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Abstract

The amygdala and its connections with medial prefrontal cortex (mPFC) play central

roles in the development of emotional processes. While several studies have

suggested that this circuitry exhibits functional changes across the first two decades

of life, findings have been mixed - perhaps resulting from differences in analytic

choices across studies. Here we used multiverse analyses to examine the robustness

of task-based amygdala—mPFC function findings to analytic choices within the con-

text of an accelerated longitudinal design (4–22 years-old; N = 98; 183 scans; 1–3

scans/participant). Participants recruited from the greater Los Angeles area com-

pleted an event-related emotional face (fear, neutral) task. Parallel analyses varying in

preprocessing and modeling choices found that age-related change estimates for

amygdala reactivity were more robust than task-evoked amygdala—mPFC functional

connectivity to varied analytical choices. Specification curves indicated evidence for

age-related decreases in amygdala reactivity to faces, though within-participant

changes in amygdala reactivity could not be differentiated from between-participant

differences. In contrast, amygdala—mPFC functional connectivity results varied

across methods much more, and evidence for age-related change in amygdala—mPFC

connectivity was not consistent. Generalized psychophysiological interaction (gPPI)

measurements of connectivity were especially sensitive to whether a deconvolution

step was applied. Our findings demonstrate the importance of assessing the robust-

ness of findings to analysis choices, although the age-related changes in our current

work cannot be overinterpreted given low test–retest reliability. Together, these

findings highlight both the challenges in estimating developmental change in longitu-

dinal cohorts and the value of multiverse approaches in developmental neuroimaging

for assessing robustness of results.
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1 | INTRODUCTION

Rodent models and human neuroimaging have provided converging

evidence for the importance of the amygdala and medial prefrontal cor-

tex (mPFC) in the development of threat processing (Adolphs, 2008;

Forbes, Phillips, Silk, Ryan, & Dahl, 2011), emotion regulation (Pozzi,

Vijayakumar, Rakesh, & Whittle, 2020; Silvers, Shu, Hubbard, Weber, &

Ochsner, 2015; Sullivan & Perry, 2015), and affective learning

(Moriceau & Sullivan, 2006; Pattwell et al., 2016). Characterizing

growth trajectories of these regions may provide insight into neural

constructions underlying emotional development (Meyer & Lee, 2019).

To probe amygdala—mPFC circuitry across development, face stimuli

are frequently employed because they effectively engage this circuitry

while being child-appropriate (Hariri, Tessitore, Mattay, Fera, &

Weinberger, 2002). Though a number of studies have examined age-

related changes from childhood to young adulthood in amygdala

responses and amygdala—mPFC functional connectivity (FC) associated

with emotional face stimuli, findings have varied widely (likely due in

part to differences in sample composition and task design; see Table S1

for details). Several studies have found age-related change in amygdala

reactivity, including decreases as a function of age in response to emo-

tional faces (Gee et al., 2013; Guyer et al., 2008; Killgore, Oki, &

Yurgelun-Todd, 2001; Passarotti, Sweeney, & Pavuluri, 2009; Swartz,

Carrasco, Wiggins, Thomason, & Monk, 2014; Telzer et al., 2015) as

well as other images (Decety, Michalska, & Kinzler, 2012; Silvers

et al., 2017b; Vink, Derks, Hoogendam, Hillegers, & Kahn, 2014),

increases in amygdala reactivity with age (Joseph et al., 2015; Todd,

Evans, Morris, Lewis, & Taylor, 2011), developmental sex differences

(Xu et al., 2021) or peaks during adolescence (Hare et al., 2008;

Vijayakumar, Pfeifer, Flournoy, Hernandez, & Dapretto, 2019). Others

have observed no age-related changes (Kujawa et al., 2016; Pfeifer

et al., 2011; Pine et al., 2001; Wu et al., 2016; Yurgelun-Todd &

Killgore, 2006; Zhang, Padmanabhan, Gross, & Menon, 2019).

With task-evoked amygdala—mPFC FC, several studies have

found age-related decreases from childhood to young adulthood (Gee

et al., 2013; Kujawa et al., 2016; Silvers et al., 2017a; Wu et al., 2016),

while others have found increases (Decety et al., 2012; Perlman &

Pelphrey, 2011; Vink et al., 2014), developmental sex differences (Xu

et al., 2021), or little age-related change (Zhang et al., 2019). While

some investigations have found differing age-related change for faces

displaying different emotions (Killgore & Yurgelun-Todd, 2007; Swartz

et al., 2014; Vijayakumar et al., 2019), even investigations of fearful

faces specifically have varied in their developmental findings for both

amygdala reactivity and amygdala—mPFC FC (Forbes et al., 2011; Gee

et al., 2013; Killgore et al., 2001; Wu et al., 2016; Zhang et al., 2019).

While the small sample sizes examined in many studies on

amygdala—mPFC development likely contribute to differences in

findings (Marek et al., 2020), especially given low reliability of many

amygdala—mPFC measures (Elliott et al., 2020; Herting, Gautam,

Chen, Mezher, & Vetter, 2017; Sauder, Hajcak, Angstadt, &

Phan, 2013), important methodological differences also exist across

studies. Differences in age range or sample demographics, stimuli, task

(e.g., passive viewing vs. emotion labeling or matching; Lieberman

et al., 2007), task design (blocked vs. event-related; Sergerie,

Chochol, & Armony, 2008), or contrast used (faces > shapes

vs. faces > baseline) may also contribute to discrepancies (see

Table S1). The brain regions under investigation also differ across

studies; for example, prefrontal clusters with which amygdala connec-

tivity was assessed. Interpreting discrepancies across studies without

appreciation for these methodological differences would be inappro-

priate, and in fact, incorrect. Yet, such differences do not account for

all discrepancies in findings across studies. Variation in processing

pipelines is another source of differences across studies, as varying

analytic decisions can produce qualitatively different findings, even

between putatively identical analyses of the same dataset (Botvinik-

Nezer et al., 2020). Choices including software package (Bowring,

Maumet, & Nichols, 2019), spatial smoothing (Jo et al., 2007), treat-

ment of head motion (Achterberg & van der Meulen, 2019),

parcellation (Bryce et al., 2021), and functional connectivity approach

(Di, Zhang, & Biswal, 2020) can also impact results and qualitatively

change findings (Cisler, Bush, & Steele, 2014). Additionally, the major-

ity of developmental investigations of amygdala—mPFC function have

studied cross-sectional samples. Because cross-sectional studies are

susceptible to cohort effects and cannot measure within-participant

change, longitudinal work has been recommended for better charting

of developmental trajectories (Crone & Elzinga, 2015; Madhyastha

et al., 2018).

Here, we used multiverse analyses to examine the robustness of

developmental changes to varied analytical decisions. We focused on

task-related amygdala—mPFC functional development in an accelerated

longitudinal sample ranging from ages 4 to 22 years. We selected a task

that was designed to be appropriate for young ages to characterize

developmental change in amygdala—mPFC responses to fear and neu-

tral faces across childhood and adolescence, and we asked whether

findings were robust to analytical choices. This accelerated longitudinal

design is an extension of the sample reported on by Gee et al. (2013).

We preregistered two hypotheses (https://osf.io/8nyj7/) predicting

that both amygdala reactivity (1) and amygdala—mPFC connectivity

(2) as measured with generalized psychophysiological interaction

models (gPPI), would decrease as a function of age during viewing of

fearful faces relative to baseline (see Table 1 Aims 1a and 2a).

Although we did not preregister further hypotheses, we also inves-

tigated age-related changes in within-scan differences in amygdala

responses across trials and FC using beta series correlations. As
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TABLE 1 Summary of main aims, hypotheses, methods, and findings

Aim Preregistered hypothesis Analysis methodology Key findings

1a. Age-related change in

amygdala reactivity to fear

faces

Amygdala reactivity to fearful faces

will decrease with age, such that

younger children will have more

positive amygdala reactivity

(higher BOLD response to fear

faces relative to implicit baseline)

than older youth.

Multiverse amygdala ROI

(anatomically-defined) analysis

using multilevel linear regression

at the group level.

Multiverse decision points:

Preprocessing software, GLM

software, GLM nuisance

regressors, amygdala ROI

definition, contrast estimate

type (t-stat vs. beta estimate),

HRF shape, group-level model

covariates, and exclusion of

previously analyzed scans

• Across decision points, weak

but consistent negative age-

related change in amygdala

reactivity to fear > baseline and

neutral > baseline contrasts

• No consistent evidence for age-

related change in fear > neutral

contrast

• Longitudinal models could

identify consistent between-

participant differences but not

within-participant age-related

change

1b. Age-related change in

patterns of amygdala

responses across task trials

None Multiverse analysis of slopes of

amygdala reactivity across trials,

and amygdala reactivity in each

half of trials using multilevel

linear regression at the group

level, single trial models

Multiverse decision points:

Global signal subtraction, amygdala

ROI definition, and group-level

model covariates

• On average, amygdala reactivity

decreased across trials (for both

fear and neutral faces)

• Amygdala reactivity for earlier

trials was higher at

younger ages

• Age-related change in amygdala

reactivity to fear faces in the

first half of trials, but not the

second half

• Similar, but somewhat weaker

age-related change for neutral

faces

2a. Age-related change in

amygdala—mPFC functional

connectivity to fear faces, as

measured by generalized

psychophysiological

interaction (gPPI)

Amygdala–mPFC FC will decrease

as a function of age such that as

age increases, the valence of FC

will shift from positive to

negative.

Multiverse gPPI analysis with

anatomically defined bilateral

amygdala seed and mPFC target

ROIs using multilevel linear

regression at the group level.

Multiverse decision points:

Deconvolution step, mPFC ROI

definition, contrast estimate

type (t-stat vs. beta estimate),

and group-level model

covariates

• No consistent evidence for age-

related change in gPPI for any

contrast

• gPPI estimates extremely

sensitive to deconvolution step

in creation of regressors

2b. Age-related change in

amygdala—mPFC functional

connectivity to fear faces, as

measured by beta-series

correlation (BSC)

None for BSC specifically Multiverse BSC analysis between

amygdala and mPFC using

multilevel linear regression at

the group level.

Multiverse decision points:

Global signal subtraction, amygdala

ROI definition, mPFC ROI

definition, and group-level model

covariates

• No consistent evidence for age-

related change in BSC for any

condition

• Amygdala–mPFC BSC was most

sensitive to selection of

mPFC ROI

• Global signal subtraction

reduced average amygdala–
mPFC BSC, but impacts on age-

related changes were small

• BSC estimates were not

strongly associated with gPPI

estimates

3. Associations of amygdala

reactivity, change in amygdala

reactivity across trials, or

amygdala—mPFC FC with

separation anxiety

None Multiverse multilevel linear

regressions with brain measures

as predictors for separation

anxiety behaviors, controlling for

age

Multiverse decision points:

Separation anxiety measure, FC

measure, mPFC ROI (FC only),

amygdala ROI, contrast, and

deconvolution step (gPPI only)

• No evidence that amygdala

reactivity, amygdala–mPFC

connectivity, or change in

amygdala reactivity across trials

were associated with separation

anxiety behaviors
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previous work identified associations between amygdala—mPFC FC

and separation anxiety (Carpenter et al., 2015; Gee et al., 2013), we

asked whether any amygdala—mPFC measures were associated longi-

tudinally with separation anxiety behaviors (see Table 1 Aim 3). We

used “multiverse” analyses and specification curves to examine the

impact of analytical decisions on results. We also investigated test–

retest reliability of all brain measurements across longitudinal study

visits, given the importance of such reliability for interpreting individual

differences or developmental change (Herting et al., 2017). Our multi-

verse approach allows us to thoroughly explore the robustness of dif-

ferent findings to analytical choices, highlighting the importance of

considering both robustness and reliability in developmental research.

2 | METHODS

Before completing analyses, we preregistered methods for the current

study through the Open Science Framework at https://osf.io/8nyj7/.

Only analyses for age-related changes in amygdala reactivity and

amygdala–mPFC gPPI were preregistered in detail (see Table 1 Aims

1a and 2a), and we did not preregister multiverse analyses. Methods

detailed below include both information included in the preregistra-

tion and additional information and analyses not preregistered. Analy-

sis code and documentation can be found at https://github.com/

pab2163/amygdala_mpfc_multiverse.

2.1 | Participants

Participants were recruited as part of a larger study examining brain

development as a function of early life caregiving experiences. The

current sample (N = 98; 55 female, 43 male) included typically devel-

oping children, adolescents, and young adults covering the ages 4–

22 years-old (M = 11.9 years old) who enrolled to participate in a

study on emotional development. All participants were reported to be

physically and psychiatrically healthy (no medical or psychiatric disor-

ders), as indicated by a telephone screening before participation, and

free of MRI contraindications. All except four participants fell below

clinical cutoffs (see Figure S2) on the Child Behavior Checklist (CBCL)

Total Problems, Internalizing Problems, and Externalizing Problems

scales (Achenbach, 1991). The larger study also included youths with

a history of institutional and/or foster care outside of the

United States, who are not included here. Participants from the

greater Los Angeles area were recruited through flyers, state birth

records, community events, online advertising, lab website and news-

letters, psychologists' offices, psychology courses at a local university

(participants ages 18–22 years-old only), and word-of-mouth. Each

participant completed up to three MRI scans spaced at an average

interval of 18 months between visits. Parents provided written con-

sent, children 7+ years old gave written assent, and children under

7 years old gave verbal assent. Study protocols were approved by the

local university institutional review board. These data were collected

between 2009 and 2015.

An accelerated longitudinal design was used such that partici-

pants' starting ages at scan 1 comprised the entire range of sample

ages (4–22 years old), and coverage was approximately balanced

across the entire age range (see Figure 1b). The design was structured

into three study “waves” corresponding with recruitment efforts and

visit protocols. Participants were overenrolled at Wave 1 to account

for anticipated attrition (e.g., braces, relocation, etc.) to achieve the

desired sample size across the three waves. While most participants

were recruited such that their first scan occurred at Wave 1, a smaller

set of participants were recruited at Wave 2, such that some partici-

pants completed their first scan at Wave 2 (see Figure 1). For these

participants, only two scans were planned.

Of the 191 participants participating in the longitudinal study,

140 completed at least one MRI scan. After exclusions for incomplete

task runs (including falling asleep), computer errors resulting in missing

stimulus timing files, high head motion, and failed visual QA (scanner/

motion artifacts), a final sample of 98 participants (N = 183 total

scans) was included for analysis (see Figure 1). Exclusion criteria were

preregistered after conducting preliminary preprocessing, but before

construction of group-level models and multiverse analysis plans. This

sample included 40 participants with 1 scan (including 10 participants

ages 18-22 not enrolled for additional scan sessions), 31 with 2 scans,

and 27 with 3 scans (one more participant than preregistered due to

an initial coding error). Wave 1 data from 42 of these participants

were reported on by Gee et al. (2013).

The median annual household income for participating families

was $85,001–$100,000 (for reference, median annual household

income in Los Angeles County from 2015 to 2019 was $68,044; US

Census Bureau, 2021). Epidemiological methods were not used to

recruit a sample representative of the Los Angeles or United States

populations (Heeringa et al., 2004), and Hispanic or Latinx participants

were particularly underrepresented. Further sample demographics can

be found in the Supporting Information (see Tables S2 and S3,

Figures S1 and S2).

2.2 | Separation anxiety

For each participant (except for 10 adults 18–22 years), a parent com-

pleted both the Revised Children's Anxiety and Depression Scale

(RCADS-P) and the Screen for Child Anxiety Related Emotional Disor-

ders (SCARED-P) to assess the frequency of symptoms of anxiety and

low mood (Birmaher et al., 1999; Chorpita, Yim, Moffitt, Umemoto, &

Francis, 2000). Following prior work suggesting associations between

task-evoked amygdala—mPFC FC and separation anxiety (Carpenter

et al., 2015; Gee et al., 2013), we used the separation anxiety sub-

scales from both the SCARED-P and RCADS-P as measures of

anxiety-related behaviors in asking whether such FC may be linked to

anxiety levels during childhood and adolescence. For 11 participants

who had missing items on the SCARED-P, indicating parents had

skipped or forgotten to answer a question, we imputed responses

using 5-Nearest Neighbor imputation using only the other items

included in the SCARED-P separation anxiety subscale (Beretta &
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Santaniello, 2016). As expected, raw separation anxiety scores on

both measures decreased as a function of age, while standardized

scores (which are normed based on gender and grade level) were con-

sistent across development with few children at or near clinical

threshold (see Figure 6).

2.3 | Emotion discrimination task

Participants completed either two (at Wave 3) or three (at Waves

1 and 2) runs of a modified “go/no-go” task with emotional faces dur-

ing fMRI scanning. Runs varied by emotional expression (fear, happy,

sad), and within each run participants viewed emotional faces inter-

spersed with neutral faces. To ensure that participants were paying

attention, they were asked to press a button whenever they saw a

neutral face (no response was required for any other face expression).

The order of the runs was counterbalanced across participants; the

stimuli within each run were pseudorandomized (Wager &

Nichols, 2003) to allow for event-related estimates of the hemody-

namic response, and fixed across participants. For the present analy-

sis, only the fear run of the task was used. The other two runs, which

used happy and sad faces in place of fear, are not included in the pre-

sent analysis as these conditions were not present at all waves of data

collection. As 50% of trials were “go” trials under this paradigm, we

refer to the task as an emotion discrimination task, rather than a true

“go/no-go” paradigm since there was no strong prepotent motor

response. Stimuli within each run were presented with a jittered ITI

(3–10 s, median = 4.93 s) according to a genetic algorithm with a fixa-

tion cross on the screen (Wager & Nichols, 2003). Face images were

adult White female faces from the Karolinska Directed Emotional

Faces database (Calvo & Lundqvist, 2008), and the same face stimuli

were used across longitudinal study visits (Vijayakumar et al., 2019).

Each run (130 TRs, duration of 4:20) consisted of 48 trials (24 neutral

faces, 24 fearful faces), each presented for 350 ms. All fMRI analyses

of this task used event-related designs.

2.4 | MRI acquisition

Participants under 18-years-old completed a mock scanning session

before the MRI scan to acclimate to the scanner environment and

practice lying still for data collection. Waves 1 and 2 were collected

on a Siemens 3T TIM Trio MRI scanner using a standard radio-

frequency head coil. A two-dimensional spin echo image (TR,

4,000 ms; TE, 40 ms; matrix size, 256 � 256; 4 mm thick; 0 mm gap)

was acquired in the oblique plane to guide slice configuration in both

structural and functional scans. A whole-brain high-resolution

T1-weighted anatomical scan (MPRAGE; 256 � 256 in-plane resolu-

tion; 256 mm FOV; 192 � 1 mm sagittal slices) was acquired for each

participant for registration of functional data. The task was presented

through MR-compatible goggles during scanning. T2*-weighted

echoplanar images (interleaved slice acquisition) were collected at an

oblique angle of �30� (130 volumes/run; TR = 2,000 ms;

TE = 30 ms; flip angle = 90�; matrix size = 64 � 64; FOV = 192 mm;

34 slices; 4 mm slice thickness; skip = 0 mm; voxel size = 3x3x4 mm).

Wave 3 was collected on a Siemens 3T TIM Trio MRI scanner at a dif-

ferent location using identical acquisition parameters.

2.5 | Behavioral analyses

We used multilevel logistic regression models to estimate age-related

changes in several task performance metrics. We fit separate models

for the d0 performance metric, overall accuracy (probability of a cor-

rect response on any trial), hit rate (on neutral face trials), and false

alarm rate (on fear face trials) as the respective outcomes, and

included nested random effects for task sessions within participants

(models were not nested for d0 as this analysis used only 1 metric per

session rather than trial-wise outcomes, but still included random

effects for participants). Additionally, to model age-related change in

reaction times during correct hit trials, we fit linear, quadratic, cubic,

and inverse age (1/age; Luna, Garver, Urban, Lazar, & Sweeney, 2004;

F IGURE 1 (a) Schematic showing study inclusion criteria. (b) Included scans at each study wave, with each dot representing one scan, and
horizontal lines connecting participants across study waves
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Luna, Tervo-Clemmens, & Calabro, 2021) regressions with identical

random effects structures. Model equations and results for all behav-

ioral analyses can be found in the Supporting Information (see

Supporting Information methods pp. 12–14, Figures S3 and S4).

2.6 | Preregistered fMRI pipeline

3dskullstrip from the Analysis of Functional NeuroImages (AFNI,

v20.1.16) software package (Cox, 1996) was first run on all MPRAGE

scans. Next, experimenters checked the quality of the skull stripping. If

there were outstanding issues with a particular scan run (areas of brain

tissue cut off, or significant areas of skull left in, 30/195 scans), FSL's brain

extraction tool (BET; Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012) was used instead. We used robust brain center estimation,

and modified the fractional intensity values between 0.5 and 0.7 to opti-

mize quality. Slice-time correction was not used. Timeseries of the 6 head

motion parameters were calculated and subsequent spatial realignment

of BOLD volumes was completed using MCFLIRT in FSL (Jenkinson,

Bannister, Brady, & Smith, 2002). Scans over a threshold of >40 volumes

with >0.9 mm framewise displacement (FD; calculated as the sum of

absolute frame-to-frame differences between head realignment esti-

mates; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) were

excluded from analysis (12 out of an initial 195, or 6.2%). After this exclu-

sion, an average of 96.7% (range = [70.1%–100%]) of stimulus-coincident

volumes in each scan were below the 0.9 mm FD threshold. The mean

age of participants with excluded scans was 7.16 years and 8/12 were

male. Registration matrices were calculated for registration of functional

images to high-resolution structural T1 images using FSL's FLIRT with

boundary-based registration. Registration matrices for standard MNI

space were also calculated using both FLIRT (linear registration) and

FNIRT (nonlinear registration) with 12 DOF and a warp resolution of

10 mm. Data were high-pass filtered at 0.01 Hz and smoothed with an

isotropic Gaussian kernel with FWHM of 6 mm before running general

linear models (GLMs), and four-dimensional volumes were grand mean

scaled such that the average intensity value was 10,000.

Following preprocessing, we ran scan-level GLMs using FSL's

FEAT (v6.00). We included event-related regressors for fear and neu-

tral faces (convolved with a double-gamma HRF), their temporal deriv-

atives (Pernet, 2014), and 24 head motion nuisance regressors (the

6 head realignment parameters, their temporal derivatives, and their

squares (Power et al., 2012). Volumes with FD >0.9 mm were down-

weighed to 0 in the GLM. Pre-whitening was used to estimate and

remove temporal autocorrelation (Woolrich, Ripley, Brady, &

Smith, 2001). For each scan, we calculated fear > baseline, neu-

tral > baseline, and fear > neutral contrasts. We used native-space

bilateral amygdala masks generated using Freesurfer (v6.0;

Fischl, 2012) by VanTieghem et al. (2021).

2.7 | Multiverse analyses and specification curves

In addition to the preregistered pipelines, we conducted multiverse

analyses to address all aims in Table 1 and constructed sets of

separate specification curves for each aim (see Table 2). In general,

multiverse analyses aim to probe the consistency of results across all

“reasonable” possible combinations of analysis decisions

(i.e., simultaneously taking all possible “forking paths”; Steegen,

Tuerlinckx, Gelman, & Vanpaemel, 2016). Because analyzing fMRI

data using all reasonable specifications was infeasible

(i.e., possibilities are virtually infinite), we took the approach of “sam-

pling” from the many reasonable or commonly-used analysis choices

for each multiverse. Despite not being completely comprehensive,

this approach still allowed for thorough investigation into the robust-

ness of results. For all multiverse analyses, we constructed specifica-

tion curves by ranking models by their beta estimates (ascending) for

parameters of interest for interpretation and visualization (Cosme &

Lopez, 2020; Klapwijk, van den Bos, Tamnes, Mills, & Raschle, 2019;

Orben & Przybylski, 2019; Simonsohn, Simmons, & Nelson, 2015,

2020). Because specification choices were not preregistered, we did

not conduct formal null hypothesis testing of specification curves.

Instead, as continuous measures of evidence, we report the propor-

tion of specifications resulting in an estimate of the same sign, as well

as the proportion of specifications resulting in 95% posterior intervals

excluding 0 in the same direction. In addition, to analyze in more

detail the impact of specific choices, we submitted point estimates

for parameters of interest across all specifications to multiple regres-

sion models. From these models, we examined the conditional effects

of each analysis decision point on the parameter of interest (see

Supporting Information methods pp. 30–31, Figures S11–S13,

S41–S43, and S55–S57).

2.8 | Multiverse amygdala reactivity analyses

For amygdala reactivity analyses, we examined the robustness of age-

related change estimates to a variety of analytical decisions. In addi-

tion to the preregistered FSL-based pipeline, we preprocessed data

using C-PAC software (v1.4.1; Craddock et al., 2013). We used C-PAC

to take advantage of features supporting running multiple pipeline

“forks” in parallel (for example multiple nuisance regression forks

using the same registration). No spatial smoothing was used in C-PAC

pipelines (see Supporting Information methods p. 14). Following C-

PAC and FSL preprocessing, we examined the impact of different sets

of commonly-used analysis methods on age-related change in amyg-

dala reactivity. We varied analysis choices of GLM software, hemody-

namic response function, nuisance regressors, first-level GLM

estimates, amygdala ROI, exclusion criteria (exclude vs. include scans

analyzed by Gee et al., 2013), group-level model outlier treatment,

and group-level model covariates (see Table 2 and Supporting Infor-

mation methods pp. 14–17). Multiverse analyses of amygdala reactiv-

ity included a total of 2,808 model specifications (156 ways of

defining participant-level amygdala reactivity � 18 group-level model

specifications) for each contrast. We analyzed all specifications in par-

allel. In addition, we examined nonlinear age-related changes using

quadratic and inverse age models (see Figures S14–S17) and ran a

smaller set of analyses (Figure S19) to ask whether we could differen-

tiate within-participant change over time from between-participant
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TABLE 2 Summary of forking pipelines used in analyses for each aima

Aim/analysis Decision point Choices

1a. Age-related change in amygdala

reactivity to fear faces > baseline

Preprocessing software FSL FEAT, C-PAC

GLM software FSL FEAT, AFNI 3dDeconvolve

Hemodynamic response function Double gamma, single gamma

Nuisance regressors 24 motion regressors, 6 motion regressors, 18 motion

regressors + WM + CSF

Low-frequency artifact removal High-pass filter (0.01 Hz), quadratic drift regressor

First-level GLM estimates Beta estimates, T-statistics

Native versus standard MNI space Native space (Freesurfer), Harvard-Oxford Atlas in MNI

Amygdala ROI Bilateral, left, right, high signal, low signal

Inclusion of 45 previously analyzed scans Include, exclude

Outlier treatment Exclude ±3SD from mean, exclude ±3SD from mean

+ robust regression

Group-level model covariates Mean FD, mean FD + run, mean FD + scanner, mean FD

+ run + scanner

Group-level model quadratic term Yes, no

Group-level model random slopes Yes, no

1b. Age-related change in patterns of

amygdala responses across task trials

FSL preproc and GLM, high-pass filter, 24

motion regressors, 2G HRF, beta

estimates, included previously analyzed

scans, and robust group-level regression

Method of quantifying within-scan

change

Slopes across trials, trials split into halves, single-trial models

Global signal subtraction Yes, no

Amygdala ROI (all MNI space) Bilateral, left, right

Group-level model covariates Mean FD, mean FD + run, mean FD + scanner, mean FD

+ run + scanner

Group-level model quadratic term Yes, no

Group-level model random slopes Yes, no

2a. Age-related change in amygdala–
mPFC functional connectivity (FC) to

fear faces > baseline, as measured by

(gPPI)

FSL preproc and GLM, high-pass filter, 24

motion regressors, 2G HRF, and

bilateral amygdala ROI in MNI space

Deconvolution step Yes, no

mPFC ROI (all MNI space) Three different 5 mm spheres, large vmPFC mask

Outlier treatment Exclude ±3SD from mean, exclude ±3SD from mean

+ robust regression

Inclusion of 45 previously analyzed scans Include, exclude

Group-level model covariates Mean FD, mean FD + run, mean FD + scanner, mean FD

+ run + scanner

Group-level model quadratic term Yes, no

Group-level model random slopes Yes, no

2b. Age-related change in amygdala–
mPFC functional connectivity to fear

faces > baseline, as measured by

(BSC)

FSL preproc and GLM, high-pass filter, 24

motion regressors, 2G HRF, beta

estimates, robust group-level

regression, and included previously

analyzed scans

Amygdala ROI (all MNI space) Bilateral, left, right

mPFC ROI (all MNI space) Three different 5 mm spheres, large vmPFC mask

Global signal subtraction Yes, no

Group-level model covariates Mean FD, mean FD + run, mean FD + scanner, mean FD

+ run + scanner

Group-level model quadratic term Yes, no

Group-level model random slopes Yes, no

3. Associations of amygdala reactivity,

change in amygdala reactivity across

trials, or amygdala–mPFC FC with

separation anxiety

See Supporting Information methods p.

29 for details on included pipelines

Brain measure Amygdala reactivity, amygdala reactivity slopes, amygdala–
mPFC gPPI, amygdala–mPFC BSC

Global signal subtraction (amygdala

reactivity slopes and BSC only)

Yes, no

Deconvolution step (gPPI only) Yes, no

mPFC ROI (all MNI space, gPPI, and BSC

only)

Three different 5 mm spheres, large vmPFC mask

Separation anxiety outcome variable RCADS, SCARED raw scores, SCARED t-scores

aBolded & italicized choices indicate those most closely matching preregistered pipelines.
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differences through alternative model parametrization (see Supporting

Information methods p. 19).

For all specifications, individual-level amygdala reactivity esti-

mates were submitted to a group-level multilevel regression model for

estimation of age-related changes. All models allowed intercepts to

vary by participant, and some specifications also allowed for varying

slopes (see Supporting Information methods p. 15 for model syntax).

All models also included a scan-level covariate for head motion (mean

FD; Power et al., 2012; Satterthwaite et al., 2012, 2013). Consistent

with prior work, head motion was higher on average in younger chil-

dren, and decreased with age (see Figure S5), though head motion

was not associated with amygdala reactivity estimates for most speci-

fications (see Figure S26). Age-related change findings examined for

the preregistered pipeline also remained consistent under more strin-

gent exclusion thresholds based on mean FD (see Figure S27). Across

preprocessing specifications, we also examined within-scan similarity

of amygdala and whole-brain voxelwise reactivity patterns (see

Figures S20 and S21) and between-scan correlations of average

amygdala reactivity estimates (Figures S22–S24).

2.9 | Change in amygdala reactivity across trials

To probe whether amygdala reactivity exhibited within-scan change

in an age-dependent manner, we modeled reactivity to each face trial

using a least squares separate method (LSS; Abdulrahman &

Henson, 2016). After preprocessing, we used FEAT to fit 48 separate

GLMs corresponding to each trial in each scan. A given trial was

modeled with its own regressor and the remaining 47 trials were

modeled with a single regressor. Each GLM also included 24 head

motion nuisance regressors and had TRs with FD >0.9 mm down-

weighted to 0. BOLD data were high-pass filtered at 0.01 Hz before

the GLM. From each of the 48 GLMs, we extracted the mean amyg-

dala beta estimates corresponding to a contrast for each single

trial > baseline.

We constructed separate multiverse analyses using three different

methods for measuring change in amygdala reactivity across trials. For

Method 1 (slopes), we measured rank-order correlations between trial

number and trial-wise amygdala betas. For Method 2 (trial halves), we

split trials into the first half (Trials 1–12) and second half (Trials 13–24),

and modeled age-related change in each half. For Method 3 (single-trial

models), we constructed larger multilevel models with individual trials as

the unit of observation. We conducted several analysis specifications

for each method (see Table 2 and Supporting Information methods

pp. 21–23), and generated corresponding specification curves.

2.10 | Multiverse amygdala—mPFC FC analyses

We applied multiverse analysis techniques toward examining age-

related changes in amygdala—mPFC FC using gPPI and beta-series

correlation (BSC) methods. Briefly, gPPI estimates FC by constructing

an interaction term between the timecourse in a seed region of inter-

est and a stimulus (task) regressor. Voxels whose activity are well fit

by this interaction term (a psychological-physiological interaction, or

PPI) are assumed to be “functionally coupled” with the seed region in

a way that depends on the behavioral task (McLaren, Ries, Xu, &

Johnson, 2012; O'Reilly, Woolrich, Behrens, Smith, & Johansen-

Berg, 2012). BSC offers a different way of estimating functioning con-

nectivity, by constructing “timeseries” of beta values (i.e., a beta

series) in a condition of interest for two regions of interest, and calcu-

lating the product–moment correlation between those beta series.

We constructed separate specification curves for age-related

change in gPPI and BSC for each contrast. Across gPPI specifications,

we varied whether to use a deconvolution step in creating interaction

regressors (Di & Biswal, 2017; Gitelman, Penny, Ashburner, &

Friston, 2003), as well as several other analysis decision points (see

Table 2 and Supporting Information methods pp. 24–25). The

deconvolution step applies to the preprocessed BOLD data from

the seed timecourse: these data are first deconvolved to estimate

the “underlying neural activity” that produced the BOLD signal

(Gitelman et al., 2003), then these deconvolved signals are multiplied

with the task regressor (e.g., for fear faces). Finally, this new interac-

tion term is convolved with a hemodynamic response function to pro-

duce the BOLD FC regressor of interest. Given recent work indicating

that centering the task regressor before creation of the interaction

term can mitigate spurious effects (Di, Reynolds, & Biswal, 2017), we

also compared pipelines in which we centered the task regressor

before deconvolution (pipelines including deconvolution in main ana-

lyses did not include this step; see Figure S44).

We preregistered constructing an mPFC ROI containing

120 voxels centered at the peak coordinates reported by Gee

et al. (2013) for age-related change in fear > baseline gPPI (Talairach

2,32,8; or MNI 3,35,8). However, after preregistration we discovered

that these peak coordinates were not at the center of the ROI

reported by Gee et al. (2013), and were quite close to the corpus cal-

losum. The 120-voxel ROI we created that was centered at this peak

coordinate would have contained a high proportion of white matter

voxels relative to cortical voxels (though this was not true for the

mPFC ROI identified by Gee et al. (2013)). To address this issue, we

instead constructed three spherical ROIs with 5 mm radii; the first

centered at the above peak coordinates, the second shifted slightly

anterior, and the third shifted slightly ventral relative to the second

(see Figure 4). Lastly, to examine amygdala FC with a more broadly-

defined mPFC, we also used a “large vmPFC” mask encompassing

many of the areas within the ventromedial prefrontal cortex derived

from Mackey and Petrides (2014).

For BSC analyses, we used beta estimates from the LSS GLMs

described above for analyses of within-scan change in amygdala reac-

tivity. Across BSC specifications we varied analyses across several

decision points (see Table 2 and Supporting Information methods

p. 26), including whether to include a correction for global signal (post

hoc distribution centering [Fox, Zhang, Snyder, & Raichle, 2009]). We

extracted mean beta estimates for amygdala and mPFC ROIs for each

trial, then calculated product–moment correlations between the

timeseries of betas across trials (neutral and fear separately) for both

regions (Di et al., 2020). These correlation coefficients were trans-

formed to z-scores, then submitted to group-level models.
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Age-related changes in gPPI and BSC were estimated using multi-

level regression models as described for the amygdala reactivity ana-

lyses. We focused primarily on linear age-related change, but also

examined quadratic and inverse age associations (see Figures S45–S48

and S58–S61). We separately examined group mean gPPI and BSC for

each contrast (see Figures S38 and S52), as well as associations

between mean FD and both FC measures across specifications (see

Figures S49 and S62). Additionally, we examined mean estimates and

age-related change in “task-independent” FC as measured by beta

weight of the “physio” term from the seed amygdala timeseries within

the gPPI model (representing baseline amygdala—mPFC FC controlling

for task-induced variance; Figures S50 and S51).

2.11 | Multiverse analyses of associations between
amygdala and mPFC circuitry and separation anxiety
behaviors

We used further multiverse analyses to ask whether amygdala reactiv-

ity, change in amygdala reactivity over the course of the task, or

amygdala—mPFC FC were associated with separation anxiety behav-

iors. Separate specification curves were created for each brain mea-

sure type (amygdala reactivity, amygdala reactivity change across

trials, and amygdala—mPFC FC). All analyses used multilevel regres-

sion models with covariates for age, and specification curves included

both RCADS-P and SCARED-P separation anxiety subscales as out-

comes (see Table 2 and Supporting Information methods pp. 29–30).

Because we did not have parent-reported RCADS-P or SCARED-P

scores for 10 adult participants, these analyses had an N = 173.

2.12 | Reliability analyses

To better understand the proportion of variance in each measure

explained by the grouping of observations within repeated measure-

ments of the same participants over time, we computed Bayesian

intraclass correlation coefficient (ICC) estimates through variance

decomposition of the posterior predictive distributions of the multi-

level regression models previously described. We implemented these

through the performance R package (Lüdecke, Ben-Shachar, Patil,

Waggoner, & Makowski, 2021; Nakagawa, Johnson, &

Schielzeth, 2017). Negative ICC estimates under this method are pos-

sible, and indicate that the posterior predictive distribution has higher

variance when not conditioning on random effects than when condi-

tioning on them (likely indicating the posterior predictive variance is

large, and random effects explain very little of this variance).

2.13 | Model-fitting

All statistical models fit at the group level were run in the R (v 3.6.1)

computing environment. In order to most accurately model age-

related changes in each of our measures, we attempted to take into

account both between-participants information and repeated mea-

surements within participants over time. Unless otherwise indicated,

models were estimated using Hamiltonian Markov chain Monte Carlo

(MCMC) sampling as implemented in the Stan programming language

through the brms package in R (Bürkner, 2019; Gelman, Lee, &

Guo, 2015). Unless otherwise indicated, all models used package

default weakly-informative priors (student-t distributions with mean

0, scale parameter of 10 standardized units, and 3 degrees of freedom

for all fixed effects), and were run with four chains of 2,000 sampling

iterations (1,000 warmup) each (see Supporting Information methods

pp. 18–19 and p. 30 for syntax).

2.14 | Interactive visualizations

Because static plots visualizing the model predictions for all models in

each multiverse would require far more page space than available, we

created web-based interactive visualization tools for exploring differ-

ent model specifications and viewing the corresponding raw (partici-

pant-level) data and fitted model predictions using R and Shiny

(Beeley, 2013). These visualizations can be found at https://pbloom.

shinyapps.io/amygdala_mpfc_multiverse/

2.15 | Deviations from preregistration

Although we largely completed the preregistered analyses, the current

study includes many analyses beyond those proposed in the initial

preregistration. Because the additional analyses (i.e., all multiverses)

conducted here give us substantial analytical flexibility over that ini-

tially indicated by preregistration, we consider all results here to be at

least in part exploratory (rather than completely confirmatory), despite

the preregistered hypotheses. Additionally, we note that BSC ana-

lyses, analyses of change in amygdala reactivity across trials, and ana-

lyses of associations between all brain measures and separation

anxiety were exploratory, and conducted after we had seen the

results of the preregistered reactivity and gPPI analyses. In addition,

to avoid possible selection bias introduced by the analytical flexibility

inherent in running many parallel analyses, we consider all analysis

specifications simultaneously, emphasizing that without further meth-

odological work, we consider all such choices in tandem as providing

equal evidential value. While reliability analyses were not

preregistered, they too provide key information for interpreting the

current analyses.

3 | RESULTS

3.1 | Age-related change in amygdala reactivity

We used multilevel regression models and specification curve ana-

lyses to examine age-related changes in amygdala reactivity to faces

in an accelerated longitudinal sample ranging from ages 4 to 22 years
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(Figure 2). Across specifications, we found relatively consistent evi-

dence for negative age-related change in anatomically-defined

(Harvard-Oxford atlas and Freesurfer-defined) amygdala reactivity to

fear faces > baseline, such that the vast majority of analysis specifica-

tions (99.6%) estimated linear slopes at the group level that were neg-

ative in sign, and the majority (60.0%) of 95% posterior intervals

about these slopes excluded 0 (Figure 2a; interactive version at

https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/). Thus, over

half of models indicated that on average, increases in age were associ-

ated with decreases in amygdala reactivity to fear faces > baseline.

Because the Wave 1 data in the current study included the 42 scans

used by Gee et al. (2013) to identify age-related changes in

amygdala—mPFC circuitry for the fear > baseline contrast, results

including these scans may have been more likely to find similar change

(particularly for fear > baseline, see Figures S11–S13 and S25). Esti-

mated age-related change was on average weaker, though still largely

negative (98.1% negative, 25.3% of posterior intervals excluding 0)

when 42 previously analyzed scans (ages 4–17 years) were excluded

to provide stricter independence from previously analyzed data (see

Figure S11, Gee et al., 2013). Estimated average age-related change

for the fear > baseline contrast was somewhat stronger when using a

right amygdala ROI compared to the left amygdala, and when using t-

F IGURE 2 Multiverse analyses of age-related change in amygdala reactivity. (a). Specification curve of age-related change in fear > baseline
amygdala reactivity. Points represent estimated linear age-related change and lines are corresponding 95% posterior intervals (PIs). Models are
ordered by age-related change estimates, with the dotted line representing the median estimate across all specifications. Color indicates sign of
beta estimates and whether respective posterior intervals include 0 (red = negative excluding 0; blue = negative including 0, green = positive
including 0, black = median across all specifications). (b). Model specification information corresponding to each model in A. Variables on the y-
axis represent analysis choices, corresponding color-coded marks indicate that a choice was made, and blank space indicates that the choice was
not made in a given analysis. Within each category panel (amygdala ROI, Group-Level Model, and Participant-Level Model), decision points are
ordered from top to bottom by the median model rank when the corresponding choice is made (i.e., choices at the top of each panel tend to have
more negative age-related change estimates). Black points with error bars represent the median and IQR ranks of specifications making the

choice indicated on the corresponding line. (c). Example participant-level data and model predictions for age-related related change in amygdala
reactivity for both the fear > baseline (green) and neutral-baseline (orange) contrasts. Data are shown for a preregistered pipeline using a native
space bilateral amygdala mask, 24 motion regressors, t-statistics, high-pass filtering, and participant-level GLMs in FSL. Points represent
participant-level estimates, light lines connect estimates from participants with multiple study visits, and dark lines with shaded area represent
model predictions and 95% posterior intervals. (d). Specification curves for a subset of models separately parametrizing within-participant (right)
vs. between-participant (left) age-related change for both the fear > baseline (green) and neutral > baseline (orange) contrasts, as well as the
median across specifications (black). See https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/ for interactive visualizations
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stats extracted from scan-level GLMs rather than beta estimates for

group-level models (see Figure S11).

Parallel multiverse analyses found similarly consistent age-related

decreases in neutral faces > baseline amygdala reactivity (see

Figure 2c for an example pipeline and Figure S9 for specification

curve), but no consistent evidence for age-related change for the

fear > neutral contrast (see Figure S10). However, there was consis-

tent evidence for higher reactivity for fear faces > neutral on average

as well as each emotion compared to baseline (Figures S6–S8), indi-

cating that while the amygdala responses were robust and generally

stronger for fear faces compared to neutral, such fear > neutral differ-

ences did not change with age. Across contrasts, varying the inclusion

of block order or scanner covariates, inclusion of random intercepts,

and use of robust regression models had little impact on age-related

change estimates (see Figures 2b and S6–S8).

While group-level estimates of average age-related change were

relatively consistent across specifications, the estimated age terms in

these models could be influenced by both within-participant change

and between-participant differences (King et al., 2018; Madhyastha

et al., 2018). A smaller separate specification curve indicated that

when models were parametrized to differentiate within-participant

change and between-participant differences, average within-

participant change was not consistent across specifications and could

not be estimated with precision (Figure 2d). In contrast, estimates of

between-participant differences largely indicated negative age-related

differences in concurrence with our initial model parametrization. At

the same time, within-participant versus between-participant terms

were not reliably different from one another, indicating that models

could not distinguish them despite higher precision for estimating

between-participant differences (see Figure S19). We did not find

consistent evidence for quadratic age-related changes in amygdala

reactivity (see Figures S14–S17). Inverse age models (i.e., amygdala

reactivity modeled as a function of 1/age) indicated results similar to

those of linear and quadratic models with most specifications for the

fear > baseline and neutral > baseline (though less consistent) con-

trasts indicating age-related decreases (see Figure S18).

3.2 | Age-related differences in within-scan
amygdala reactivity change

To ask whether age-related changes in amygdala reactivity could be

due to developmental changes in patterns of amygdala reactivity

across face trials (within a run), we examined whether within-scan

change in amygdala reactivity varied with age (see Table 1 Aim 1b).

Analyses included 42 specifications (3 amygdala regions of interest

[ROIs] � 2 global signal correction options � 7 group-level models).

Across both fear and neutral trials, linear slopes of amygdala reactivity

were negative on average, indicating higher amygdala reactivity at the

beginning of the run (Figure 3a and Figure S30). Across specifications,

for both fear (100% of estimates had the same sign, 95.2% of poste-

rior intervals excluding 0 in the same direction) and neutral trials

(100% of estimates in the same direction, 38.1% of posterior intervals

excluding 0), there was evidence that these within-scan slopes were

steeper (i.e., more negative) at younger ages, though evidence was rel-

atively weaker for neutral trials (Figure 3d,e). Specifications with a

global signal subtraction step also tended to find stronger age-related

change.

Similarly, when splitting trials into the first half (Trials 1–12)

versus second half (Trials 13–24), there was consistent evidence

(100% of estimates had the same sign, 69.2% with posterior interval

excluding 0) for an interaction between age and trial half, such that

average reactivity to fear faces > baseline in the first half of trials

decreased as a function of age more so than did average reactivity

during the second half of trials (see Figures 3b and Figure S32). This

interaction was in the same direction for neutral trials across most

specifications (88.5% of estimates), but was typically not as strong

(3.8% of posterior intervals excluding 0). Single-trial models indi-

cated similar age-related change in within-scan amygdala dynamics

(see Figure 3c and S33 and S34). Mean group-level amygdala reac-

tivity was higher for the first half of trials for fear faces > baseline

across several specifications, though there were not consistent dif-

ferences between trial halves for mean amygdala reactivity to neu-

tral faces (Figure S31).

3.3 | Age-related change in task-evoked
amygdala—mPFC functional connectivity

We used multilevel regression modeling and specification curve ana-

lyses to examine age-related change in task-evoked amygdala—mPFC

FC within the accelerated longitudinal cohort (see Table 1 Aims 2a,b).

For the fear > baseline contrast, a specification curve with 288 total

specifications (4 definitions of participant-level gPPI estimates � 4

mPFC ROIs � 18 group-level models) of amygdala—mPFC gPPI did

not find consistent evidence of age-related change: while 59.0% of

models found point estimates in the positive direction, only 23% of

posterior intervals excluded 0 (Figure 4c,d, interactive version at

https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/). Specifica-

tion curve analyses found that the sign of the estimated age-related

change depended almost entirely on deconvolution, such that most

specifications including a deconvolution step resulted in negative age-

related change estimates never distinguishable from 0 (78.5% of point

estimates negative, 0% of posterior intervals excluding 0), and most

specifications not including a deconvolution step resulted in positive

age-related change estimates (96.5% of point estimates positive,

47.9% of posterior intervals excluding 0). A visualization of the effects

of the deconvolution step on amygdala FC with each of four mPFC

ROIs is presented in Figure 4b. While mPFC ROI definition and other

analysis decision points also influenced estimates of age-related

change in gPPI (Figure 4d), follow-up regression models indicated that

the effect of including the deconvolution step was several times larger

for the fear > baseline contrast (see Figures S41–S43).

Through equivalent multiverse analyses we also found no evi-

dence of consistent linear age-related change in amygdala—mPFC

gPPI for the neutral > baseline and fear > neutral contrasts (see
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Figures S39 and S40), or nonlinear change for any contrast (see

Figures S45–S48). In addition, we did not see consistent evidence for

group average amygdala–mPFC gPPI for any contrast, though such

results often differed as a function of whether a deconvolution step

was included (see Figure S38). Though we included gPPI analysis

specifications excluding the 42 scans at timepoint 1 studied by Gee

et al. (2013), exclusion of these scans had little impact on age-related

change results (see Figure 4d).

In addition to gPPI analyses, we used BSC analyses to examine

age-related changes in task-evoked amygdala—mPFC connectivity

(see Table 1 Aim 2b). As with gPPI, multiverse analyses of

amygdala—mPFC BSC (168 total specifications; 3 amygdala ROI

definitions � 4 mPFC ROI definitions � 2 global signal options � 7

group-level models) for fear trials (vs. baseline) did not yield strong

evidence of age-related change across pipelines (84.5% of point

estimates in the same direction, 24.4% of posterior intervals

F IGURE 3 Age-related change in amygdala reactivity across trials. (a). An example model of estimated age-related change in slopes of beta

estimates across both fear (green) and neutral (orange) trials. Negative slopes represent higher amygdala activity in earlier trials relative to later
trials. (b). Example models of estimated age-related change in amygdala reactivity for the fear > baseline (left) and neutral > baseline (right)
contrasts for both the first (red) and second (blue) halves of trials. In both a and b, points represent participant-level estimates, light lines connect
estimates from participants with multiple study visits, and dark lines with shaded area represent model predictions and 95% posterior intervals.
(c). Example single-trial model predictions of estimated amygdala reactivity for fear (left) and neutral (right) faces as a function of age and trial
number. Age was modeled as a continuous variable, and average predictions for participants of age 6 (red), 12 (green), and 18 (blue) years are
shown for visualization purposes. All estimates in a–c shown are from an example analysis pipeline using bilateral amygdala estimates and without
global signal correction. (d). Specification curve for age-related change in slopes across fear trials (i.e., many parallel analyses for the fear trials in
subplot b). (e). Specification curve for age-related change in slopes across neutral trials (i.e., neutral trials in plot b). GSS = global signal correction
using post hoc mean centering. For both d and e, color indicates sign of beta estimates and whether respective posterior intervals include
0 (green = positive including 0, purple = positive excluding 0, and black = median across all specifications), and horizontal dotted lines represent
median estimates across all analysis decisions. Variables on the y-axis represent analysis choices, corresponding color-coded marks indicate that a
choice was made, and blank space indicates that the choice was not made in a given analysis
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excluding 0; Figure 5a, interactive version at https://pbloom.

shinyapps.io/amygdala_mpfc_multiverse). Unlike gPPI analyses,

however, choice of mPFC ROI (as well as amygdala ROI, though this

was not examined for gPPI) most impacted age-related change in

BSC estimates, rather than preprocessing or modeling analytical

choices (Figures 5b and S55–S57). Accordingly, while global signal

subtraction resulted in weaker amygdala—mPFC BSC on average

(see Figure S52), inclusion of this step did not consistently affect

age-related change estimates (Figure 4c). We did not find consistent

evidence for age-related change in amygdala–mPFC BSC for neutral

trials (vs. baseline), or for fear > neutral trials (Figures S53 and S54).

We did not find consistent evidence for nonlinear age-related

change for any contrast (Figures S58–S61).

Additionally, we constructed a correlation matrix using rank-order

correlations of scan-level BSC and gPPI estimates for the fear

(vs. baseline) condition. Across scans, there was little evidence of cor-

respondence between BSC and gPPI metrics for amygdala—mPFC

connectivity (Figures 5d and S63–S66). Further, FC estimates tended

to be positively correlated within a method type (BSC, gPPI) across

mPFC ROIs, though less strongly for gPPI estimates with versus with-

out a deconvolution step.

In addition to gPPI and BSC methods for FC, we also explored

between-scan associations between amygdala reactivity and mPFC

reactivity (Figures S28 and S29). Multilevel models indicated that

amygdala reactivity for fear faces > baseline was positively associated

with mPFC reactivity for fear faces > baseline for all mPFC ROIs,

though we did not find consistent evidence for age-related changes in

associations between amygdala and mPFC reactivity to fear

faces > baseline (see Figure S29).

3.4 | Amygdala—mPFC measures and separation
anxiety

We conducted multiverse analyses of associations between several

amygdala—mPFC measures (amygdala reactivity, amygdala—mPFC

FC, within-scan changes in amygdala reactivity) and separation anxi-

ety behaviors (see Table 1 Aim 3). Separation anxiety behaviors on

F IGURE 4 Multiverse analyses of age-related change in amygdala—mPFC connectivity using gPPI methods. (a). MNI space mPFC ROIs used
in connectivity analyses. (b). Example participant-level data and model predictions for age-related related change in amygdala—mPFC gPPI for
analysis pipelines with a deconvolution step (red), or without (blue) for each of the four regions shown in a. Although deconvolution changed the
sign of age-related change estimates, the estimates are not “statistically significant” for each pipeline alone, except for mPFC ROIs 1 and
2 without deconvolution. (c). Specification curve of age-related change in fear > baseline amygdala—mPFC gPPI. Points represent estimated linear
age-related change and lines are corresponding 95% posterior intervals. Models are ordered by age-related change estimates, and the dotted line
represents the median estimate across all specifications. Color indicates sign of beta estimates and whether respective posterior intervals include
0 (blue = negative including 0, green = positive including 0, purple = positive excluding 0, black = median across all specifications). Black points
with error bars represent the median and IQR ranks of specifications making the choice indicated on the corresponding line. (d). Model
specification information corresponding to each model in c. Variables on the y-axis represent analysis choices, corresponding color-coded marks
indicate that a choice was made, and blank space indicates that the choice was not made in a given analysis. Within each category (Group-Level
Model, mPFC ROI, and Participant-Level Model), respectively, decision points are ordered from top to bottom by the median model rank when
the corresponding choice is made (i.e., choices at the top of each panel tend to have more negative age-related change estimates). See https://
pbloom.shinyapps.io/amygdala_mpfc_multiverse/ for interactive visualizations
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average decreased with age, as indicated by the RCADS-P and

SCARED-P raw scores (Figure 6a–c). Neither specification curves for

amygdala reactivity (18 total specifications, 56% of point estimates in

the same direction as median estimate, 0% of posterior intervals

excluding 0), amygdala—mPFC gPPI FC (90 total specifications, 72%

of point estimates in the same direction as median estimate, 1% of

posterior intervals excluding 0), amygdala—mPFC BSC FC (18 total

specifications, 83% of point estimates in the same direction as median

estimate, 0% of posterior intervals excluding 0), nor slope of amygdala

responses across trials (12 total specifications, 75% of point estimates

in the same direction as median estimate, 17% of posterior intervals

excluding 0), found consistent evidence for associations between

brain measures and separation anxiety. Similar specification curves

found little consistent evidence for associations between brain mea-

sures and generalized anxiety, social anxiety, or total anxiety behav-

iors (see Figure S67). All specifications controlled for age (see

Supporting Information methods p. 30).

To more specifically follow up on previous work reporting associ-

ations between separation anxiety behaviors and amygdala—mPFC

gPPI for fear > baseline specifically (Gee et al., 2013), we plotted

model predictions for such models from the above multiverse analysis

for each of the four mPFC ROIs, across all three separation anxiety

outcome measures, and both with and without a deconvolution step

(Figure 6e). We did not find consistent evidence for associations with

separation anxiety, and results showed high sensitivity to the

deconvolution step, mPFC ROI, and outcome measure used.

3.5 | Reliability

To examine test–retest reliability estimates of amygdala—mPFC mea-

sures across longitudinal visits, we computed Bayesian ICC estimates

using a variance decomposition method (Lüdecke et al., 2021).

Because such models can accommodate missing data, all observations

F IGURE 5 Multiverse analyses of age-related change in amygdala—mPFC connectivity using beta-series correlation (BSC) methods. (a).
Specification curve of age-related change in amygdala—mPFC BSC for fear trials. Points represent estimated linear age-related change and lines

are corresponding 95% posterior intervals. Models are ordered by age-related change estimates, and the dotted line represents the median
estimate across all specifications. Color indicates sign of beta estimates and whether respective posterior intervals include 0 (blue = negative
including 0, green = positive including 0, purple = positive excluding 0, and black = median across all specifications). (b). Model specification
information corresponding to each model in a. Variables on the y-axis represent analysis choices, corresponding color-coded marks indicate that a
choice was made, and blank space indicates that the choice was not made in a given analysis. Within each category (amygdala ROI, group-level
model, global signal subtraction, and mPFC ROI) respectively, decision points are ordered from top to bottom by the median model rank when the
corresponding choice is made (i.e., choices at the top of each panel tend to have more negative age-related change estimates). Black points with
error bars represent the median and IQR ranks of specifications making the choice indicated on the corresponding line. GSS = global signal
correction using post hoc mean centering. (c). Example model predictions for age-related change in amygdala—mPFC BSC for fear trials for
analysis pipelines with a global signal subtraction (GSS, post hoc mean centering) step (red), or without (blue) for each of the four mPFC regions
(see Figure 4a) with the left and right amygdala. Pipelines shown have random slopes, no covariates for task block or scanner, and no quadratic
age term. (d). Between-scan rank-order correlations between amygdala—mPFC connectivity measures. All gPPI measures are for the
fear > baseline contrast, and BSC measures are for fear trials. See https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/ for interactive
visualizations
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(98 participants, 183 total scans) were used, including participants

with only 1 visit. All amygdala reactivity (Figure 7a) and amygdala—

mPFC FC (Figure 7c) measures, as well as slopes of amygdala reactiv-

ity estimates across trials (Figure 7b), demonstrated poor reliability

(ICC <.4; Cicchetti & Sparrow, 1981; Elliott et al., 2020). Separation

anxiety measures demonstrated somewhat higher, though still largely

poor reliability (point estimates �0.4, 95% CIs included values below

0.4; Figure 7d). Head motion in the scanner (mean FD) showed the

highest reliability (ICC = 0.52, 95% CI [0.29, 0.68]).

4 | DISCUSSION

Measures that are both robust to researcher decisions and reliable

across measurement instances are critical for studies of the human

brain (Botvinik-Nezer et al., 2020; Bowring et al., 2019; Elliott

et al., 2020; Xu et al., 2022). The accelerated longitudinal design and

multiverse analysis approach used in the current study allowed a rare

opportunity to examine both reliability and robustness of amygdala—

mPFC measures using a rapid event-related face task from early child-

hood through young adulthood. Overall, estimates for age-related

change in amygdala reactivity were relatively robust to a variety of

analytical decision points, while age-related change estimates for

amygdala—mPFC connectivity were more sensitive to researcher

choices. gPPI analyses were particularly sensitive to whether a

deconvolution step was applied. Yet, in concurrence with previous

work (Elliott et al., 2020; Haller et al., 2022; Herting et al., 2017;

Infantolino, Luking, Sauder, Curtin, & Hajcak, 2018; Kennedy

et al., 2021; Nord, Gray, Charpentier, Robinson, & Roiser, 2017;

Sauder et al., 2013), amygdala—mPFC measures displayed consis-

tently poor test–retest reliability across many analytical specifications.

While low reliability estimates in the present study may be due in part

to the long (�18 months) test–retest interval (Elliott et al., 2020) and

potential true developmental change (Herting et al., 2017), low reli-

ability nevertheless imposes a major caveat toward interpretation of

the current developmental findings.

The present findings are valuable from a methodological stand-

point in evaluating the robustness of analytical tools used. A measure-

ment can have high test–retest reliability yet low robustness (high

sensitivity) to analytical decisions, or vice versa (Li et al., 2021).

Because neither robustness nor reliability guarantee the other, current

findings on the impacts of analytic choices will likely be informative in

F IGURE 6 Multiverse analyses of associations between amygdala—mPFC circuitry and separation anxiety. (a). Age-related change in SCARED
and RCADS raw and t-scores for parent-reported separation anxiety subscales. The red dotted line in the middle panel represents the clinical
threshold for the standardized RCADS measure (because this t-score measure is standardized based on age and gender, no age-related change is
expected). (b). Separate specification curves for associations of amygdala reactivity (left), amygdala—mPFC connectivity (both gPPI and BSC;
center two panels), and amygdala reactivity slopes across trials (right) with the three separation anxiety outcomes shown in a. Points represent
estimated associations between brain measures and separation anxiety (controlling for mean FD and age) and lines are corresponding 95%
posterior intervals. Models are ordered by beta estimates, and the dotted line represents the median estimate across all specifications. Color
indicates sign of beta estimates and whether respective posterior intervals include 0 (red = negative excluding 0, blue = negative including
0, green = positive including 0). Scores on each separation anxiety outcome were z-scored for comparison. (c). Example model predictions for
associations between fear > baseline amygdala—mPFC gPPI and each separation anxiety measure. Predictions and 95% posterior intervals are
plotted for each separation anxiety measure separately for each mPFC region, and for gPPI pipelines with and without a deconvolution step.
Pipelines shown use robust regression, have random slopes, no covariates for task block or scanner, and no quadratic age term
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guiding future studies. Thus, we discuss each of the main analyses

below, with particular emphasis on how findings are impacted by ana-

lytic choices.

4.1 | Amygdala reactivity

While there were differences across model specifications, the majority

of pipelines supported our hypothesis that amygdala reactivity to

fearful faces decreases with age from early childhood through early

adulthood (see Table 1 Aim 1a). Across specifications, we found rela-

tively robust evidence for age-related decreases in amygdala reactivity

to both fearful and neutral faces (Figure 2a). Yet, findings also varied

considerably across specifications. For example, only 60% of pipelines

produced results that would be individually labeled as “significant”
(under α = .05), indicating that multiple investigations of this dataset

could likely lead to qualitatively different conclusions. While over half

of analyses found evidence consistent with studies indicating greater

amygdala reactivity to fear faces > baseline in younger children

(Forbes et al., 2011; Gee et al., 2013; Guyer et al., 2008; Swartz

et al., 2014), the other 40% of specifications would have been consis-

tent with investigations that found little age-related change (NB: there

were also differences in samples, age ranges, task parameters, and

behavioral demands across these studies; Kujawa et al., 2016; Wu

et al., 2016; Zhang et al., 2019). We also found that different specifi-

cations resulted in somewhat different nonlinear trajectories (see

F IGURE 7 Longitudinal test–retest Bayesian ICC estimates. ICC values are shown for amygdala reactivity (a), slopes of amygdala reactivity
betas across trials (b), amygdala—mPFC functional connectivity using both gPPI and BSC methods (c), and separation anxiety and in-scanner head
motion measurements (d). Shaded background colors depict whether ICC estimates are categorized as poor (<.4), fair (.4–.6), or good (.6–.75)
reliability. No ICC estimates met the threshold for excellent reliability (>.75). Bayesian ICC estimates were calculated through a variance
decomposition based on posterior predictive distributions. Negative values indicate higher posterior predictive variances not conditioned on
random effect terms than conditioned on random effects terms
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Figures S14–S18). Not only did inverse age and quadratic age models

find different trajectories (as would be expected), but quadratic trajec-

tories themselves also displayed considerable analytic variability, with

some specifications finding “convex” and others finding “concave” fits
(see Figure S17). Although estimating nonlinear age-related change

was not a primary goal of the present study, future work should use

model comparisons for better differentiating nonlinear patterns

(Curran, Obeidat, & Losardo, 2010; Luna et al., 2021).

Models also found evidence for between-participant differences,

but could neither identify within-participant change (Figure 2d) nor

differentiate between-participant from within-participant estimates.

As such, interpretation of the age-related change reported here is sub-

ject to many of the same limitations that apply to cross-sectional

designs (Glenn, 2003), where age-related changes may not necessarily

indicate “true” developmental growth. High uncertainty in estimating

average within-participant change could be driven by several factors,

including true heterogeneity in individual trajectories, low measure-

ment reliability, scanner differences across longitudinal timepoints, or

unmodeled variables impacting amygdala reactivity. Additionally, the

within-participants terms represent a smaller age range (a maximum

of 4 years for any given participant), relative to the broader age range

assessed by the between-participants terms (18 years), which may

have placed additional limits on identifying reliable within-participant

change.

Age-related change in amygdala responses to fear faces over

baseline seemed largely the result of earlier trials in the task (see

Figures S32–S34). While differences in task design and contrast

across studies have been highlighted as potential sources of discrep-

ant findings on the development of amygdala function (Killgore &

Yurgelun-Todd, 2007; Lieberman et al., 2007; Swartz et al., 2014), this

result indicates that attention to trial structure and task duration may

also be necessary in comparing studies. Because the paradigm used in

the current study involved a task requiring participants to press for

one face (“neutral”) and not press for “fear” faces, findings specific to

fear faces over baseline under the current paradigm may also be

driven by behavioral task demands.

4.2 | Amygdala—mPFC functional connectivity

We did not find evidence for our second hypothesis, as neither gPPI

nor BSC analyses indicated consistent evidence of age-related change

in amygdala—mPFC FC (see Table 1 Aims 2a,b, Figures 4 and 5). Thus,

the age-related changes in task-evoked amygdala—mPFC connectivity

identified in prior work (Gee et al., 2013; Kujawa et al., 2016; Wu

et al., 2016) were not identified here, consistent with (Zhang

et al., 2019). Crucially, however, our specification curves did not find

strong evidence against such age-related change, as we did not observe

precise and consistent “null” estimates across specifications. Addition-

ally, quadratic and inverse age models did not find consistent evidence

for nonlinear age-related change (see Figures S45–S48 and S58–S61).

gPPI results were sensitive to whether a deconvolution step had

been included in the preprocessing pipeline, such that we mostly

found age-related decreases in amygdala—mPFC connectivity with a

deconvolution step included, and age-related increases without it

(although most pipelines would not have been “statistically signifi-

cant” on their own, see Figure 4b). While deconvolution has been

argued to be a necessary step for event-related PPI analyses

(Gitelman et al., 2003), recent work has shifted guidelines on its use,

and it may not be recommended for block designs (Di et al., 2020;

Di & Biswal, 2017). Because the true “neuronal” signal underlying the

BOLD timeseries within a given ROI cannot be directly measured,

deconvolution algorithms are difficult to validate. Further,

deconvolution may cause PPI results to be driven by baseline connec-

tivity if task regressors are not centered (Di et al., 2017), although

such centering did not have a major influence on age-related change

results in the present analyses (see Figure S44). Within the current

study, small tweaks to AFNI's 3dTfitter algorithm for deconvolution

resulted in vastly different regressors (see Figure S36), suggesting the

potential for high analytic variability even between gPPI analyses

ostensibly using deconvolution. While the present study does not pro-

vide evidence that can inform whether or not deconvolution is rec-

ommended, further work is needed to optimize and validate

applications of gPPI methods and selection of appropriate task

designs. gPPI may be better equipped for block-designs and particu-

larly ill-posed for rapid event-related tasks due to both difficulties in

resolving which times within the BOLD timeseries reflect FC evoked

by rapid (350 ms) events and low statistical power in estimating such

task-evoked connectivity (see Figures S35–S37; O'Reilly et al., 2012).

Concurrent with previous work, BSC analyses may have higher statis-

tical power for identifying task-related connectivity signal than gPPI

within event-related designs more generally (Cisler et al., 2014).

Age-related change estimates for amygdala—mPFC BSC showed

somewhat higher robustness to analytic decisions compared to gPPI.

For BSC analyses, choice of mPFC ROI contributed most to variabil-

ity in age-related change estimates (see Figures 5b and S55–S57).

While a global signal correction (post hoc distribution centering)

greatly decreased average amygdala—mPFC BSC connectivity (see

Figures 5d and S52) for both fear and neutral faces, this analytical

step did not impact age-related change estimates as heavily

(Figures S55–S57). The fact that global signal correction so dramati-

cally decreased average estimated amygdala—mPFC BSC may indi-

cate that, like with resting-state fMRI analyses, positive FC values

are due in part to motion and physiology-related confounds (Gratton

et al., 2020; Power et al., 2019). Supporting this, BSC estimates were

correlated with mean FD across scans for the fear > baseline and

neutral > baseline contrasts only when a global signal correction was

not applied (see Figure S62). In addition, while test–retest reliability

for all BSC measures was poor, BSC estimates from pipelines includ-

ing a global signal correction step mostly demonstrated somewhat

higher ICC (Figure 6). While these results are consistent with prior

work indicating that correcting for the global signal can mitigate arti-

facts (Ciric et al., 2017; Satterthwaite et al., 2012), other work indi-

cates that such corrections also remove meaningful biological signals

(Belloy et al., 2018; Glasser et al., 2018; Yousefi, Shin, Schumacher, &

Keilholz, 2018).
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4.3 | Amygdala–mPFC circuitry and separation
anxiety

We did not find associations between any task-related amygdala—

mPFC measures (reactivity or FC) and separation anxiety behaviors

(see Table 1 Aim 3; Figure 6). This finding stands in contrast to associ-

ations between amygdala—mPFC connectivity and anxiety identified

in previous developmental work (Gee et al., 2013; Jalbrzikowski

et al., 2017; Kujawa et al., 2016; Qin et al., 2014). However, given that

analyses of brain-behavior associations may require imaging cohorts

much larger than the current sample (especially considering the low

reliability of the measures used; Grady, Rieck, Nichol, Rodrigue, &

Kennedy, 2020; Marek et al., 2020), the absence of relationships here

may not be strong evidence against the existence of potential associa-

tions between amygdala—mPFC circuitry and developing anxiety-

related behaviors.

4.4 | Advantages and pitfalls of the multiverse
approach

Our findings contribute to a body of work demonstrating that

preprocessing and modeling choices can meaningfully influence

results (Botvinik-Nezer et al., 2020). Indeed, most studies involving

many analytical decision points could benefit from multiverse ana-

lyses. Such specification curves can help to examine the stability of

findings in both exploratory and confirmatory research (Flournoy

et al., 2020). Particularly when methodological “gold standards” have

not been determined, specification curves may be informative for

examining the impacts of potential analysis decisions (Bridgeford

et al., 2020; Dafflon et al., 2020). Further, wider use of specification

curves might help to resolve discrepancies between study findings

stemming from different analysis pipelines.

While specification curve analyses may benefit much future

research, we also note that multiverses are only as comprehensive as

the included specifications (Steegen et al., 2016), and such analyses

alone do not solve problems related to unmodeled confounds, design

flaws, inadequate statistical power, circular analyses, or non-

representative sampling. Further, unless all specifications are decided

a priori, analyses are vulnerable to problems of analytic flexibility

(Gelman & Loken, 2014), and inclusion of less justified specifications

can bias results (Del Giudice & Gangestad, 2021). Because specifica-

tion curves can include hundreds or thousands of individual analyses,

rigorous evaluation of individual models can be difficult. To this end,

we created interactive visualizations for visual exploration of individ-

ual analysis specifications.

Computational resources are a relevant concern when conducting

multiverse analyses as well. In the current study, preprocessing (regis-

tration in particular) was the most computationally intensive step, tak-

ing an estimated 4 hours of compute time per scan per pipeline using

4 cores on a Linux-based institutional research computing cluster. How-

ever, specification curve analyses themselves were relatively less inten-

sive, with all group-level models of amygdala reactivity completing in a

total of 48 hr using 4 cores on a laboratory Linux-based server. Specifi-

cation curves using maximum likelihood models (lme4 in R; Bates,

Maechler, & Bolker, 2011) were even more efficient, with thousands of

models running within minutes using a 2019 MacBook Pro (2.8 GHz

Intel Core i7).

4.5 | Limitations

The present study is subject to several limitations that may be

addressed in future investigations. Perhaps most crucially, our conclu-

sions (along with those of many developmental fMRI studies) are lim-

ited by the poor test–retest reliability of the fMRI data. Because

amygdala—mPFC measures showed low reliability across study visits,

the statistical power of our analyses of age-related changes is likely

low (Elliott et al., 2020; Zuo, Xu, & Milham, 2019). Low-powered stud-

ies can yield increased rates of both false positive and false negative

results (as well as errors of the sign and magnitude of estimates;

Button et al., 2013; Gelman & Carlin, 2014); therefore, we caution

against interpretation of our developmental findings (and brain-

behavior associations) beyond the cohort studied in the present inves-

tigation. In particular, the low statistical power of our rapid event-

related task design may be a major contributor to the low test–retest

reliability and variance in outcomes across analysis specifications. That

being said, achieving high-powered studies presents a challenge for

studying populations that cannot tolerate lengthy fMRI sessions. Both

findings that were more robust to analytical decisions (amygdala reac-

tivity) and findings that were less so (amygdala—mPFC connectivity,

associations with separation anxiety) may be most valuable in meta-

analytic contexts where greater aggregate statistical power can be

achieved. In particular, future work on amygdala—mPFC development

will benefit from optimization of measures both on robustness to ana-

lytic variability (Li et al., 2021) and reliability (Kragel, Han, Kraynak,

Gianaros, & Wager, 2021).

Present findings are also limited by the number of participants

studied (Bossier et al., 2020; Marek et al., 2020), the number of longi-

tudinal study sessions per participant (King et al., 2018), and the dura-

tion of the task (Nee, 2019). Work with larger sample sizes, more

study sessions per participant, and more task data collected per ses-

sion will be necessary for charting functional amygdala—mPFC devel-

opment and examining heterogeneity across individuals (although

collecting task-based fMRI will continue to be challenging for studies

including younger children). The generalizability of the current find-

ings may also be limited by the fact that this cohort was skewed

toward high incomes and not racially or ethnically representative of

the Los Angeles or United States population.

Findings are also somewhat limited by the fact that the present

study is not wholly confirmatory, despite preregistration. Because our

multiverse analysis approaches expanded significantly beyond the

methods we preregistered, most of the present analyses, while

hypothesis-driven, must be considered exploratory (Flournoy

et al., 2020). The fact that some specifications used data included in

previous similar analyses of the same cohort (Gee et al., 2013) also
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limits the confirmatory power of the present study (Kriegeskorte,

Simmons, Bellgowan, & Baker, 2009). This may be especially true

because longitudinal models could not identify within-person change

as distinct from between-participant differences (see Figure 2d), indi-

cating that our age-related change estimates may be influenced by

cross-sectional information similar to that investigated by Gee

et al. (2013).

Though the current study aimed to estimate longitudinal age-

related changes in amygdala—mPFC functional circuitry evoked by

fear and neutral faces, the current findings may not be specific to

these stimuli (Hariri et al., 2002). Because our task did not include

non-face foils or probe specific emotion-related processes, results

may be driven by attention, learning, or visual processing, rather than

affective or face processing. In particular, because participants were

instructed to press a button for neutral faces and withhold a button

press for fear faces, observed amygdala—mPFC responses may in part

reflect response inhibition (for fear faces; Menon, Adleman, White,

Glover, & Reiss, 2001) and target detection processes (for neutral

faces; Jonkman, Lansbergen, & Stauder, 2003). Findings for the fear

> baseline and neutral > baseline contrasts also may not be valence-

specific in the absence of a different emotional face as part of the

contrast. Further, because all faces were adult White women, the cur-

rent results may not generalize to faces more broadly (Richeson, Todd,

Trawalter, & Baird, 2008; Telzer, Humphreys, Shapiro, &

Tottenham, 2012). Additionally, because face stimuli were the same

across study visits, exposure effects across sessions may confound

longitudinal findings (although exposure effects may be possible any

time a task is repeated, even if stimuli are unique), particularly age-

related decreases in amygdala responses (Telzer et al., 2018). While

within-session amygdala habituation effects have been shown across

several paradigms (Geissberger et al., 2020; Hare et al., 2008; Hein

et al., 2018), between-session habituation effects are unlikely beyond

2–3 weeks (Geissberger et al., 2020; Johnstone et al., 2005; Plichta

et al., 2014; Spohrs et al., 2018).

Finally, our findings on age-related change in amygdala and mPFC

function may be biased or confounded by age-related differences in

head motion (Ciric et al., 2017), anatomical image quality and align-

ment (Gilmore, Buser, & Hanson, 2020; Rorden, Bonilha, Fridriksson,

Bender, & Karnath, 2012), signal dropout, and physiological artifacts

(Boubela et al., 2015; Fair et al., 2020; Gratton et al., 2020). While our

multiverse analyses included preprocessing and group-level modeling

specifications designed to minimize some of such potential issues,

future work is still needed to optimize discrimination of developmen-

tal changes of interest from such potential confounds.

Despite these limitations, the present study concords with prior

investigations in demonstrating the value of multiverse approaches to

quantify sensitivity to researcher decisions. The results highlight key

analytic considerations for future studies of age-related changes in

amygdala—mPFC function, as well as for studies of human brain

development more broadly.
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walkthroughs (https://pab2163.github.io/amygdala_mpfc_multiverse)

and experiment with analysis code. Additional materials, including

MNI space masks and preregistration documentation, are available at

https://osf.io/hvdmx/.
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