pathway genes and

helps to discover additional related genes. However, these ap-

proaches make assumptions that do not account for the multi-

variate nature of gene regulation.2 For example, the transcription

of a single gene proceeds through the binding of transcription

factors on enhancer regions and the subsequent recruitment of

many co-activators and complexes that modify chromatin struc-

tures and promote the assembly of the basal transcriptional ma-

chinery.11 These complexities are not easily captured by simple

pairwise analysis between genes and the resultant binary inter-

action networks.

Another approach for identifying unknown components of

pathways involves first estimating a summarized pathway ac-

tivity from GEPs based on prior knowledge of the target

pathway using gene set enrichment analysis tools, such as

gene set variation analysis (GSVA), pathway-level analysis of

gene expression (PLAGE), single-sample gene set enrichment

analysis (ssGSEA), and the combined Z score (Z score),12–15

then correlating this compact value with the rest of the genes

to identify new components of the target pathway. However,

genes function in more than one pathway, and pathways

contain subprocesses,1 meaning that a single variable repre-

sentation of a pathway is unlikely to capture the target path-

way’s dynamics.

Here we provide software termed automatic context-specific

network inference (ACSNI), which leverages artificial intelligence

for the reconstruction of a biological pathway and aids the dis-

covery of pathway components and classification of the cross-

talk between pathways in specific tissues. The method draws

on the principle that cell signaling networks are organized into

several small, highly connected modules (herein called subpro-

cesses) that combine hierarchically into larger units to regulate

cellular functions.16 ACSNI combines the widely used and gen-

eral-purpose open-source TensorFlow-Keras library with a

probabilistic ensemble approach in a manner that adapts to

the particular needs of systems biology projects. For example,

it has functions that enable flexible adjustment for gene weights

within the pathway and linking pathway subprocesses to a

phenotype. We demonstrate the utility of ACSNI through three

different use cases, including the investigation of the mTOR

signaling pathway in kidney tumor and normal samples,

exploring the ATF2 network in the aorta, and identification of

HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1)

target genes in kidney tissues. We find that ACSNI generates

validated and detailed, tissue-specific pathway circuitry and

components. The ACSNI predictions can guide researchers in

designing targeted experiments to study the molecular mecha-

nisms that underlie a biological state.
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RESULTS

Overview of the ACSNI method
ACSNI is a three-step method to infer tissue-specific compo-

nents (genes) of a pathway from tissue GEPs. It performs (1) un-

supervised derivation of pathway subprocesses, (2) estimation

of subprocess-gene interaction scores, and (3) inference of tis-

sue-specific components of the target pathway (Figure 1A; see

experimental procedures). ACSNI requires two input datasets:

a matrix of expression values, with genes listed in rows and tis-

sue samples listed in columns, and a file detailing gene set mem-

bership, representing prior knowledge of gene functions, such as

a gene set from the Pathway Interaction Database (PID)17 and

the MSigDB database.18 Depending on the research question,

ACSNI can take an additional file containing weights (as integer

values) for the genes in the second input. These data may repre-

sent transcription factor (TF) activity level or kinase function. In

the first step of ACSNI, we derivemultivariate pathway represen-

tation that defines the activity of the subprocesses in each sam-

ple (step i, Figure 1A). The step is performed with a deep neural

network (DNN) that decomposes the expression of the gene set

into pathway subprocesses under the assumption that genes

function in multiple subprocesses. In the second step, the sub-

process-gene interaction analysis is conducted on the whole

transcriptome using a linear model. We extract the model’s co-

efficient of determination as subprocess-gene interaction scores

(step ii, Figure 1A). We then classify the interaction scores to

identify the tissue-specific components of the pathway (step iii,

Figure 1A). The final output of ACSNI can be further mined

to identify biologically relevant pathway subprocesses and

components.

Performance evaluation
To assess the performance of ACSNI in reconstructing signaling

networks and their subprocesses, we utilized pseudo-simulated

and real expression datasets. It is natural to ask to what extent

the ACSNI predictions improve on current methods for inferring

the component of a pathway fromGEPs. Unfortunately, there are

no existing tools that provide such a granular view of pathway

subprocesses. Therefore, we focused our performance evalua-

tions on reconstruction of simulated signals and concordance

between two cohorts of similar samples.

ACSNI has robust signal reconstruction capabilities with

low type I error rate

In biological systems (i.e., tissues or organs), multiple signaling

pathways are executed concurrently with a certain level of

dispersion (i.e., a measure of pathway activity) across a group

of samples. ACSNI has been designed to extract differences in

pathway activity in a cohort of samples and detect unknown

components of the pathway. To assess how well the algorithm

achieves this aim, we first evaluated its ability to reconstruct a

known signal using pseudo-simulated GEPs under different

parameter settings (see experimental procedures). We simu-

lated randomGEPswith specific expected signals and noise sig-

nals, as described in datasets for simulation studies. Then, for

each GEP and the corresponding gene set, we tested the null hy-

pothesis for no difference in the proportion of the predicted

genes overlapping the expected or random signals. To examine

the effects of different ACSNI parameters, we ran the analysis



Figure 1. Overview of the ACSNI method and the robust signal reconstruction capabilities

(A) ACSNI reduces the expression of a gene set into a small number of subprocesses and derives corresponding gene interactions, while constraining the

optimization to reduce technical noise. Given two inputs, the expression matrix, and the binary gene set membership (pathway representation), the algorithm

starts by splitting the transcriptome into two parts: (1) expression of the genes in the gene set and (2) the expression of the rest of the transcriptome (transposed). It

then extracts the subprocess activities across samples (step i: W) from the expression profiles of the gene sets, interacts the subprocesses with the expression of

the rest of the transcriptome to extract subprocess-gene interaction scores (step ii: N), and classifies the scores to infer extended network of the pathway

represented by the gene set (step iii: P).

(B) Box plot of the percentage of the simulated signal recovered from the analysis of 50 gene sets against five GTEx tissue expression samples. Ex represents the

gene set signal, In the expected signal, and Rn the random signal.

(C) Box plot depicting the effect of random noise (log normal) on the percentage of gene set signal recovered from the analysis of 50 gene sets against five GTEx

tissue expression samples.

(D) Box plot showing the false discovery rates (FDR) from the analysis of 50 gene sets against five GTEx tissue expression samples (estimated as the number of

genes from the random signal divide the total number of predicted genes in B).

(E) Scatterplot of the relationship between FDR and size of the gene set.

(F) Box plot of Jaccard index of the similarity of predicted genes between two independent split or with one shuffled split (Null) across 50 curated gene sets.

(G) Box plot comparing the Jaccard index of predicted genes between two independent expression splits for randomly generated (R, n = 20) and curated (C,

n = 50) gene sets.

See also Figures S1 and S4.
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under different parameter settings of classification threshold

(Alpha: 0.01, 0.05), latent space dimension (Percentage: 5, 10,

15, 20, 25, 30), feature selection threshold (Median absolute de-

viation: 1.2, 1.3, 3), and regularization (yes, no), repeating the

analysis 50 times with three ensemble models each to obtain

more stable results (see experimental procedures). Testing for

the overlap between the predictions and the expected signals re-

vealed that ACSNI recovered most of the expected signals

(average percentage of overlap = 98%, n = 250, Figure 1B)

compared with 3.5% random overlaps. The concordance of

ACSNI predictions with the expected signals is due to the

robustness of the DNN extraction core that dissects the gene

set expression patterns into subprocesses (see experimental
procedures). As expected, ASCNI’s ability to recover the ex-

pected signal is negatively associated with the level of technical

noise (Figures 1C and S1A, see experimental procedures). These

results suggest that the quality of the prediction is dependent on

the level of technical noise (examples, errors due to RNA quality,

fragmentation, and amount of input) in the GEP measurements.

On average, more than 30% or 45% of the expected signal was

recoverable at 10% and 5% noise, respectively (Figures 1C and

S1A). Previous studies indicated that in RNA-sequencing (RNA-

seq) data sequenced to sufficient depth, the level of technical

noise is generally lower than 10%, while the rest of the expres-

sion variation is explained by biology and experimental condi-

tions.19,20 Thus, we believe that ACSNI retains its predictive
Patterns 2, 100270, June 11, 2021 3



ll
OPEN ACCESS Descriptor
power when analyzing current real expression datasets across

various experiments and conditions (noise level <10%). Note

that latent space dimension, classification threshold, and feature

selection threshold had no effect on ACSNI’s ability to recover

expected signals.

To measure the type I error rate, we divided the number of

random predictions (false positives) by the total number of pre-

dictions (total positives) in the above simulation and assessed

the impact of different parameter settings. We observed a me-

dian false discovery rate (FDR) of 0.0045 (range, 0.003–0.005)

for default parameter settings across three feature selection

thresholds (Figure 1D; see experimental procedures). This

observation indicates that ACSNI has a low (<1%) rate of false

predictions. Applying a conservative feature selection

threshold (i.e., genes with median absolute deviation greater

than 3 across the cohort) before running ACSNI resulted in

tighter control of the FDR (median = 0.0038; range, 0–0.01) (Fig-

ure 1D). We next tested how key parameters, including classi-

fication threshold, dimension of the latent space, and gene set

size, affected the overall type I error rate of ACSNI. Relaxing the

classification threshold 0.01 and 0.05 significantly increased

the FDR (Wilcoxon test p = 3.4 3 10�13, Figure S1B). Although

regularization did not affect the FDR (Figure S1C), increasing

the dimension of the latent space (a percentage of the gene

set size) significantly increased the FDR, but using 5% made

the FDR unstable (Figure S1E). We found a positive correlation

(Pearson’s r = 0.93) between gene set size and FDR (Figure 1E).

These associations are expected because larger gene sets and

genes with a low variability are more likely to result in aberrant

predictions. However, even in the case of a larger gene set

(>80, Figure 1E) we expect the FDR to be less than 1% (see

experimental procedures).

We then tested whether the approach was a robust predic-

tor of pathway components across different cohorts of similar

samples. To this end, we randomly sampled two non-overlap-

ping groups of 290 samples from the 580 samples of the GTEx

healthy adult lung dataset to generate a training cohort and a

test cohort. We also randomly shuffled the test cohort to

generate a null model (see experimental procedures). Next,

we individually analyzed these three cohorts (training, test,

and null model cohorts) with ACSNI using 50 gene sets from

the MSigDB database18 and quantified the similarity of the in-

ferred circuitry between the training cohort and the test cohort

compared with the similarity between the training cohort and

the null model. Predicted circuitry from the training cohort

was significantly more similar to the test cohort compared

with the null model (t test, p = 4.6 3 10�7, Figure 1F). We

repeated the above analysis using 20 randomly assigned

gene sets and observed no difference between the real co-

horts and the null model, as the random inputs lacked under-

lying regulatory mechanisms. Consistently, manually curated

gene sets show a significantly higher similarity between

training cohort and test cohort compared with the simulated

gene sets (t test, p = 1.3 3 10�3, Figure 1G). The level of sim-

ilarity between two expression cohorts is independent of the

type of pathway and the size of the gene set (Figure S2A).

Combined, these results indicate that ACSNI predictions are

reproducible, with datasets of similar biological and regulatory

information.
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ACSNI identified the mTOR crosstalk with KLF6 and

EPAS1 signals in ccRCC

To evaluate the performance of ACSNI on real data, we simu-

lated a condition whereby known context-dependent signaling

crosstalk was expected. Specifically, a recurrent event in

clear-cell renal cell carcinoma (ccRCC) is the hyperactivation

of the mTOR signaling that promotes oncogenic metabolic

programs.21,22 The crosstalk between mTOR, KLF6, and

EPAS1 (HIF2A) signaling contributes to this metabolic program

that drives ccRCC progression. KLF6 is a zinc finger DNA-

binding TF activator of mTOR signaling that co-regulates lipid

metabolism, cell growth, and cell fate in ccRCC.23 mTOR reg-

ulates transcription of EPAS1,24 which in turn activates a

superenhancer that supports KLF6 expression,23 creating a

complex feedback loop between mTOR, KLF6 and EPAS1

signaling.

Consistent with the above, we hypothesized that mTOR

signaling network derived from GEPs in ccRCC patients could

enrich for both KLF6 and EPAS1 signals. To test this hypothesis,

we collected data of 73 ccRCC samples with matched normal

adjacent tissues from the TCGA ccRCC project (KIRC, n =

146). We applied ACSNI to the RNA-seq data using a publicly

available curated mTOR signaling gene set from the PID

(n = 67).17 We derived ten subprocesses of mTOR signaling

that were strongly associated with 1,166 genes (Figure S2B).

We next evaluated the biological processes associated with

mTOR signaling in this context. Using gene ontology analysis,

we found a strong enrichment of catabolic processes and amino

acid biosynthesis ontologies (Figure 2A), consistent with the role

of mTOR signaling in cell metabolisms.25 To assess whether the

ACSNI-predicted mTOR signaling captured KLF and EPAS1

signal, we first defined KLF6 and EPAS1 signals as differentially

expressed (DE) genes from publicly available gene perturbation

datasets: (1) KLF6 knockout (KLF6-KO, DE = 1,378 genes) and

(2) EPAS1 knockout (EPAS1-KO, DE = 303 genes) in the 786

ccRCC cell line.23,26 The inferred network had significant over-

representation of KLF6 (1.47-fold, chi-squared p = 1.763 3

10�12, Figure 2B) and EPAS1 (2.07-fold, chi-squared p =

1.009 3 10�3, Figure 2B) signals compared with background

enrichment (i.e., all genes in the expression dataset). Inspecting

the ACSNI subprocesses and their associated genes, we found

unique associations with KLF6 and EPAS1 signals (Figure 2C).

Subprocesses, w3, w7, and w9 were exclusive to KLF6 signal

and w0 was exclusive to EPAS1, while w4, w5, and w2 captured

both signals but have relatively more enrichment of EPAS1 signal

(Figure 2C). Three subprocesses (w8, w6, and w1) appear to

capture signals unrelated to KLF6 and EPAS1. These observa-

tions demonstrate that ACSNI models the complexities of a

signaling network as represented by an experimentally curated

gene set.

We next investigated the specificity of ACSNI by comparing

our predictions with KLF6 and EPAS1 signals from non-ccRCC

cells lines as non-specific controls (including endothelial cells

[human umbilical vein endothelial cells—HUVECs] and primary

peripheral blood mononuclear cells [PB-CD34+]). We found an

insignificant over-representation for DE genes (n = 119) derived

from EPAS1-KO in HUVECs (0.91-fold, chi-squared p =

7.4823 10�1, Figure S2C), underlining the advantage of detect-

ing context-specific signaling crosstalk. We observed a
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Figure 2. ACSNI identified pathway components and signaling crosstalk
(A and B) (A) Bar plot of the top 25 significantly enriched biological processes associated with the predicted 1,166 genes mTOR signaling components. Bars are

ordered from top to bottom according to FDR values. (B) Association of ACSNI-predicted mTOR signaling genes (TCGA) with DE genes in KLF6 and EPAS1

knockout in ccRCC cells, divided into datasets (KLF6: 786 = GEO: GSE115763, EPAS1: 786 = GEO: GSE115389). Chi-squared tests (Chisq, p) and ACSNI-

predicted (P) and background (B) are indicated on top of the panel. DE and nDE represent differentially or non-differentially expressed genes at adjusted p value of

<0.05, respectively.

(C) Bar plot comparing enrichment of DE genes from EPAS1-KO (red) and KLF6-KO (blue) across the different ACSNI-derived subprocesses of mTOR

signaling (TCGA).

(D) (Left) Heatmap of the coefficient of determination (R2) of the linear model of ACSNI-derived mTOR activity and disease status (cancer or normal adjacent

tissues) across ten subprocesses. The higher the R2, the more significantly related is the subprocess to disease status. (Right) Expression of mTOR subprocess

w8-associated genes in ccRCC cell lines following the inhibition of mTOR pathway with everolimus (Eve) compared with vehicle control (Cont) (GEO:

GSE106819). Within the plot differential expressions at FDR < 0.05 (DE) are indicated (upregulated, red; downregulated, blue; unchanged, white).

(E) Ranked dot plot of the ratio of transcription factor (TF) ChIP density at the promoter regions (± 1 kb from TSS) of the ACSNI-predicted ATF2 signaling genes

relative to background genes in artery aorta. DNA-binding domains are highlighted in red.

(F) Bar plot comparing ratio of TF ChIP density at the promoter regions (±1 kb from TSS) of the ACSNI-predicted ATF2 signaling genes across the different ACSNI-

derived subprocesses from artery aorta.

(G) Gene ontology analysis of biological processes associated with predicted HOTAIRM1 genes and DE genes in HOTAIRM1.

See also Figures S2–S4.
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significant enrichment for DE genes (n = 8,487) derived from

KLF6-KO in PB-CD34+ (1.2-fold, chi-squared p = 1.56 3 10�9,

Figure S2C), suggesting that the mTOR-KLF6 axis may be appli-

cable to multiple tissues. However, these data had an unusually

high level of DE genes (60%, 8,487 out of 14,260), which may be

related to the fact that the experiment was performed in primary
cells. To further validate our predictions, we applied ACSNI to an

independent dataset of GEPs of tumor and normal adjacent tis-

sues from ccRCCpatients (n = 22, GEO: GSE102101)27 using the

same mTOR gene set described above. We evaluated the

robustness of the initial predictions against the new predictions

using a randomization test (see experimental procedures). We
Patterns 2, 100270, June 11, 2021 5
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found that 19% (98/516, only genes measured in both datasets)

of the predicted genes among these data overlap with the KIRC

predictions (Figure S3A, left panel), which is significantly higher

than would be expected by random chance (empirical p = 0.0,

95% confidence interval 23–44) (Figure S3A, right panel). There

was no enrichment of KLF6 and EPAS1 signals in the corre-

sponding null models (Figure S3C; see experimental proced-

ures), confirming that our predictions and validation were robust.

As an additional layer of performance evaluation, we next

compared ACSNI global predictions against predictions based

on pathway activities estimated from GSVA, PLAGE, ssGSEA,

and Z score (see experimental procedures).12–15 ACSNI recov-

ered the strongest enrichment of KLF6 (1.91 mean fold enrich-

ment) and EPAS1 (2.17 mean fold enrichment) signaling cross-

talk with mTOR pathway compared with mean fold enrichment

of 1.71 (KLF6) and 1.44 (EPAS1), 1.17 (KLF6) and 1.16

(EPAS1), 0.77 (KLF6) and 0.55 (EPAS1), and 0.94 (KLF6) and

0.89 (EPAS1) mean fold enrichment for GSVA, PLAGE, ssGSEA,

and Z score, respectively (Figure S3B). These results indicate

that our framework can provide additional context-specific infor-

mation to aid the interpretation of GEPs.

ACSNI-derived mTOR subprocesses predict clinical

traits in ccRCC

The identification of biologically or clinically essential pathway

subprocesses is a crucial aim of many signaling network ana-

lyses. ACSNI provides additional functions to map the derived

network to a target biological or clinical variables. To demon-

strate the utility of this function, we analyzed the distribution of

the mTOR subprocesses across the tumor and normal adja-

cent tissue from the TCGA datasets (variable: disease status).

We found that three subprocesses (w8, w6, and w3) were

strongly associated with the disease status (Figure 2D, left

panel). Interestingly, two of these (w8 and w6) were not asso-

ciated with KLF6 nor EPAS1 signal (Figure 2C), suggesting that

they may harbor new insight into mTOR-dependent mecha-

nisms of ccRCC development. To investigate this hypothesis,

we first sought to confirm the regulation of the w8-associated

genes (the top disease-associated subprocesses) by mTOR.

To this end, we analyzed published GEP data (GEO:

GSE106819)28 which utilized the mTOR inhibitor, everolimus,

to characterize the differential gene expression changes that

occur due to mTOR signaling in ccRCC cell lines. Among the

13 genes associated with w8 in ACSNI predictions, 77%

(10/13 genes) were significantly altered by mTOR inhibition

(Figure 2D, right panel), confirming that w8 is within the

mTOR signaling network. Of the total ten w8 genes altered

by everolimus, 70% (GINS2, CCDC130, PRR22, CYP4F2,

PGLS, LY9, and BCHE) have been identified as essential

ccRCC genes in a CRISPR genome-wide loss-of-function

screen29 (Figure S2D). These observations suggest that these

genes may co-regulate oncogenic programs in ccRCC

through mTOR signaling.

ACSNI identified ATF2-dependent targets of bZIP

transcription factors in artery aorta

Identification of functional TFs and their regulatory output is

essential for understanding gene-regulatory mechanisms in

many cellular processes.30 ACSNI can provide information about

the context-specific regulatory output of TFs in a gene set. As an

example, here we focus on cAMP response element-binding
6 Patterns 2, 100270, June 11, 2021
proteins (CREBs) and CREB-like TFs that dominate ATF2

signaling (10 out of 13 TFs). These genes represent a large family

of TFs that bind cAMP-responsive elements and share a basic

leucine zipper DNA-binding (bZIP) domain. Complex dimeriza-

tion between these TFs increases the selectivity of bZIP-DNA in-

teractions and binding diversity, allowing them to regulate multi-

ple vascular functions.31 We hypothesized that ATF2 network

circuitry derived fromGEPs of artery aortas should enrich targets

of the bZIP TFs.

We analyzed the ATF2 TF signaling gene set from the PID (n =

31)17 in artery aorta (n = 433) GEPs from the GTEx project.6 We

produced four subprocesses associated with 683 genes, repre-

senting the context-specific activity of bZIP TFs (Figure S2E).

Using an independent dataset of human TF chromatin immuno-

precipitation (ChIP)-sequencing measurements from primary

human aortic endothelial cell lines from chip-atlas (https://chip-

atlas.org), we evaluated the enrichment of the available eight

TFs (bZIP = 4, others = 4) at the promoter regions (±1 kb from

transcription start site [TSS]) of the predicted genes compared

with the background (enrichment = mean peak density of pre-

dicted genes/mean peak density of background genes).

ACSNI-predicted genes were strongly enriched for bZIP tran-

scription factor binding (ratio > 1) but depleted of other families

of TFs (ratio < 1) (Figure 2E). We observed no significant enrich-

ment of bZIP TF for predictions from a null model derived by

random shuffling of the expression matrix (Figure S3E; see

experimental procedures), confirming that our predictions and

validation were robust. On average, the predicted genes had

significantly higher binding of JUNB (Wilcoxon test, p =

2.083 3 10�9), CEBPD (p = 1.278 3 10�4), NFE2L2 (p =

1.168 3 10�3), and JUN (p = 1.041 3 10�2) compared with the

background genes. Conversely, we observed significantly lower

binding for EP300 (p = 7.5823 10�32), RELA (p = 7.1323 10�10),

ERG (p = 1.841 3 10�5), and IRF1 (p = 3.148 3 10�2) compared

with the background genes. Interrogating the ACSNI-derived

subprocesses of ATF2 signal and their associated genes re-

vealed unique associations with different bZIP dimerization pat-

terns (Figure 2F). Specifically, w0, w1, and w3 were exclusive to

CEBPD, JUN, and JUNB, respectively. While w2 enriched for

NFE2L2, JUNB, and CEBPD, with higher JUNB, w4 enriched

for all four bZIP TFs measured in these data (Figure 2F). These

observations suggest that ACSNI can segregate different TF sig-

nals into specific subprocesses of the W matrix by leveraging

external knowledge to anchor RNA expression to TF activities

underlying complex cell processes.

To benchmark our results, we analyzed the enrichment of

these TF signals on the genes predicted based on pathway ac-

tivities estimated by GSVA, PLAGE, ssGSEA, and Z score (see

experimental procedures). Predictions derived from pathway

activity scores generated from these methods showed high

enrichment rank for non-bZIP TFs (EP300, RELA, ERG, and

IRF1) and largely low in signal for the bZIP TFs (JUNB, CEBPD,

NFE2L2, and JUN) (Figure S3D). Compared with ACSNI, the

alternative approach based on these methods showed non-

significant enrichment for all the TFs regardless of the DNA-

binding domain. These results demonstrate how ACSNI

predicts context-specific TF targets and enables discovery of

pathway-level regulatory mechanism and interpretation of

expression profiles.

https://chip-atlas.org
https://chip-atlas.org


ll
OPEN ACCESSDescriptor
ACSNI annotates the function of HOTAIRM1 using de
novo derivation of gene sets

ACSNI also provides tools to help annotate genes with unknown

functions, such as long non-coding RNAs (lncRNAs). To demon-

strate this utility, we focused on the annotation of the lncRNA

HOTAIRM1. Specifically, HOTAIRM1 is a natural antisense tran-

script of the HOXA1 gene that plays roles in kidney differentiation

and regulation of HIF1-dependent angiogenic pathways.32 We

hypothesized that the ACSNI-inferred network of HOTAIRM1

could reveal its kidney-specific functions.

To this end, we leveraged the GTEx project of GEPs in

normal kidney tissues and investigated the network of HO-

TAIRM1. Because this case deals with a single gene, we uti-

lized the ACSNI-derive module to first generate a de novo

gene set (n = 50) before running two iterations of ACSNI (see

experimental procedures). We identified 729 genes that were

strongly associated with the network of HOTAIRM1 in kidney.

To evaluate the functional relevance of the predictions, we

initially analyzed published data (GEO: GSE136604)32 that uti-

lized knockdown of HOTAIRM1 to characterize the differential

gene expression changes that occur due to its activity in hu-

man kidney cells (HOTAIRM1-KO). We then cross-referenced

the ACSNI-predicted genes to establish whether the predic-

tions enriched the lncRNA activity compared with random

backgrounds. For the genes measured in both datasets (n =

390), the DE genes identified in the HOTAIRM1-KO data (n =

85) showed a significant overlap with ACSNI-predicted HO-

TAIRM1 genes (12/85, 14.11%; empirical p = 8 3 10�5, only

genes measured in both datasets, Figure S3F). To assess

the biological processes regulated by HOTAIRM1 in this

context, we performed gene ontology analysis on the

ACSNI-predicted genes compared with the ontologies associ-

ated with the DE genes in the HOTAIRM1-KO. The results

showed strong concordance in the enrichment of ontologies

involved in vascular functions and angiogenesis (Figure 2G).

We also observed an enrichment of metabolic processes, sug-

gesting that HOTAIRM1 may play a role in cell metabolism in

the kidney (Figure 2G).

We next evaluated the robustness of the predictions by

comparing the enrichment with predictions from a null model

derived by random shuffling of the expression matrix. We

found no significant enrichment of genes differentially ex-

pressed in the HOTAIRM1-KO data (Figure S2F), confirming

that our predictions and validation using the non-shuffled

data did not occur by chance. Correlation and differential

gene expression analysis are the two commonly used

methods for identifying functional lncRNA targets from

GEPs. Thus, we compared ACSNI predictions with direct cor-

relation or differential expression test for pairwise gene inter-

action analysis on the same input expression data above

(see experimental procedures). ACSNI predictions recovered

the most overlap with HOTAIRM1 signal (14.11%) compared

with zero overlap and 1.19% overlap for differential expres-

sion-based and correlation approaches, respectively (Fig-

ure S3G). Consistently, genes predicted by both methods

were not enriched in ontologies involved in vascular functions

and angiogenesis. These results suggest that ACSNI can

leverage the annotation of protein coding genes to provide

functional annotation for poorly annotated genes.
DISCUSSION

Our knowledge of biological pathways and their components is far

from complete. This situation limits the accuracy of the current

pathway and network analysis methods that depend on accurate

and detailed pathway annotations. ACSNI enables the identifica-

tion of tissue-specific components of biological pathways from

gene expression data. This approach overcomes the limitations

of using composite scores or representative values, which are un-

able to fully capture the process or handle the inherent variability in

GEPs within a gene set. By contrast, ACSNI can capture pathway

modules while reducing the impact of technical noise. This capa-

bility was demonstrated in our identification and validation of

mTORsignaling crosstalkwithKLF6 andEPAS1 in ccRCC.ACSNI

can also reveal the context-specific output of TFs in a gene set

and identify lncRNA network in expression data. This utility is

especially vital in mechanistic studies where the target is

context-specific gene regulation. By using prior knowledge and

interrogating associated expression variability in GEPs, ACSNI

can identify biological network within a specific tissue and has

the flexibility to apply weights to the prior information.

Using an autoencoder the core of ACSNI decomposes GEP

intomultiple pathway subprocesses, which are then used to infer

unknown pathway components. Other dimension-reduction

methods, including principal component analysis (PCA) and

non-negative matrix factorization (NMF), could also theoretically

be used to estimate pathway subprocesses from GEPs. The key

limitation of these methods is that the mapping from the gene

expression space to the low-dimensional representation is

restricted to be linear.33 However, an accurate model of the ac-

tivity of biological pathways encoded in GEPs requires a mix of

both linear and non-linear transformations. Our comparative

analysis showed that replacing the autoencoder in step 1 with

PCA or NMF resulted in no enrichment of the expected signal

(Figure S4C) or extraction of non-specific signals (Figure S4D).

Therefore, the autoencoder approach used for step 1 is more

capable of extracting biologically meaningful results compared

with simple linear reductions (Figures S4C and S4D), consistent

with previous studies.34

Onepotential limitation is a lackof prior knowledge in the formof

a gene set; this can be partially remedied by ACSNI-derive, which

enables de novo generation of gene sets as demonstrated in the

annotation of HOTAIRM1 functions. In addition to the availability

of prior information, ambiguous annotations, sample size, gene

set size, and expression variance can all affect the performance

of ACSNI. Currently, ACSNI depends on RNA expression across

a cohort of samples to infer pathway circuitry and will miss post-

translation interactions, since RNA levels may not correlate with

protein output.35 Despite these limitations, ACSNI supplements

the existingmethods to identify pathway components and extract

biologicalmeaning from transcriptomicdata andcanbeapplied to

study processes that have little prior knowledge.

Independent validation of the inferred network is an essential

step in the discovery of pathway components and their

functional interactions. Ideally, such analysis should involve in-

dependent genetic perturbation data, reporter assays, or DNA

occupancy analyses as demonstrated in our use cases. Howev-

er, genetic perturbation or DNA occupancy data may not always

be available. Literature mining can be an alternative approach,
Patterns 2, 100270, June 11, 2021 7
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but the results may be confounded by publication bias. Our re-

sults show that this framework effectively infers biological net-

works from GEP datasets and enables the discovery of novel

functional interactions. Analysis of publicly available GEP data

using ACSNI will lead to new insights into the molecular basis

of a phenotype and its deregulation in disease.

It is well established that signaling pathways are coordinated

by complex interdependences between chromatin structure,

DNAmodifications, RNA abundance andmodifications, and pro-

tein abundance andmodifications.While ACSNI includes the op-

tion to account for one additional piece of regulatory information

as an integer variable, this is unlikely to model the complete in-

terdependences. We plan to further develop the ACSNI software

by expanding the utilization of other genomic information.

Conclusion
ACSNI offers the cell and molecular biologist a flexible approach

to infer potential pathway components that can be used to guide

functional analysis in a target signaling network. The ACSNI pack-

age provides command-line functions (ACSNI-run and ACSNI-

derive) for predicting the components of a signaling pathway

from GEPs using prior knowledge. It also provides a function

(ACSNI-get) to describe the correlation between the derived

pathway subprocesses and biological traits. The ACSNI package
REAGENT OR RESOURCE SOURCE

Deposited data

TCGA ccRCC dataset Cancer Genome Atlas

Research Network, 201

GTEx expression datasets Lonsdale et al., 20136

Validation ccRCC dataset Yao et al., 201727

KFL6-ko data in ccRCC cells Syafruddin et al., 201923

EPAS1-ko data in ccRCC cells Zou et al., 201936

KFL6-ko data in blood cells Adelman et al., 201926

EPAS1-ko data in endothelial cells Yoo et al., 201537

mTOR-inhibition data in ccRCC cells Kornakiewicz et al., 201

HOTAIRM1-ko data in kidney cells Hamilton et al., 202032

TF ChIP-Seq datasets Oki et al., 201838

Cancer-cell dependency data Tsherniak et al., 201729

Pathway interaction gene sets Schaefer et al., 200917

MSigDB v7.2 Liberzon et al., 201118

Software and algorithms

ASCNI This paper

Trimmomatic v0.39 Bolger et al., 201439

HISAT2 v2.1.0 Pertea et al., 201640

HTSeq v0.11.1 Anders et al., 201541

Python v3.8.6 PSF

R v4.0.3 CRAN
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includes a function (ACSNI-split) to process GEPs for bootstrap

analysis. Users can install the Python package and its depen-

dencies through the pip package installer (pip install ACSNI).

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for the implementation and troubleshooting

the ACSNI software should be directed to and will be fulfilled by the lead con-

tact, Chinedu Anthony Anene (a.anene@qmul.ac.uk).

Materials availability

This study did not generate new materials.

Data and code availability

This paper analyzes existing, publicly available data. The ACSNI Python pack-

age is publicly available at GitHub, https://github.com/caanene1/ACSNI, and

can be installed through the pip python installer. The code used to process and

generate the figures reported in this paper is available at GitHub, https://

github.com/caanene1/ACSNI. Any additional information required to repro-

duce this work is available on the package documentation at GitHub,

https://github.com/caanene1/ACSNI, and from the lead contact.

Publicly available datasets and software.

Method details

ACSNI algorithm

We introduce ACSNI, an algorithm to infer the components of a biological

pathway from bulk tissue expression profiles and prior knowledge of the
IDENTIFIER

37
https://portal.gdc.cancer.gov

https://gtexportal.org/home/v8_RNASeQ_v1.1.9

https://www.ncbi.nlm.nih.gov/geo

GSE102101

https://www.ncbi.nlm.nih.gov/geo

GSE115763

https://www.ncbi.nlm.nih.gov/geo

GSE115389

https://www.ncbi.nlm.nih.gov/geo

GSE121560

https://www.ncbi.nlm.nih.gov/geo

GSE62974

828 https://www.ncbi.nlm.nih.gov/geo

GSE106819

https://www.ncbi.nlm.nih.gov/geo

GSE136604

https://chip-atlas.org

https://depmap.org/portal

https://github.com/NCIP/pathway-interaction-

database/tree/master/download

https://www.gsea-msigdb.org/gsea/msigdb

https://github.com/caanene1/ACSNI

http://www.usadellab.org/cms/?page=trimmomatic

http://daehwankimlab.github.io/hisat2

https://htseq.readthedocs.io/en/release_0.11.1

https://www.python.org

https://www.r-project.org

mailto:a.anene@qmul.ac.uk
https://github.com/caanene1/ACSNI
https://github.com/caanene1/ACSNI
https://github.com/caanene1/ACSNI
https://github.com/caanene1/ACSNI
https://portal.gdc.cancer.gov
https://gtexportal.org/home/v8_RNASeQ_v1.1.9
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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https://github.com/NCIP/pathway-interaction-database/tree/master/download
https://github.com/NCIP/pathway-interaction-database/tree/master/download
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https://github.com/caanene1/ACSNI
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https://htseq.readthedocs.io/en/release_0.11.1
https://www.python.org
https://www.r-project.org
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pathway (Figure 1A). Let P denote the activity of the target pathway in a given

biological sample andK (minimumof 4 genes) a curated set of genes associated

with P based on current knowledge of their biological functions (gene set).42 We

assume that P is organized into several small, highly connected subprocesses

(Si–n) that combine hierarchically into larger units.16 A natural model is to have

P =
Xn

i = 1

Si ; (Equation 1.1)

where Si is the contribution of the ith subprocess to the pathway P and n is the

total number of subprocesses.

While the hierarchical model is a faithful description of cell signaling path-

ways, a practical issue is that the number of subprocesses (n) is unknown a pri-

ori. Our best estimate of n is the current knowledge of the target biological

pathway (P), as specified by the gene set K. To address this issue, we let n

depend on the cardinality of the gene set |K|, defined as a percentage of |K|

and estimated using a recent algorithm explicitly developed for autoencoders

(described below).43 Alternatively, n can be specified by the user based on

their knowledge of the target pathway.

For each k˛K, wehave anestimateof its expression level acrossa cohort ofN

samples indexed by j. We let Vk be the scaled expression vector for gene k and

Vkj is the expression of k in the jth sample; determined by RNA-seq. Since genes

act inmultiple pathways and subprocesses,44 it is the additive change in expres-

sion within subprocesses that leads to the difference in pathway activity. Thus,

we can model sn in the sample cohort as a function of the expression of k:

Si =
XjKj
j = 1

kjwj +bj ; (Equation 1.2a)

where bj is a constant error term for the jth sample, wj is the influence of the jth

gene on the subprocess Si and kj is the expression value of k gene in the jth

sample. To account for additional prior knowledge, we include an optional

weight adjustment to our model below:

Si =
XjKj
j = 1

kjwj,rj + bj ; (Equation 1.2b)

where r denotes the gene-level weights of the new information, such as TF

activity, protein family, or kinase group.
Unsupervised derivation of pathway subprocesses (Sn)

ACSNI starts from the RNA expression values for the K genes and estimates

the activities of the subprocesses across the samples. To this end, we imple-

ment a DNN for estimating Snj through a pair of encoder and decoder layers

(autoencoder):

Vk = d½fðVkÞ�; (Equation 1.3)

where f (encoder) is a function of the expression to the pathway (P), d (decoder)

is a function of the pathway to the expression, and Vk is the reconstructed

version of the expression vector. We train the network to find a solution to

the optimization problem:

minjd; f
���Vk �d½fðVkÞ�

�����; (Equation 1.4)

where ||. || is the l1 and l2 norms that disallow the identity map and forces the

model to learn a sparse representation. The variation across the samples in-

forms the compression and reconstruction of the expressions for all k ˛ K.

We restrict feature selection to the removal of uninformative genes that have

a median absolute deviation below a threshold (user-defined value >1, default

2.5). Figure S4A illustrates the mapping between the biological system, math-

ematical model and DNN layers.

To determine the optimal number of dimensions (i.e., the unknown n subpro-

cesses in Equation 1.1), we implement a recent algorithm explicitly developed

for estimating latent space dimension in autoencoders.43 Specifically, we

determine the optimal latent space for each gene set expression profile by

an iterative process, including:
1. Run the autoencoder above using 50% of the gene set’s cardinality

(50 3 |K|/100) and extract the latent structure.

2. Apply the Bahadur and Paffenroth algorithm to this latent structure to

estimate the optimal dimension.

3. Fix and run ACSNI with the estimated dimension.

In step 1, we initiated the search at 50% of the gene set based on simulation

analysis that showed that although increasing the dimension of the latent

space does not affect the ability to recover the expected signal (Figure S1D),

it comes at the cost of increasing the FDRs (Figure S1E), which we want to

minimize. Latent dimension below 50% of the gene set size appear to achieve

the optimal balance between FDR and recovery of expected signals. Since our

ultimate aim is to prioritize biological components without inflating false dis-

covery, a small dimension is preferred.

Other dimension-reduction methods, including PCA and NMF, have been

applied to gene expression datasets and could theoretically be used to esti-

mate pathway subprocesses (Snj). Therefore, we also implement PCA and

NMF, two linear dimension-reduction methods, into the ACSNI software, al-

lowing users to cross-compare the results.

Estimation of subprocess-gene interaction scores

The neural network above minimizes the error between the input expres-

sion vector Vk and the reconstructed version (Vk ). However, it is, not the

values of Vk that are of interest to us but rather the subprocesses in

each sample. Thus, after training the autoencoder, we extract the learned

weights (W matrix) of the first hidden layer, which represents the reduction

of the gene set expression profiles to latent structures. W has a dimension

of m 3 n (m = the total number of samples and n = the number of estimated

subprocesses) and is the activity of the subprocesses defined in Equa-

tion 1.2a or 1.2b.

For the rest of genes in the transcriptome, the strength of the linear relation-

ship between their expression and the vector of W above corresponds to per-

gene interaction between individual latent vectors and the gene.Wemodel this

interaction as

a = bSi + ε ; ,(Equation 1.5)

where a is the expression profile of a gene in the rest of the transcriptome, b is

the slope, Si is the activity of ith subprocess, and ε is the intercept, estimated

automatically.

Next, for each run of Equation 1.5, we extract the R2 (here called interaction

score e); this can be interpreted as the coefficient of determination for the pro-

portion of the variance in that gene’s expression across the samples that is

predictable from each vector of the W matrix, defined as

e = 1�
P ðaj � baj Þ2P ðaj � aÞ2

; (Equation 1.6)

where e is the interaction score, aj is the expression value for sample j, baj is the
predicted expression value for sample j and a is the mean expression value.

The Equations 1.5 and 1.6 were estimated using the Linear model function

implemented in the sklearn Python package, using default parameters. We

define the matrix of interactions scores (e) with genes in the row and subpro-

cesses in the column as the (Nmatrix), which is used for prediction of unknown

pathway components below.

Further, we extract the learned weights of the second hidden layer (Code),

which represents the reduction of the subprocesses to the pathway. Code

has a dimension of m 3 n (m is the number of estimated subprocesses and

n is the number of estimated higher pathway units) and is the activity of the

pathway defined in Equation 1.1. These data can be used for diagnostics

and dimension plots.

Inference of tissue-specific components of the target pathway

Having estimated the multiple interactions between the subprocesses of the

target pathway and genes in the rest of the transcriptome, we classify each

subprocess independently and combine the predictions into a network. This

process intuitively captures the signal contained in the gene set and thus rep-

resents a robust measure of the context-specific circuitry of the target

pathway. Let en be the scores for the interaction between the ith subprocess

and the genes in the rest of the transcriptome (bound 0–1). e has a beta
Patterns 2, 100270, June 11, 2021 9
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distribution parameterized by a and b (Figure S1F; see also analysis of proba-

bility distribution),

a =

�
1� m

s2
� 1

m

�
m2 ; (Equation 1.7)

b = a

�
1

m
� 1

�
; (Equation 1.8)

where mis the mean interaction across the rest of the transcriptome with vari-

ance s2.

For a future experiment, it is the regularized incomplete beta function Ij(a; b)

that defines the impact of a subprocess on the j gene and in turn the pathway

network. However, we find a cumulative distribution function to be an imprac-

tical network measure and therefore discretize it by defining the interactions to

be Ij(a; b) < 0.01 (P matrix). The cutoff can be interpreted as the probability

threshold to reject the null hypothesis that such an extreme value is expected

less than 1% of the time. Simulation analysis showed that the 0.01 cutoff re-

duces the FDR without affecting the ability to recover the expected signal

compared with the traditional 0.05 for rejecting a null hypothesis (Figure S1B).

The user can also adjust the cutoff depending on their aims.

Next, for each subprocess (Equation 1.2a or 1.2b), we extract the genes that

reach the above threshold as the individual subprocess network. Finally, we

represent our global network for the pathway (Equation 1.1) as the union of

all the genes predicted across the subprocesses, thus a global network across

all subprocesses. Since the neural network optimization process is stochastic,

we implement an ensemble learning and combine predictions using summary

statistics. Here, we count the number of times a gene is predicted across the

ensemble and retain genes predicted in at least twomodels. We suggest using

at least an ensemble of threemodels to increase the stability of the predictions.

Mapping subprocess activity to external variable

Here, we define a subprocess significance measure as a function SS that as-

signs a non-negative value (0–1) to each subprocess; the higher is SSw, the

more biologically significant is subprocess w for the given variable. We derive

SS using logistic regression for categorical variable or simple linear regression

for numerical variables, implemented as the ACSNI-get module (see code at

https://github.com/caanene1/ACSNI).

Architecture and hyperparameters

The neural network used in ACSNI consists of two fully connected layers and a

mirror image of this neural network as a decoder (Figure S4A shows the map

between the biology, equations, and the network layers). We used x neurons in

the first layer, and (x/2) neurons in the second layer of the network. x is

automatically determined, as described in estimation of subprocess-gene

interaction scores, or is user defined based on prior knowledge. During the

subprocess-gene interaction analysis, we extracted the learned weights of

the first layer (autoencoder) or the loading of the linear dimension-reduction

controls (PCA and NMF controls) and used these to predict gene expression

values. We used RMSprop optimizer with learning rate of 13 10�3 for training.

Activities of the neurons were normalized using layer normalization that calcu-

lates the normalization statistics for all units in the same layer. The RELU func-

tion, defined as RELU(x) = max(0, x), was used as a non-linear activation in the

two layers. In the mirror image, the Sigmoid function, defined as Sigmoid(x) =

1/1 + e�x, was used as the activation function. We train the model for 3,000

epochs and configure the checkpoint to save at the end of every epoch, if it

is the best model seen (i.e., the lowest mean squared error in the ACSNI objec-

tive function [1.4]). Regularizers l1 and l2 in the ACSNI objective function were

set to 13 10�16 and 13 10�9, respectively. ACSNI is implemented in Python 3

and relies on the tensorflow, sklearn, numpy, and pandas packages.

Requirements

The validity of the approach is related to the quality of the starting gene set; the

higher the quality of the sources that link the genes in a pathway, the better the

subprocess estimates. The changeable and partially arbitrary nature of gene

annotations should be considered before treating gene sets as units of biolog-

ical processes. It is a further requirement that the sample cohort should mini-

mally contain 50 samples and come from the same type of tissue.

De novo generation of gene sets (ACSNI-derive)

The requirement for a pre-annotated gene set is a challenge because many

biological processes remain completely unknown. For example, few gene
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sets are available for the pathways of non-coding RNAs. To address this prob-

lem, we develop the ACSNI-derive tool for de novo creation of a gene set given

a single gene. First, the expression of the gene of interest is correlated with the

expression of other genes (this can also be set for a specific biotype only, for

example, lncRNA, microRNAs, or protein coding). The topmost correlated tar-

gets are then selected to construct a search space and negative controls (top

50 with r > 0.6 and r < �0.6). We search this space using multiple iterations of

ACSNI and extract genes predicted in more than 60% of the iterations in the

presence of the target as the functional gene set (see code at https://github.

com/caanene1/ACSNI).

Null models

For the evaluation of randomness in the ACSNI predictions, we randomly shuf-

fled the gene expression values of each sample. This process generates

random expression profiles without altering the samples’ library sizes. We

then apply the ACSNI model as described before under the assumption that

the predictions must be false positives, originating from an uninformative

pattern extraction in the W matrix and interaction prediction (P matrix). This

process is included in the ACSNI software and generated automatically.

Datasets for simulation studies

To evaluate how well ACSNI reconstructs a known signal and its FDR, we

created pseudo-simulated RNA-seq data. We did not use purely synthetic

data because we wanted to ensure that our simulation reflects the expected

results from real RNA-seq datasets. Specifically, we extracted the RNA

expression values from the GTEx project (here called expression data) and

50 gene sets from the MSigDB database.18 The expression data have genes

in rows and samples in columns (here called rows and columns, respectively).

The gene sets are sets of gene names (we refer to their expression profiles as

gene set signal). Next, we generated a pair of 50 simulated expression data

and gene set in three independent data transformations:

1. For a given gene set, split the expression data into two groups: (1)

expression of genes in the gene set (data 1) and (2) expression of the

rest of the genes (data 2).

2 .Individually shuffle the column values of data 2, such that the row values

are randomly assigned without altering the original column sums (this is

the random signal).

3. For each row in data 1, individually reverse the ordering of the values

(right to left), whereby the last column gets the expression in the first

column and the first column gets the expression in the last column

(this is the expected signal). This signal is expected because ACSNI

is invariant to the direction and maintains the order of the columns.

4. Create ten versions of data 1 with different log-normal noise levels (5%,

6%, 7%, 8%, 9%, 10%, 20%, 30%, 40%, and 50%) randomly added to

each value (this is the set of expected-noise signals). This signal can be

interpreted as the technical noise caused by RNA-seq and alignment

errors. Each of the ten versions has one level of noise and independent

of the other.

5. Finally, for the given gene set merge the transformed datasets from

steps 2 to 5 with data 1 to form one expression matrix (this is the

pseudo-simulated dataset with known signals). Output the row names

of data 1 as the new gene set, creating expression and gene set pairs.

Note that these datasets were analyzed with ASCNI as pairs because each

expected signal is specific to a given gene set.We provide details of the ACSNI

parameters used to analyze the simulated datasets in the results section.
Quantification and statistical analysis

Comparison of methods for estimating pathway activity

Other methods are available for estimating sample-wise pathway activity

scores that can be used to infer pathway components comparable with global

ACSNI predictions. To benchmark the global predictions, we compared per-

formance on the validation datasets (genetic perturbations or DNA occupancy

data) with four alternative approaches: GSVA, PLAGE, ssGSEA, and Z

score.12–15 These methods estimate a single activity score for each gene set

and individual sample. In the presented mTOR and ATF2 examples, we used

the version of GSVA, PLAGE, ssGSEA, and Z score implemented in the

GSVAR package to estimate pathway activity for each sample. We then corre-

lated the pathway activities from each method with the expression of each

https://github.com/caanene1/ACSNI
https://github.com/caanene1/ACSNI
https://github.com/caanene1/ACSNI
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gene across the samples. The gene-wise correlation coefficients were classi-

fied at >0.4 and < �0.4 to predict pathway genes (see code at https://github.

com/caanene1/ACSNI). We did not apply the ACSNI custom classification

method to correlation coefficients because our approach required a beta dis-

tribution, and the correlation coefficients have a different distribution

(Figure S4B).

For the single gene example (HOTAIRM1 annotation using ACSNI-derive

module), we compared the ACSNI prediction with the pairwise correlation

analysis and differential expression analysis between discretized expression

groups (HOTAIRM1-high: >median versus HOTAIRM1-low: <median). For cor-

relation analysis we used the default pearsonr and for differential expression,

ttest_ind implemented in the SciPy Python package. Genes were classified as

pathway components at correlation coefficient of >0.6 and <�0.6 or two-tailed

adjusted p values of <0.05 (see code at https://github.com/caanene1/ACSNI).

We estimated the subprocesses activity encoded in the gene set expression

profiles by PCA and NMF dimension reduction to compare ACSNI-step 1 with

linear dimension reduction. We used the default PCA and NMF functions im-

plemented in the sklearn Python package. The optimal number of dimensions

was determined by the number of components required to explain 95% vari-

ation in the expression profiles of the gene set. The loading for each compo-

nent was extracted (i.e., subprocess activity per sample) and used in the

rest of the ACSNI calculations.

For all methods, the input data were either RSEM or transcripts per million

(TPM), which are the preferred data transformations and are also used

in ACSNI.

RNA-seq analysis

For GEO RNA-seq datasets, the raw reads were filtered to remove the adap-

tors and the low-quality reads (Q < 20) using Trimmomatic.39 Filtered reads

were aligned to the human reference genome GRCh38/hg38 assembly using

HISAT2 (v2.1.0) in default settings.40 The counts in different genomic features

were then generated using HTSeq (v0.11.1)41 on human GRCh38 reference

annotation (GENCODE Release 32). The expression levels were normalized

by TPM. Differential expression analyses between two groups were performed

using the limma R package. The DE genes were defined at adjusted p value

of <0.05.

Gene ontology analysis

The R ClusterProfiler and the human Bioconductor annotation database

(org.Hs.eg.db) were used to investigate the biological processes associated

with the predicted components of the studied pathway. Ontologies were

filtered for redundancies by semantic similarity analysis45 and considered sig-

nificant at q value <0.01 or otherwise stated in the figure legends.

Randomization test

We utilized a non-parametric randomization test to evaluate the significance of

the overlap between the genes predicted by ACSNI and genes in a validation

signal, or between two ACSNI predictions. For the comparator variable, we

randomly reassigned the labels and calculated the overlap statistic with the

target labels. We repeated this process 10,000 times and counted the number

of times the overlap statistic was greater than the observed statistic. We

then estimated the empirical probability (empirical p) as the count divided

by the total number of randomizations (i.e., 10,000). The R implementation

of the randomization test analysis is available at https://github.com/

caanene1/ACSNI.

Analysis of probability distribution

The R fitdistrplus and logspline packages were used to investigate the interac-

tion scores’ distribution (Equation 1.6). We computed descriptive parameters

of the score vector and visualized the skewness-kurtosis plot to assess the

possible distribution. We then fitted the set of possible distributions to the

scores and compared their density, quantiles, and probabilities with theoret-

ical values. We selected the best distribution for the data based on the lowest

Akaike information criterion (AIC) across all possible distributions (i.e., we used

distribution with the lowest AIC). The R script for distribution analysis is avail-

able at https://github.com/caanene1/ACSNI.
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