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Simple Summary: We investigated the connection between the levels of 92 circulating proteins
and survival in patients with advanced pancreatic ductal adenocarcinoma. Serum samples from
363 patients with advanced pancreatic ductal adenocarcinoma were examined using the Olink
Immuno-Oncology panel. Two protein signatures were found containing seven and four proteins,
respectively. These two protein indices discriminated patients with very short overall survival
(<90 days) from patients with long overall survival (>2 years), with AUC values of 0.97–0.99 in the
discovery cohort, and 0.89–0.82 in the replication cohorts. Further analyses were conducted exploring
early changes in protein levels, and protein expression in different treatment groups.

Abstract: Patients with advanced pancreatic ductal adenocarcinoma (PDAC) have a dismal prog-
nosis. We aimed to find a prognostic protein signature for overall survival (OS) in patients with
advanced PDAC, and to explore whether early changes in circulating-protein levels could predict
survival. We investigated 92 proteins using the Olink Immuno-Oncology panel in serum samples
from 363 patients with advanced PDAC. Protein panels for several survival cut-offs were developed
independently by two bioinformaticians using LASSO and Ridge regression models. Two panels of
proteins discriminated patients with OS < 90 days from those with OS > 2 years. Index I (CSF-1, IL-6,
PDCD1, TNFRSF12A, TRAIL, TWEAK, and CA19-9) had AUCs of 0.99 (95% CI: 0.98–1) (discovery
cohort) and 0.89 (0.74–1) (replication cohort). For Index II (CXCL13, IL-6, PDCD1, and TNFRSF12A),
the corresponding AUCs were 0.97 (0.93–1) and 0.82 (0.68–0.96). Four proteins (ANGPT2, IL-6, IL-10,
and TNFRSF12A) were associated with survival across all treatment groups. Longitudinal samples
revealed several changes, including four proteins that were also part of the prognostic signatures
(CSF-1, CXCL13, IL-6, TNFRSF12A). This study identified two circulating-protein indices with the
potential to identify patients with advanced PDAC with very short OS and with long OS.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers globally [1].
More than 80% of patients with PDAC are diagnosed with locally advanced or metastatic
disease, with a 5-year survival of only 3% [1–3]. The treatment options for patients with
advanced disease are limited to best supportive care or palliative chemotherapy [4,5].
Palliative chemotherapy is currently one of the following: a combination of 5-flourouracil
(5-FU), irinotecan, oxaliplatin, and leucovorin (modified (m)FOLFIRINOX; median overall
survival (OS) of 11.1 months) [6]; a combination of gemcitabine and nab-paclitaxel (median
OS of 8.5 months) [7]; or monotherapy with gemcitabine (median OS of 6 months) [8].

Historically, gemcitabine monotherapy was the only approved treatment in Denmark
for advanced PDAC up until 2012 when mFOLFIRINOX was approved. In 2014, the
combination of gemcitabine and nab-paclitaxel was approved. Most patients with advanced
PDAC remain on first-line chemotherapy for a limited period due to treatment resistance
and the quick deterioration of these patients, emphasising the difficulties in reaching
effective treatment results [9].

Inflammation is a hallmark of cancer, and chronic inflammation is a risk factor for
PDAC development [10–12]. When diagnosed, PDAC tumours are characterised by an
abundant desmoplastic stroma, resulting in an immunosuppressive microenvironment;
this is a major obstacle to the delivery of standard chemotherapy [13,14].

Routinely assessed circulating biomarkers of the systemic inflammatory response
such as neutrophil-lymphocyte ratio (NLR), lymphocyte-monocyte ratio, C-reactive protein
(CRP), the modified Glasgow Prognostic Score (CRP + albumin), and the Memorial Sloan
Kettering Prognostic Score (NLR + albumin) are prognostic markers in patients with
advanced PDAC, but are yet to be approved for use in routine care [15–17].

Plasma CA19-9 is the most-studied prognostic biomarker in patients with advanced
PDAC, and a marked decrease in CA19-9 levels during treatment is associated with im-
proved survival [18]. However, CA19-9 is not specific to PDAC, can be elevated in other
diseases, and between 5% and 7% of the population do not express the enzyme necessary
for making CA19-9 [19,20]. Recently, the focus of protein biomarker research has shifted
from single-biomarker measurements toward using multiple biomarkers in combinations.
An increasingly used technology is the antibody-based proximity extension assay (PEA),
e.g., the 92-protein Immuno-Oncology (I-O) panel from Olink Proteomics (Uppsala, Swe-
den, www.olink.com, accessed on 22 May 2022). With PEA, pre-determined sets of proteins
are measured. For each protein, there is a pair of antibody-probes labelled with oligonu-
cleotides with a slight affinity to one another, and if both antibodies bind to the protein in
close proximity, the oligonucleotides can be extended by a DNA polymerase. This forms a
unique sequence acting as a surrogate for the protein. This sequence can then be quanti-
fied using quantitative real-time PCR (qPCR) [21,22]. We, and others, have demonstrated
that this method can identify protein panels that could be useful for early diagnosis of
PDAC [23,24]. In our previously published study, we found two protein indices for the
identification of patients with PDAC from patients with non-malignant pancreatic diseases
and healthy individuals. Both indices had AUC-values > 0.90 [23]. In the present study,
we used the I-O panel from Olink to find a prognostic protein signature for OS in patients
with advanced PDAC, and to explore whether changes in circulating-protein levels during
chemotherapy could predict survival.

2. Materials and Methods

The study was conducted according to the REMARK (Reporting Recommendations for
Tumour Marker Prognostic Studies) and TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis) guidelines [25,26].

2.1. Patients

This prospective biomarker study included 737 blood samples from 363 patients with
either locally advanced (n = 94) or metastatic PDAC (n = 269).

www.olink.com
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The patients were included, at five oncological departments in Denmark, in the
BIOPAC study (“BIOmarkers in patients with PAncreatic Cancer—can they provide new
information about the disease and improve diagnosis and prognosis of the patients?”,
NCT03311776, www.herlevhospital.dk/biopac/, accessed on 22 May 2022). All patients
provided written informed consent. Blood samples were drawn between February 2009
and August 2018. Patients were followed up until 19 March 2021. The patients still alive on
that date (n = 4) had been followed for between 35 and 53 months.

2.2. Ninety-Two Proteins Determined using the Olink Immuno-Oncology Assay

The samples were analysed for 92 proteins using the Olink Immuno-Oncology Assay.
Samples were analysed across 14 plates during the period 23 October 2018 to 26 April
2019. Eight samples from the first run of plates were included on all remaining plates for
bridging purposes. The analyses were based on the PEA method [21]. PEA gives abundance
levels for each protein measured as NPX values (Normalised Protein eXpression) on a log2
scale. For details and full list of proteins, see Supplemenatry File S1 and Supplementary
Table S1. The PEA assay was chosen over other protein assays due to several factors.
Other approaches for protein detection, such as mass spectroscopy and ELISA, have some
disadvantages when measuring plasma proteins of low abundance: ELISA is not scalable
to measure >90 proteins at a time per sample, and mass spectroscopy favours highly
abundant proteins [27]. With PEA, it is possible to measure proteins of low abundance with
high sensitivity and specificity while enabling high throughput using a minimal amount of
sample. This makes the assay ideal for measuring a high range of proteins in a large number
of samples [27]. The analyses were performed according to the manufacturer’s instructions
at BioXpedia, Aarhus, Denmark. BioXpedia was blinded to the study endpoint, and no
research questions or clinical data were revealed before all samples had been analysed.

2.3. Statistical Analyses

The statistical analyses and model building were exploratory, since no single validated
model exists for these types of analyses. The same research questions and data (Olink
results and clinical data) were given to two bioinformaticians, who, independently of one
another, conducted analyses and reported results. In the first approach, missing values for
CA19-9 (13 samples) were imputed, and in the second approach, the samples with missing
CA19-9 values were excluded. The total number of patients in the analyses was, therefore,
363 patients in the first statistical approach, and 350 patients in the second statistical
approach. Both bioinformaticians divided the cohort into discovery and replication cohorts.
Patients were allocated to discovery and replication cohorts: 66% and 70% were allocated
to the discovery cohort, for the first and second statistical approach, respectively. LASSO
and Ridge regression models, as well as LASSO-Regularised Cox Regression models, were
used for the building of prognostic models. Subgroup analyses according to treatment
and survival were performed using t-test and Wilcoxon rank-sum test. Longitudinal
analyses were performed using a linear mixed-effects model or Cox regression with time-
dependent covariates. For more details on the statistical analyses, see Supplementary File
S1. No power calculations for appropriate study size could be made because this was an
exploratory study.

3. Results

The patient characteristics are shown in Table 1. The median age was 68 years (range
38–88), and 74.1% had stage IV disease. The baseline median CA19-9 was 998 kU/L (IQR
132–6770 kU/L). There was a slight overweight of women in the replication cohort with
the second statistical approach (Index II). This cohort also had a high median CA19-9
(2180 kU/L) compared with the other groups. OS was as expected for this patient group.

www.herlevhospital.dk/biopac/
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Table 1. Patient characteristics.

No. (%) a of Patients

Index I Index II

Discovery
Cohort

(n = 243)

Replication
Cohort

(n = 120)

Discovery
Cohort

(n = 257)

Replication
Cohort

(n = 106)

Total Population
(n = 363)

Age, median (range) 68 (42–88) 68 (38–85) 68 (38–88) 68 (40–88) 68 (38–88)
≥70 years, n (%) 95 (39.1) 55 (45.8) 100 (38.9) 50 (47.2) 150 (41.3)

Sex, Male 133 (54.7) 65 (54.2) 147 (57.2) 51 (48.1) 198 (54.5)
Female 110 (45.3) 55 (45.8) 110 (42.8) 55 (51.9) 165 (45.5)

Stage III 69 (28.4) 25 (20.8) 64 (24.9) 30 (28.3) 94 (25.9)
IV 174 (71.6) 95 (79.2) 193 (75.1) 76 (71.7) 269 (74.1)

ECOG Performance Status 0 106 (43.6) 53 (44.2) 108 (42.0) 51 (48.1) 159 (43.8)
1 121 (49.8) 59 (49.2) 128 (49.8) 52 (49.1) 180 (49.6)
2 12 (4.9) 7 (5.8) 16 (6.2) 3 (2.8) 19 (5.2)
Unknown 4 (1.7) 1 (0.8) 5 (1.9) 0 (0.0) 5 (1.4)

Diabetes 65 (26.7) 24 (20.0) 60 (23.3) 29 (27.4) 89 (24.5)

Smoking, Former 91 (37.5) 56 (46.7) 106 (41.2) 41 (38.7) 147 (40.5)
Current 60 (24.7) 27 (22.5) 66 (25.7) 21 (19.8) 87 (24.0)
Never 80 (32.9) 34 (28.3) 72 (28.0) 42 (39.6) 114 (31.4)
Unknown 12 (4.9) 3 (2.5) 13 (5.1) 2 (1.9) 15 (4.1)

Time from diagnosis to
baseline sample, days b

21 (16–29) 20 (15–33) 21 (16–31) 20 (16–27) 21 (16–31)

Overall survival, months b 8 (5–15) 10 (5–17) 8 (5–15) 7 (4–16) 8 (4–15)

Baseline CA19-9, kU/L b 1070
(165–7285)

886
(92–5863)

840
(128–6675)

2180
(175–6770) 998

(132–6770)

Gemcitabine 126 (51.9) 57 (47.5) 127 (49.4) 56 (52.8) 183 (50.4)
Gemcitabine + nab-paclitaxel 50 (20.6) 32 (26.7) 56 (21.8) 26 (24.5) 82 (22.6)
mFOLFIRINOX 67 (27.5) 31 (25.8) 74 (28.8) 24 (22.6) 98 (27.0)

a Unless otherwise noted; b median (interquartile range). Abbreviations: ECOG—Eastern Cooperative
Oncology Group.

3.1. Pre-Treatment Plasma-Protein Levels in PDAC Patients in Relation to Survival

The first step was to explore the differential expression of the 92 proteins in the Olink
Immuno-oncology panel and CA19-9. The differential expression was evaluated in four
survival groups (≤90 days vs. >90 days, ≤180 days vs. >180 days, <90 days vs. >1 year, and
<90 days vs. >2 years). Fifty-one of the plasma proteins had statistically significant (p < 0.05)
differences in pre-treatment plasma levels (baseline) in one or more of these survival groups.
Eight proteins (macrophage colony-stimulating factor 1 (CSF-1), hepatocyte growth factor
(HGF), interleukin (IL)-6, IL-8, monocyte chemotactic protein 3 (MCP-3), placenta growth
factor (PGF), tumour necrosis factor receptor superfamily member 12A (TNFRSF12A),
and vascular endothelial growth factor A (VEGFA)) had p values < 0.001 in all four of the
comparisons conducted, and are highlighted in Table 2. IL-6 was found to be the protein
with the most statistically significant difference across all survival groups.



Cancers 2022, 14, 3250 5 of 16

Table 2. Statistically significant proteins in comparisons between survival groups.

Protein

Comparison

≤90 Days (n = 57) vs.
>90 Days (n = 306)

≤180 Days (n = 135) vs.
>180 Days (n = 183)

<90 Days (n = 57) vs.
>1 Year (n = 127)

<90 Days (n = 57) vs.
>2 Years (n = 30)

p Value (not
Adjusted) Test p Value (not

Adjusted) Test p Value (not
Adjusted) Test p Value (not

Adjusted) Test

ADA – – 4.1 × 10−2 Wilcoxon 9.8 × 10−3 t-test 5.4 × 10−3 t-test
ADGRG1 4.9 × 10−4 Wilcoxon 3.7 × 10−4 Wilcoxon 1.7 × 10−3 t-test 2.1 × 10−2 Wilcoxon
ANGPT2 3.2× 10−3 t-test 1.4 × 10−4 t-test 3.1 × 10−7 t-test 2.2 × 10−5 t-test
CA19-9 - - 4.9 × 10−2 t-test 3.8 × 10−4 t-test 6.0 × 10−4 Wilcoxon
CAIX 1.5 × 10−3 Wilcoxon 5.9 × 10−4 Wilcoxon 5.1 × 10−4 t-test 4.6 × 10−2 Wilcoxon

CASP-8 - - 4.0 × 10−3 Wilcoxon 1.1 × 10−3 t-test 1.4 × 10−3 t-test
CCL3 - - 3.4 × 10−3 Wilcoxon 6.3 × 10−3 t-test 1.6 × 10−3 t-test

CCL20 1.1 × 10−3 Wilcoxon 8.4 × 10−5 Wilcoxon 2.5 × 10−5 t-test 2.0 × 10−3 Wilcoxon
CCL23 7.4 × 10−6 Wilcoxon 1.1 × 10−2 Wilcoxon 6.4 × 10−6 t-test 7.8 × 10−6 t-test

CD4 1.0 × 10−2 Wilcoxon 1.4 × 10−2 t-test 5.8 × 10−4 t-test 1.5 × 10−2 Wilcoxon
CD27 1.2 × 10−2 t-test - - 6.3 × 10−3 t-test - -
CD40 1.1 × 10−2 Wilcoxon 4.5 × 10−3 Wilcoxon 2.9 × 10−3 t-test 1.0 × 10−2 t-test
CSF-1 7.4 × 10−6 Wilcoxon 3.5 × 10−7 t-test 2.6 × 10−10 t-test 1.3 × 10−6 t-test

CX3CL1 1.3 × 10−2 Wilcoxon 2.0 × 10−2 Wilcoxon 9.2 × 10−5 t-test 1.7 × 10−3 Wilcoxon
CXCL1 3.5 × 10−2 Wilcoxon 1.9 × 10−2 t-test 5.7 × 10−3 t-test 2.9 × 10−3 Wilcoxon

CXCL11 - - - - - - 4.6 × 10−2 t-test
CXCL13 - - 1.7 × 10−2 Wilcoxon 1.5 × 10−2 t-test 2.9 × 10−3 t-test

DCN 2.1 × 10−2 Wilcoxon 2.4 × 10−3 Wilcoxon 3.2 × 10−2 t-test - -
Gal-9 - - - - 1.1 × 10−3 t-test 5.8 × 10−3 t-test

GZMH - - - - 3.2 × 10−2 t-test 1.9 × 10−2 t-test
HGF 9.3 × 10−6 Wilcoxon 3.6 × 10−4 Wilcoxon 4.0 × 10−6 t-test 1.5 × 10−5 Wilcoxon
HO-1 - - 2.0 × 10−2 Wilcoxon - - - -

ICOSLG 3.0 × 10−2 Wilcoxon - - - - 4.6 × 10−2 Wilcoxon
IL-6 7.0 × 10−9 Wilcoxon 3.1 × 10−8 Wilcoxon 9.0 × 10−12 t-test 9.0 × 10−12 t-test
IL-8 2.2 × 10−5 Wilcoxon 3.4 × 10−5 Wilcoxon 5.2 × 10−9 t-test 1.3 × 10−6 Wilcoxon

IL-10 - - 8.8 × 10−3 Wilcoxon 2.5 × 10−4 t-test 1.2 × 10−3 Wilcoxon
IL-12RB1 4.6 × 10−2 Wilcoxon 2.7 × 10−2 Wilcoxon 5.4 × 10−3 t-test 2.6 × 10−2 t-test

IL18 - - - - 3.2 × 10−2 t-test - -
KLRD - - 1.1 × 10−2 Wilcoxon - - - -

LAP TGF
beta1 - - - - 2.3 × 10−2 t-test - -

MCP-1 3.5 × 10−3 t-test 9.7 × 10−3 t-test 1.9 × 10−3 t-test 4.0 × 10−2 Wilcoxon
MCP-3 2.5 × 10−4 Wilcoxon 2.7 × 10−5 Wilcoxon 6.1 × 10−6 t-test 1.6 × 10−4 Wilcoxon

MIC-A/B - - - - - - 5.8 × 10−3 Wilcoxon
MMP12 8.0 × 10−5 Wilcoxon 3.9 × 10−3 Wilcoxon 7.2 × 10−5 t-test 2.0 × 10−3 t-test
MMP7 2.8 × 10−3 Wilcoxon 1.5 × 10−3 Wilcoxon 2.5 × 10−4 t-test 3.6 × 10−4 Wilcoxon
NOS3 4.6 × 10−3 Wilcoxon 3.0 × 10−3 Wilcoxon 4.8 × 10−5 t-test 1.5 × 10−2 t-test
PD-L1 1.2 × 10−2 Wilcoxon 2.1 × 10−2 Wilcoxon 3.9 × 10−4 t-test 1.6 × 10−4 t-test
PD-L2 - - 2.6 × 10−2 Wilcoxon - - - -
PDGF

subunit-B - - 4.5 × 10−2 Wilcoxon - - - -

PGF 1.8 × 10−4 Wilcoxon 2.0 × 10−4 Wilcoxon 9.1 × 10−5 t-test 2.5 × 10−4 Wilcoxon
TIE2 - - 1.2 × 10−2 Wilcoxon 3.6 × 10−4 t-test 1.4 × 10−3 Wilcoxon

TNFRSF4 - - 1.7 × 10−2 t-test 1.7 × 10−3 t-test 1.4 × 10−3 t-test
TNFRSF9 - - - - 4.6 × 10−2 t-test - -

TNFRSF12A 5.3 × 10−6 Wilcoxon 1.2 × 10−4 Wilcoxon 8.0 × 10−9 t-test 3.1 × 10−7 Wilcoxon
TNFRSF21 3.4 × 10−3 t-test 2.2 × 10−2 t-test 1.9 × 10−6 t-test 2.1 × 10−4 t-test
TNFSF14 2.2 × 10−2 t-test 3.2 × 10−2 t-test 5.7 × 10−3 t-test 1.5 × 10−2 t-test

TRAIL 6.7 × 10−4 Wilcoxon 3.8 × 10−2 Wilcoxon 2.1 × 10−4 t-test 1.5 × 10−3 t-test
TWEAK - - - - 1.0 × 10−2 t-test - -
VEGFA 7.7 × 10−4 t-test 7.1 × 10−4 t-test 3.5 × 10−5 t-test 6.2 × 10−4 t-test
VEGFC - - - - - - 1.5 × 10−2 t-test

VEGFR-2 - - - - 2.0 × 10−3 t-test - -

Proteins with statistically significant (p < 0.05) differences in plasma levels in baseline samples from all patients
with advanced PDAC according to survival. Cells with bold text represent p values of <0.001. Yellow-highlighted
cells indicate the eight proteins with p < 0.001 for all four comparisons. Abbreviations: Wilcoxon—Wilcoxon
rank-sum test.
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3.2. Prognostic Protein Panels for Very Short vs. Very Long Survival (<90 Days vs. >2 Years)

After the preliminary exploration of differentially expressed proteins, the primary
objective of this study was to identify a protein panel, giving an optimal combination
of markers for the discrimination between patients with very short (<90 days) and very
long survival (>2 years). As two bioinformaticians worked independently of one another
on this research question, we herein present two protein indices reached using slightly
different statistical approaches. Details regarding the differentially expressed proteins in
the comparison of survival <90 days vs. >2 years are shown in Supplementary Table S2.

With the first statistical approach, a signature containing seven proteins was deemed to
be the best-performing, and is presented as Index I. For details on all candidate signatures
in this statistical approach, see Supplementary Table S3. The signature consisted of the
following proteins: CSF-1, IL-6, PDCD1, TNFRSF12A, TRAIL, TWEAK, and CA19-9. For
full protein names, see Supplementary Table S1. Index I had AUCs of 0.99 (95% CI: 0.98–1)
in the discovery cohort, and 0.89 (0.74–1) in the replication cohort. For sensitivity and
specificity, see Table 3. The models were tried with age as a predictor, and the two models
(with and without age added) were compared using a DeLong test. No significant change
was observed for the signatures (Table 3).

Table 3. Performance of the candidate prognostic protein signatures for Index I.

Signature

Discovery Cohort (n = 243) Replication Cohort (n = 120) Replication Cohort When Adding Age to the Model
(n = 120)

AUC BP
Sens

BP
Spec PPV NPV AUC BP

Sens
BP

Spec PPV NPV AUC BP
Sens

BP
Spec PPV NPV

DeLong
Test p
Value

Values with 95% confidence intervals in parentheses

1
0.90(
0.75–

1)

0.90
(0.75–

1)

0.90
(0.60–

1)

0.94
(0.83–

1)

0.81
(0.66–

1)

0.72
(0.53–
0.92)

0.61
(0.33–
0.88)

0.88
(0.66–

1)

0.91
(0.81–

1)

0.53
(0.42–
0.81)

0.72
(0.53–
0.92)

0.61
(0.33–
0.88)

0.88
(0.66–

1)

0.91
(0.81–

1)

0.53
(0.42–
0.81)

1

2
0.93
(0.80–

1)

1
(1–1)

0.90
(0.70–

1)

0.95
(0.86–

1)

1
(1–1)

0.75
(0.56–
0.94)

0.66
(0.38–
0.94)

0.88
(0.55–

1)

0.92
(0.78–

1)

0.57
(0.42–
0.87)

0.75
(0.56–
0.94)

0.66
(0.38–
0.94)

0.88
(0.55–

1)

0.92
(0.80–

1)

0.57
(0.43–
0.88)

1

3
0.90
(0.76–

1)

1
(0.75–

1)

0.80
(0.60–

1)

0.90
(0.83–

1)

1
(0.66–

1)

0.77
(0.57–
0.96)

0.77
(0.50–
0.94)

0.77
(0.55–

1)

0.87
(0.80–

1)

0.63
(0.46–
0.90)

0.77
(0.59–
0.96)

0.77
(0.44–
0.94)

0.77
(0.66–

1)

0.87
(0.80–

1)

0.63
(0.46–
0.88)

0.692

4
0.94
(0.83–

1)

1
(1–1)

0.90
(0.70–

1)

0.95
(0.86–

1)

1
(1–1)

0.80
(0.62–
0.98)

0.72
(0.50–

1)

0.88
(0.55–

1)

0.92
(0.80–

1)

0.61
(0.46–

1)

0.80
(0.62–
0.98)

0.83
(0.55–

1)

0.77
(0.55–

1)

0.88
(0.80–

1)

0.70
(0.5–

1)
1

5
0.95
(0.84–

1)

1
(1–1)

0.90
(0.70–

1)

0.95
(0.86–
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With the second statistical approach, one prognostic protein signature was identified
(Index II) containing four proteins, three of which were also included in index I: CXCL13,
IL-6, PDCD1, and TNFRSF12A. Index II gave an AUC of 0.97 (95% CI: 0.93–1), sensitivity
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of 1.00 (1.00–1.00), and specificity of 0.91 (0.83–1) in the discovery cohort. In the replication
cohort the AUC was 0.82 (0.68–0.96), sensitivity 0.86 (0.64–1), and specificity 0.73 (0.55–0.91).

The ROC curves, plotting Index I and Index II, and the coefficients in the two indices
are shown in Figure 1.

Cancers 2022, 14, x  7 of 18 
 

 

5 

0.95 

(0.84–

1) 

1 (1–1) 

0.90 

(0.70–

1) 

0.95 

(0.86–

1) 

1 

(1–1) 

0.81  

(0.64–

0.98) 

0.77  

(0.49–

1) 

0.77 

(0.55–

1) 

0.87 

(0.78–

1) 

0.63  

(0.47–

1) 

0.80  

(0.62–

0.98) 

0.83  

(0.50–

1) 

0.77 

(0.55–

1) 

0.88 

(0.80–

1) 

0.70  

(0.47–

1) 

0.624 

6 

0.95 

(0.84–

1) 

1 (1–1) 

0.90 

(0.70–

1) 

0.95 

(0.86–

1) 

1 

(1–1) 

0.81  

(0.64–

0.98) 

0.77  

(0.38–

1) 

0.77 

(0.44–

1) 

0.87 

(0.78–

1) 

0.63  

(0.45–

1) 

0.80  

(0.63–

0.98) 

0.83  

(0.44–

1) 

0.77 

(0.55–

1) 

0.88 

(0.78–

1) 

0.70  

(0.46–

1) 

0.829 

7 

0.99 

(0.98–

1) 

0.95 

(0.90–

1) 

1 

(0.90–

1) 

1 

(0.95–

1) 

0.90 

(0.83–

1) 

0.89  

(0.74–

1) 

1 

(0.72–

1) 

0.77 

0.55–

1) 

0.90 

(0.81–

1) 

1 

(0.61–

1) 

0.88  

(0.73–

1) 

0.88  

(0.61–

1) 

0.77 

(0.55–

1) 

0.88 

(0.80–

1) 

0.77  

(0.53–

1) 

0.570 

8 

0.95 

(0.88–

1) 

1 

(0.70–

1) 

0.80 

(0.70–

1) 

0.90 

(0.86–

1) 

1 

(0.62–

1) 

0.80  

(0.64–

0.97) 

0.66  

(0.44–

1) 

0.88 

(0.55–

1) 

0.92 

(0.80–

1) 

0.57  

(0.46–

1) 

0.77  

(0.59–

0.95) 

0.72  

(0.44–

0.94) 

0.88 

(0.66–

1) 

0.92 

(0.84–

1) 

0.61  

(0.47–

0.88) 

0.533 

9 

0.98 

(0.95–

1) 

1 

(0.80–

1) 

0.90 

(0.80–

1) 

0.95 

(0.90–

1) 

1 

(0.71–

1) 

0.77  

(0.60–

0.95) 

0.61  

(0.38–

1) 

0.88 

(0.55–

1) 

0.91 

(0.81–

1) 

0.53  

(0.45–

1) 

0.77  

(0.6–

0.95) 

0.55  

(0.38–

0.94) 

1 

(0.66–

1) 

1 

(0.83–

1) 

0.52  

(0.45–

0.87) 

1 

10 

0.96 

(0.89–

1) 

0.95 

(0.75–

1) 

0.90 

(0.80–

1) 

0.95 

(0.90–

1) 

0.90 

(0.66–

1) 

0.80  

(0.64–

0.97) 

0.72  

(0.44–

1) 

0.88 

(0.66–

1) 

0.92 

(0.84–

1) 

0.61  

(0.47–

1) 

0.80  

(0.64–

0.97) 

0.72  

(0.49–

0.94) 

0.88 

(0.66–

1) 

0.92 

(0.84–

1) 

0.61  

(0.47–

0.9) 

1 

11 

0.93 

(0.83–

1) 

0.95 

(0.65–

1) 

0.80 

(0.80–

1) 

0.90 

(0.90–

1) 

0.88 

(0.58–

1) 

0.83  

(0.67–

1) 

1 

(0.44–

1) 

0.55 

(0.44–

1) 

0.81 

(0.78–

1) 

1 

(0.47–

1) 

0.80  

(0.62–

0.98) 

0.77  

(0.38–

1) 

0.77 

(0.55–

1) 

0.87 

(0.78–

1) 

0.63  

(0.45–

1) 

0.347 

With the second statistical approach, one prognostic protein signature was identified 

(Index II) containing four proteins, three of which were also included in index I: CXCL13, 

IL-6, PDCD1, and TNFRSF12A. Index II gave an AUC of 0.97 (95% CI: 0.93–1), sensitivity 

of 1.00 (1.00–1.00), and specificity of 0.91 (0.83–1) in the discovery cohort. In the replication 

cohort the AUC was 0.82 (0.68–0.96), sensitivity 0.86 (0.64–1), and specificity 0.73 (0.55–

0.91). 

The ROC curves, plotting Index I and Index II, and the coefficients in the two indices 

are shown in Figure 1. 

  

 

(a) (b) (c) 

Figure 1. Prognostic signature, Receiver Operating Characteristics (ROC) curves. The orange lines 

indicate performance in the discovery cohorts, and the blue lines indicate performance in the repli-

cation cohorts: (a) ROC plots Index I (CSF-1, IL-6, PDCD1, TNFRSF12A); (b) ROC plots Index II 

(CXCL13, IL-6, PDCD1, TNFRSF12A); (c) coefficients for the biomarkers included in Index I and 

Index II. The three proteins overlapping between the two indices are marked in red. 

Figure 1. Prognostic signature, Receiver Operating Characteristics (ROC) curves. The orange lines
indicate performance in the discovery cohorts, and the blue lines indicate performance in the repli-
cation cohorts: (a) ROC plots Index I (CSF-1, IL-6, PDCD1, TNFRSF12A); (b) ROC plots Index II
(CXCL13, IL-6, PDCD1, TNFRSF12A); (c) coefficients for the biomarkers included in Index I and
Index II. The three proteins overlapping between the two indices are marked in red.

Furthermore, a risk score was developed for Index II. This score was then compared
to survival status at different time points by creating time-dependent ROC curves. This
gave AUC values for predicting survival at 6, 12, 18, 24, 30, and 36 months, respectively. A
Kaplan–Meier plot was made whereby all patients were divided by a risk score < median
and > median. Both plots can be found in Figure 2.

As an internal validation of the proteins included in the two indices, Kaplan–Meier
plots of each individual marker were made for both the discovery and replication cohorts
for both indices. The Kaplan–Meier plots are shown below in Figure 3. For larger versions
of the plots with details, see Supplementary Figures S1 and S2.

As the proteins in the two indices are from the Olink Immuno-Oncology panel, the
relation of each protein to cancer and inflammation are reported in Supplementary Table S4.

The results from the prognostic models made using different OS cut-offs can be found
in Supplementary File S2 and Supplementary Tables S5 and S6.

These results collectively show two protein indices with promising prognostic capabil-
ities for the differentiation between patients with very short or very long OS.

3.3. Subgroup Analyses

We also explored whether pre-treatment plasma-protein levels were associated with
prognosis when the patients were divided according to palliative chemotherapy and
survival (≤180 days and >180 days). Of the 363 patients, 135 patients (37.2%) survived
≤180 days, and 228 patients (62.8%) survived >180 days. In the different treatment groups,
the patients were distributed as follows: 183 patients (50.4%) received gemcitabine, of
which 78 (42.6%) survived ≤180 days and 105 (57.4%) survived >180 days; 82 patients
(22.6%) received gemcitabine + nab-paclitaxel, of which 34 (41.5%) survived ≤180 days
and 48 (58.5%) survived >180 days; and 98 (27.0%) received mFOLFIRINOX, of which 23
(23.5%) survived ≤180 days and 75 (76.5%) survived >180 days. A Kaplan–Meier plot of
survival in the three treatment groups is found in Supplementary Figure S3.
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All statistically significant tests can be found in Supplementary Table S7. Volcano plots
illustrating the fold changes in protein levels between patients with survival ≤180 days
and patients with survival >180 days, and the relation to the p values for each comparison,
are shown in Figure 4. The first statistical approach identified four proteins that were
significantly different in all four comparisons: ANGPT2, IL-6, IL-10, and TNFRSF12A.
These four proteins are highlighted in yellow in Figure 4. Boxplots illustrating the protein
levels of the treatment groups can be found in Supplementary Figure S4.
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Figure 2. Index II: (a) Time-dependent ROC curves for Index II (whole cohort). Plots shown for
predicting OS at 6, 12, 18, 24, 30, and 36 months, respectively. AUC values shown for each plot. Y-axes
show the true positives and x-axes show the false positives; (b) Kaplan–Meier plot showing the risk
score developed using Index II for each patient, plotted against survival. The division of patients is
< or > median risk score.

Details on proteins that were significantly different between treatment groups and
survival groups can be found in Supplementary File S2 and Supplementary Figure S5.
Overlapping proteins between the two statistical approaches were HGF, IL-6, and IL-8 in
the gemcitabine group; CSF-1 and MCP-3 in the gemcitabine + nab-paclitaxel group; and
ANGPT2 and IL-6 in the mFOLFIRINOX group.

3.4. Early Changes in Circulating-Protein Levels after Start of Palliative Chemotherapy and Survival

Early changes in circulating-protein levels after the initiation of palliative chemother-
apy were tested in 234 PDAC patients with longitudinal samples available. The protein
levels in baseline pre-treatment samples were compared with the levels in samples col-
lected before the second chemotherapy cycle (2–4 weeks after baseline depending on the
chemotherapy regimen) and/or at time of the first CT evaluation (approximately after
3 months). In total, 139 patients had samples at all three timepoints. Several proteins were
found to have early patterns of change associated with prognosis, including four proteins
that were also a part of the prognostic signatures (CSF-1, CXCL13, IL-6, TNFRSF12A). For
details, see Supplementary File S2. Results from the univariate and multivariate analyses
comparing the protein levels at different time points to OS are found in Table 4. Details on
the other proteins with significant changes can be found in Supplementary Table S9.
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Figure 3. Kaplan–Meier plots showing each of the proteins included in Index I and Index II, and
the individual relation to survival. Red curves illustrate <median protein levels, and black curves
illustrate >median protein levels.
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Figure 4. Volcano plots of the comparison of circulating-protein levels in all patients divided by
survival groups (≤180 days vs. >180 days) and treatment subgroups. The relationship between
non-adjusted −log10 p values is described on the y-axis and fold changes on the x-axis for the proteins.
Proteins with significant non-adjusted p values (p < 0.05) are labelled with abbreviated names. The
horizontal red dashed line represents p = 0.05. The x-axes represent the fold change between protein
levels in the survival groups (≤180 days vs. >180 days). An example is IL-10 in Figure 4a, which
has a fold change of approximately 1.4, meaning that the IL-10 NPX-values in patients surviving
≤ 180 days is approximately 1.4 times higher than in patients surviving >180 days. The x-axes
have been modified from a log2 scale. (a) All patients divided into survival groups of ≤180 days
(n = 135) and >180 days (n = 228); (b) patients treated with gemcitabine (survival ≤180 days (n = 78)
vs. >180 days (n = 105)); (c) patients treated with gemcitabine + nab-paclitaxel (survival ≤180 days
(n = 34) vs. >180 days (n = 48)); and (d) patients treated with mFOLFIRINOX (survival ≤180 days
(n = 23) vs. >180 days (n = 75).



Cancers 2022, 14, 3250 11 of 16

Table 4. Comparison of protein levels at different timepoints vs. OS in univariate and multivariate
analyses.

Protein

Baseline Sample Before Second Treatment Before First CT Scan (3 Months)

Univariate
Analysis,

HR, p Value

Multivariate
Analysis,

HR, p Value

Univariate
Analysis,

HR, p Value

Multivariate
Analysis,

HR, p Value

Univariate
Analysis,

HR, p Value

Multivariate
Analysis,

HR, p Value

CSF-1 1.85, p < 0.0001 1.79, p < 0.0001 1.33, p = 0.0464 1.35, p = 0.0502 1.57, p = 0.004 1.40, p = 0.043

CXCL13 1.44, p = 0.0007 1.30, p = 0.0234 1.42, p = 0.0148 1.33, p = 0.0663 1.66, p = 0.001 1.49, p = 0.02

IL-6 2.16, p < 0.0001 2.08, p < 0.0001 1.63, p = 0.0007 1.57, p = 0.0030 1.82, p = 0.0001 1.62, p = 0.0045

TNFRSF12A 1.67, p < 0.0001 1.57, p < 0.0001 1.72, p = 0.0002 1.68, p = 0.0008 1.85, p < 0.0001 1.79, p = 0.0004

In the multivariate analyses, the protein levels are combined with age, stage, baseline performance status, baseline
CA19-9, and type of palliative chemotherapy.

These results show that the four proteins from Table 4, which are also a part of
the prognostic indices, are highly associated with survival across timepoints in both the
univariate and multivariate analyses.

4. Discussion

We explored the prognostic potential of 92 circulating proteins + CA19-9 in a cohort
of patients with locally advanced or metastatic PDAC. Two prognostic protein signatures
were developed to identify patients with very short OS (<90 days) versus patients with
long survival (OS >2 years) using two slightly different statistical approaches. The resulting
two indices consisted of seven and four proteins, respectively. Three proteins (IL-6, PDCD1,
and TNFRSF12A) overlapped between the two indices. All the proteins in the two indices
have previously been described in relation to PDAC. However, to our knowledge, it is
a novel observation for all proteins but IL-6 to have prognostic value for patients with
advanced PDAC.

Of the proteins found in the two indices, IL-6 is the most well-described when it comes
to patients with PDAC. The protein plays an important role in the development of cachexia,
and high levels of circulating IL-6 are associated with increased tumour burden and short
OS in patients with advanced PDAC [28–30]. IL-6 has been proposed to be a driver of
PDAC pathogenesis through the activation of the STAT3 pathway, which is involved in the
regulation of cytokine expression, resistance to apoptosis, angiogenesis, and the promotion
of metastasis [28]. Reassuringly, our study confirms the prognostic value of IL-6 in patients
with advanced PDAC using both Kaplan–Meier plots, and univariate and multivariate
analyses across time points.

The second overlapping protein between the two indices, PDCD1, also known as
programmed cell-death protein 1 (PD-1), has been widely studied, and the axis of PD-1
and its ligand, PD-L1, are considered the most successful target for immune checkpoint-
blockade therapy to date [31]. PD-L1 has been shown to be a prognostic marker in several
cancer types [32–34].

The final overlapping protein, TNFRSF12A, also known as fibroblast growth factor-
inducible 14 (Fn14), and its ligand, TWEAK, show low expressions in normal tissues;
however, they have also been found to be highly expressed in several solid tumours and
metastases, including pancreatic cancer cell lines [35,36]. TNFRSF12A/TWEAK has been
found to be prognostic in several cancer types [37,38]. All in all, although the proteins
mentioned above have not previously been described as prognostic in patients with PDAC,
they are well-known markers in other cancer types, lending credibility to our findings.

Furthermore, four proteins (IL-6, TNFRSF12A, CSF-1 and CXCL13) included in the
two indices were found to be prognostic across time points. As mentioned, IL-6 has been
well described to be prognostic in PDAC, but TNFRSF12A, CSF-1, and CXCL13 should be
further investigated to evaluate their potential as prognostic markers in PDAC.
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Our group recently published a study focusing on diagnostic protein biomarkers in
patients with stage I–IV PDAC [23]. The same 92 proteins + CA19-9 were determined in
samples from 701 patients with PDAC (which included our 363 patients with advanced
PDAC), 102 patients with nonmalignant pancreatic diseases, and 180 healthy blood donors,
and we identified two indices for the identification of patients with PDAC. Both CSF-1 and
TRAIL were found to be part of these indices. These two proteins, therefore, seem to have
both diagnostic and prognostic potential in patients with PDAC, and have previously been
shown to have prognostic capabilities in other cancer types [39–41].

In our present study, we further explored the potential of the 92 I-O proteins and CA19-
9 as prognostic biomarkers in a subgroup analysis of patients divided by the three different
types of standard palliative chemotherapy administered to the patients. The findings from
the gemcitabine + nab-paclitaxel group will be validated in an ongoing clinical phase II
study (PACTO, ClinicalTrials.gov NCT02767557), where results are expected in 2023.

A recent smaller study by Peng et al. included 52 patients with stage III or IV
PDAC divided into “good-responders” (OS ≥12 months, n = 26) and “limited-responders”
(OS <12 months, n = 26) [42]. The type of chemotherapy given to patients was not reported.
With a two-sample t-test, 37 proteins were found to be significantly different between
the two groups [42]. Only one protein (granzyme H) was a part of the Olink I-O panel
examined in our study, and this was found in neither our prognostic indices nor our
subgroup analyses.

The main strength of our study is the inclusion of a relatively large number of patients
with advanced PDAC, and the Olink PEA method used. Today, >800 articles have described
this method, including more than 120 studies of patients with cancer, but only four studies
of patients with PDAC [23,24,43,44]. With results from 737 samples from 363 patients, we
confirmed IL-6 as a prognostic marker in PDAC; moreover, we described other proteins
that had previously been reported in relation to PDAC to also have prognostic capabilities.
The indices described here will need further validation, but the relation of these proteins
to other types of cancer strengthens the biological plausibility of the indices in patients
with PDAC.

A further strength is the robustness of the findings, as two bioinformaticians indepen-
dently worked on the same dataset and reached similar results.

Our study has several limitations. The exploratory nature of our study precludes the
results from immediate clinical implementation. Our PDAC cohort is, furthermore, from
a relatively homogeneous Scandinavian population, and extrapolation to more heteroge-
neous populations may be limited. However, we are not aware of any specific population
characteristics that would limit the generalizability of our results. Our population con-
sisted mainly of stage IV patients, with only 25.9% having stage III disease. Therefore, our
findings could be driven primarily by the protein levels of the patients with the highest
tumour burden and, therefore, the most extreme protein levels.

Furthermore, patients treated with gemcitabine monotherapy were overrepresented
in our population. This can, in part, be explained by the available treatment regimens in
the period of sample collection (2009–2018). Our results are limited by the preselection of
proteins by Olink, and proteins found in other studies of patients with advanced PDAC
could not be examined.

Finally, the clinical applications of prognostic protein indices, such as the two in the
present study, relies on thorough validation. If validated, these prognostic indices could be
used for making clinical decisions in collaboration with the patient. In a patient with a very
poor prognosis, the clinician could use the results of the protein measurements as a starting
point for a discussion with the patient regarding treatments. The optimal treatment for
these patients is debatable. This must rely on a discussion between the patient and the
clinician, since no clear scientific recommendations exist [45].
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5. Conclusions

In conclusion, we identified two circulating-protein indices potentially identifying
patients with advanced PDAC with very short OS versus patients with long OS. Changes in
several of these proteins during chemotherapy were also associated with survival. Further
validation is needed.
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