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SUMMARY

Resting-state functional magnetic resonance imaging (fMRI) is widely used in cognitive and 

clinical neuroscience, but long-duration scans are currently needed to reliably characterize 

individual differences in functional connectivity (FC) and brain network topology. In this report, 

we demonstrate that multi-echo fMRI can improve the reliability of FC-based measurements. In 

four densely sampled individual humans, just 10 min of multi-echo data yielded better test-retest 

reliability than 30 min of single-echo data in independent datasets. This effect is pronounced in 

clinically important brain regions, including the subgenual cingulate, basal ganglia, and 

cerebellum, and is linked to three biophysical signal mechanisms (thermal noise, regional 

variability in the rate of T2* decay, and S0-dependent artifacts) with spatially distinct influences. 

Together, these findings establish the potential utility of multi-echo fMRI for rapid precision 

mapping using experimentally and clinically tractable scan times and will facilitate longitudinal 

neuroimaging of clinical populations.
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In Brief

Lynch et al. demonstrate that the test-retest reliability of resting-state connectivity measurements 

can be improved using multi-echo fMRI. This effect is pronounced in clinically important brain 

regions and could help facilitate precision mapping of functional brain networks in healthy people 

and patient populations.

INTRODUCTION

The human brain is organized into functional networks that can be mapped non-invasively 

using resting-state functional magnetic resonance imaging (rsfMRI) (Smith et al., 2013; 

Snyder and Raichle, 2012), a technique that has evolved rapidly to become one of the most 

commonly used tools in cognitive and translational neuroscience. Pioneering studies have 

used rsfMRI to reveal the topology of functional brain networks (Biswal et al., 1995; Power 

et al., 2011; Yeo et al., 2011), and their associations with discrete cognitive processes and 

behaviors (Smith et al., 2009). Studies have also begun to define alterations within brain 

networks that are associated with psychosis (Anticevic et al., 2013; Baker et al., 2014; 

Karcher et al., 2019), depression (Downar et al., 2014; Drysdale et al., 2017; Fox et al., 

2012; Oathes et al., 2015), autism (Di Martino et al., 2011, 2014; Hull et al., 2017; 

Padmanabhan et al., 2017), and other neuropsychiatric disease states (Castellanos et al., 

2013; Menon, 2011; Xia et al., 2018). Promising clinical applications for rsfMRI (Fox and 

Greicius, 2010) include pre-operative mapping (Mitchell et al., 2013; Sair et al., 2016; 

Yahyavi-Firouz-Abadi et al., 2017), providing diagnostic and prognostic information 

(Drysdale et al., 2017; Dunlop et al., 2017; Fox et al., 2012), and mapping targets for 

neuromodulation therapies (Lynch et al., 2019; McMullen, 2018; Medaglia et al., 2020; 

Weigand et al., 2018). However, there are several obstacles to realizing its full clinical 

potential.

First, in the majority of rsfMRI studies, data acquired from many individuals are co-

registered in a common atlas space, and functional brain networks and their relationships 

with clinical or behavioral variables are analyzed at the group level. But recent evidence 

indicates that this approach can obscure individual differences in the topology (size, shape, 

and spatial arrangement) of functional areas and networks in cortex (Gordon et al., 2017c; 

Laumann et al., 2015), in the cerebellum (Marek et al., 2018), and in subcortex (Greene et 

Lynch et al. Page 2

Cell Rep. Author manuscript; available in PMC 2021 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2020), variability that could be both functionally meaningful and clinically useful (Kong 

et al., 2019; Seitzman et al., 2019; Wang et al., 2020). Efforts to develop neuroimaging tools 

for diagnosing neuropsychiatric disorders or predicting treatment response could benefit by 

accounting for these individual differences.

Second, resting-state functional connectivity (FC) measurements would ideally exhibit high 

reliability at the level of individual subjects (i.e., they would be similar across repeated 

assessments), especially in certain clinical contexts. However, obtaining reliable FC-based 

measurements throughout the brain at the individual subject level typically requires large 

amounts of per-subject rsfMRI data (on average, 45 min in cortex [Gordon et al., 2017c] and 

more than 90 min in the cerebellum and subcortex [Greene et al., 2020; Marek et al., 2018]), 

a practice referred to as “dense sampling” (Poldrack, 2017) or “precision functional 

mapping” (Gordon et al., 2017c; Gratton et al., 2020). It is thought that artifactual within-

subject variation in FC is due primarily to two factors: (1) random sampling error (Laumann 

et al., 2015, 2017; Noble et al., 2017, 2019), in part because FC reflects low-frequency 

fluctuations in blood-oxygen-level-dependent (BOLD) signals, which may require long 

duration scans to assess accurately; and (2) the confounding influence of non-

neurobiological artifacts, including those related to head motion (Power et al., 2012; 

Satterthwaite et al., 2012), and participant drowsiness (Laumann et al., 2017; Tagliazucchi 

and Laufs, 2014; Wang et al., 2017). Thus, long-duration scans may improve reliability by 

reducing sampling variability, but they also require that the subject remain still, awake, and 

alert throughout, which is a significant obstacle in both research and clinical populations that 

may not tolerate long (or multiple) scans. Low test-retest reliability may be less of a problem 

for some study designs, including those aimed at identifying effects at the group level in 

large samples. In contrast, low test-retest reliability is a fundamental obstacle to progress in 

other contexts, including intervention studies involving scans obtained before and after a 

treatment, biomarker discovery efforts, analyses of individual differences, and studying 

network plasticity at the individual level. Thus, there is a pressing need for techniques that 

can yield more reliable FC-based measurements from experimentally and clinically tractable 

scan times, as explained by recent commentaries on this topic (D’Esposito, 2019; Lynch and 

Liston, 2020; Satterthwaite et al., 2018).

Here, we tested whether multi-echo (ME) fMRI could enable more rapid and reliable 

mapping of functional brain networks in individuals, ameliorating the need for long scans. 

ME fMRI sequences (Posse, 2012; Posse et al., 1999) acquire multiple images at different 

echo times (i.e., at repeated intervals over tens of milliseconds) per volume, in contrast to 

standard single-echo (SE) sequences, which acquire a single image in the same period of 

time. Studies have previously demonstrated that ME fMRI increases BOLD signal 

sensitivity (Bhavsar et al., 2014; Posse et al., 1999) and can be used to identify and discard 

fMRI signals that cannot have originated from neurobiological activity (Kundu et al., 2012, 

2014, 2015; Power et al., 2018). On first principles, either of these capabilities could 

enhance the reliability of FC at the individual subject level, but this possibility has not been 

tested directly.

To test this hypothesis, we acquired 6 h (24 × 14.5-min scans) of ME rsfMRI data from two 

adult participants over 9 months. We found that the reliability of FC measurements was 
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enhanced nearly brain-wide in ME fMRI data, even when using limited amounts of per-

subject data, compared to parallel analysis of SE data from the same participants and 14 

densely sampled individuals from three SE datasets (n = 10 from the Midnight Scan Club 

[MSC] [Gordon et al., 2017c]; n = 3 from the Cast-induced Plasticity [CAST] study 

[Newbold et al., 2020]; n = 1 from the MyConnectome [MC] project [Laumann et al., 2015; 

Poldrack et al., 2015]). This effect was linked to at least three biophysical signal 

mechanisms with spatially distinct influences and replicated in two other less densely 

sampled participants.

RESULTS

Benchmarking the Reliability of FC Estimates in Three Independent SE Datasets

To begin, we quantified the reliability of FC at each point in the brains of 14 individuals 

from three independent datasets that were repeatedly scanned using SE sequences (MSC 

[Gordon et al., 2017c]: n = 10; 10 × 30-min scans acquired over 2 months; CAST [Newbold 

et al., 2020]: n = 3; 10 to 14 × 30-min scans acquired over consecutive days prior to casting 

of their upper right extremity; MC [Laumann et al., 2015; Poldrack et al., 2015]: n = 1; 84 × 

10-min scans acquired over 18 months). A summary of the sequence parameters used to 

collect these datasets is provided in Table S1. The purpose of this first analysis was to obtain 

an independent benchmark against which our ME fMRI datasets could be evaluated.

We generated FC reliability maps for each subject using different amounts of data (ranging 

from 1 min to the full duration of scans in each dataset). In short, these maps index (using 

spatial correlation) how similar the FC of each point in the brain is when calculated using 

the specified amount of data from a single scan versus a large amount of independent data 

from the same participant. Values approaching 1 indicate better reliability. Reliability maps 

for example subjects from the MSC (MSC01 and MSC06 in Figure 1A), CAST (CAST01 in 

Figure 1B), and MC (MC01 in Figure 1C) datasets are shown in Figure 1. The two 

participants from the MSC dataset shown in Figure 1A were selected randomly and are 

ranked second (MSC06) and fourth (MSC01) of the n = 10 with respect to their average 

brain-wide reliability value. The FC reliability maps for all 14 subjects can be viewed in 

Video S1.

This analysis yielded two results. First, reliability increased with scan duration, which is 

consistent with findings from other studies (Birn et al., 2013; Gordon et al., 2017c; Laumann 

et al., 2015), but relatively few points in the brain exhibited highly reliable FC. On average, 

only 28% (range: 0%–59%) of cortex exhibited high reliability (>0.7) in MSC and CAST 

subjects, even when using the full 30-min scan. Second, the rate that FC became reliable 

varied by brain region (Figure 1C). For example, FC was fairly reliable (>0.5) in lateral 

prefrontal, parietal cortex, posterior cingulate cortex, and other association areas with only 

5–10 min of data. Other regions, including subcortical structures (basal ganglia, thalamus); 

the cerebellum; and somatomotor, inferior temporal, and subgenual cingulate cortex, 

exhibited relatively low reliability (<0.5) on average, even with 30 min of data. This finding 

is consistent with recent reports that more than 1 h of per-subject data may be necessary to 

obtain reliable FC estimates in subcortex (basal ganglia and thalamus; Greene et al., 2020) 

and in the cerebellum (Marek et al., 2018). We note that the brain regions exhibiting 

Lynch et al. Page 4

Cell Rep. Author manuscript; available in PMC 2021 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relatively low reliability—including the cerebellum (Schmahmann et al., 2009; Stoodley et 

al., 2016), subgenual cingulate (Fox et al., 2012; Mayberg et al., 2005; Pizzagalli, 2014), and 

basal ganglia (Dandekar et al., 2018; Morishita et al., 2014; Perlmutter and Mink, 2006)—

are implicated in psychiatry and neurology, which underscores the potential impact of tools 

for enhancing the reliability of FC in these areas. In summary, this first analysis replicates 

previous reports of scan length influencing the reliability of FC, but it also highlights how 

FC reliability varies significantly by brain region, which has been reported elsewhere as well 

(Noble et al., 2017, 2019).

ME fMRI Improves BOLD Signal Sensitivity and Enables the Removal of Non-BOLD 
Artifacts

To test if ME fMRI could be used to obtain more reliable individual-specific FC-based 

measurements, we first acquired 6 h of ME fMRI data (24 × 14.5-min scans) from two 

individuals (referred to here as ME01 and ME02) over a period of 9 months.

In a SE fMRI sequence, like those used to collect the three independent datasets analyzed in 

Figure 1, images are acquired once per tissue excitation after a single fixed delay (“echo 

time”; usually 30–35 ms). A ME fMRI sequence acquires multiple images at different echo 

times spanning dozens of milliseconds, which affords two advantages. Below, we 

characterize these two advantages (readers are encouraged to see a review by Kundu et al. 

[2017] for a more complete discussion) before demonstrating how they additively enhance 

the reliability of FC and brain network topologies in the following sections.

The first advantage of ME fMRI is that images acquired at different echo times can be 

combined according to the rate of T2* decay at each voxel to create an “optimally 

combined” ME (OC-ME) time series (Posse et al., 1999). This is useful because BOLD 

contrast is optimal near the T2* of each voxel, and combining echoes in this manner can 

recover signal in brain regions with a short or long T2* compared to a single fixed echo. 

This effect is localized to specific brain regions. Consider, as an example, the subgenual 

cingulate (Figure 2A; purple), which has a short T2* (<20 ms in both ME01 and ME02; see 

T2* maps in Figure 2C) and exhibited relatively low reliability in Figure 1: in the OC-ME 

image, earlier echoes are weighted more heavily than later echoes (Figure 2B), which helps 

recover signal that would have otherwise been lost. Other brain regions, including portions 

of the basal ganglia and cerebellum, have a short T2* as well (see Figure 2C). Combining 

echoes also dampens thermal (random) noise (Caballero-Gaudes and Reynolds, 2017; Liu, 

2016; Poser and Norris, 2009), which can be a large fraction of the recorded signal (Power, 

2017). Because thermal noise is embedded in all fMRI signals, this effect will occur 

throughout the brain.

To demonstrate the effect that combining echoes has on FC, we generated FC maps using 

brain regions with relatively short (subgenual cingulate; Figure 2D) and long (lateral 

prefrontal cortex [PFC]; Figure 2E) T2* values as seeds. For both subjects ME01 and ME02, 

maps were first created using OC-ME data from a single representative ME scan denoised 

using an extensively validated and commonly used algorithm for cleaning SE fMRI data 

(ICA-AROMA; Ciric et al., 2017; Pruim et al., 2015). For comparison, the same maps were 

created using the second echo (TE2) of the ME scan and a separate connectome-style (faster 
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sampling rate; TR = 800 ms versus TR = 1355 ms) SE acquisition, both of which were 

preprocessed and denoised in the same fashion as the OC-ME data. Two observations are 

notable. First, the seed placed in the short T2* subgenual cingulate exhibited stronger FC, 

with default mode network brain regions in OC-ME data, whereas this pattern of FC was 

absent in the TE2 and fast-TR SE comparison datasets (see dashed white circles in Figure 

2D indicating weaker FC with the posterior cingulate). Second, as expected, differences 

among the OC-ME, TE2, and SE datasets were less pronounced for the seed in lateral PFC 

(Figure 2E), which has a longer T2* value and thus is less susceptible to signal dropout, but 

FC maps still appeared as if they were superimposed on static (thermal) noise. Collectively, 

this analysis demonstrates how ME fMRI improves BOLD signal sensitivity—particularly 

for short T2* brain regions—by accounting for regional differences in the rate T2* decay 

(Bandettini et al., 1994) and dampening thermal noise.

The second advantage of ME fMRI is that how signals decay across echoes can be used 

during denoising to identify and remove signals that cannot have originated from 

neurobiological activity, including those related to head motion, heating or instability of 

MRI hardware, and cerebrovascular pulsatility (Kundu et al., 2017). Discarding these kinds 

of artifacts is desirable, in part because they can produce spurious FC estimates (Power et 

al., 2012, 2015), but difficult to do in SE datasets because there is no ground truth for 

determining if a signal is indeed artifactual. ME fMRI provides this ground truth. For 

example, spatially structured signals in the OC-ME time series identified from a spatial ICA 

can be classified as neurobiological (and retained) or non-neurobiological (and discarded) on 

the basis of their signal-decay properties, an approach called ME-ICA (Kundu et al., 2012). 

Here, we confirmed that ME-ICA can be used to separate neurobiological and non-

neurobiological signals using an instructed deep breathing task (see Figure S1 for the 

rationale behind using the event-related approach described in Power et al. [2020] to 

establish appropriate signal separation).

In summary, we reasoned that ME fMRI has the potential to improve the reliability of FC by 

at least two mechanisms: (1) by enhancing BOLD signal sensitivity through the weighted 

combination of echoes and (2) by removing non-neurobiological artifacts through a signal-

decay-based denoising technique called ME-ICA.

Brain-wide Improvements in Connectivity Reliability in ME fMRI Data

Next, we evaluated the reliability of FC derived from OC-ME (Posse et al., 1999) data 

denoised using ME-ICA (Kundu et al., 2012) in ME01 and ME02, leveraging both 

advantages of ME fMRI detailed in the previous section. Reliability maps were created in 

the same way as was done for Figure 1. Consistent with our hypothesis, OC-ME data 

denoised using ME-ICA (OC-ME + ME-ICA) yielded reliable FC at nearly every point in 

the brain (Figure 3A; top row). Over 75% of cortex exhibited high (>0.7) reliability (82% in 

ME01 and 75% in ME02), compared to, on average, 28% (range: 0%–59%) in independent 

SE participants with twice as much data. Time × reliability curves (Figure 3B) show the 

average reliability value (calculated separately in cortex, subcortical structures, and 

cerebellum) given different scan durations. Scan duration is calculated before removal of 

high motion volumes. Curves from the three independent SE datasets are shown as 
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comparators. Plotting reliability values relative to the amount of data retained after motion-

censoring yielded a set of similar curves (with the exception of MSC participants exhibiting 

especially high levels of head motion; e.g., sub-MSC08) that can be viewed in Figure S2.

One-sample t tests revealed that 10 min of OC-ME + ME-ICA data yielded FC estimates 

that were more reliable than those derived from 3 times as much independent SE data in 

cortex (t(12) = 5.52, p < 0.001, Cohen’s d = 1.46), in the cerebellum (t(12) = 4.89, p = 

0.001, Cohen’s d = 1.38), and in subcortical structures (t(13) = 5.30, p = 0.001, Cohen’s d = 

1.10). These findings, which were replicated in two other less densely sampled individuals 

(“ME03” and “ME04”; see Figure S3), indicate that FC reliability can be enhanced in OC-

ME data when signal-decay-based denoising is used.

To better understand the unique contributions of the OC-ME procedure and signal-decay-

based denoising (ME-ICA) to the enhanced reliability of FC observed in Figure 3A, we 

created reliability maps for OC-ME and TE2 data denoised using ICA-AROMA (Ciric et al., 

2017; Pruim et al., 2015), which, unlike ME-ICA, does not leverage any signal-decay 

information. Two findings are notable. First, reliability was enhanced in OC-ME data 

denoised with ME-ICA, compared to ICA-AROMA, particularly in the cerebellum and basal 

ganglia (Figure 3A; top row versus middle row). One interpretation is that either the high 

density of vasculature (Vigneau-Roy et al., 2014) or close proximity to ventricles 

(Caballero-Gaudes and Reynolds, 2017) renders these areas more susceptible to certain 

kinds of physiological artifacts (e.g., those related to cardiac pulsation) that are discarded by 

ME-ICA, but not ICA-AROMA. Second, the FC reliability maps (bottom row in Figure 3A) 

and time × reliability curves associated with TE2 + ICA-AROMA data were similar to those 

in the three independent SE datasets (Figure 1). Reliability maps for all study participants 

can be viewed in Video S2.

A limitation of using TE2 as a stand-in for SE data is that contemporary SE sequences can 

acquire images at faster rates than ME sequences. To help address this concern, ME01 

underwent 6 h of additional scanning (24 × 14.5-min scans) with a fast-TR (800 ms) SE 

sequence. Direct comparison of the FC reliability map derived from fast-TR SE + ICA-

AROMA data to those shown in Figure 3A indicated better FC reliability brain-wide in OC-

ME data when ME-ICA was used (Figures 4A and 4B). The fast-TR SE + ICA-AROMA 

time × reliability curve (dashed purple line in Figure 4C) resembled those in the MC and 

CAST datasets (see Figure 3B), indicating that faster sampling rates may be beneficial.

We conducted a follow-up analysis to further understand the biophysical signal mechanisms 

underlying better FC reliability in OC-ME data. Specifically, we attempted to separate the 

effect of recovering short and long T2* signals and the incidental dampening of thermal 

noise by shuffling the “optimal” weights assigned to each voxel. The rationale behind this 

analysis is that combining echoes in any manner can suppress thermal noise because it has 

no temporal or spatial structure (Liu, 2016; Power, 2017), but recovering short or long T2* 

signals requires appropriate weighting of early and late echoes in particular. Surprisingly, the 

reliability maps derived from OC-ME and “non-OC” data were nearly identical, with the 

exception of vertices with a very short T2* (<20 ms), which exhibited better reliability in 

OC-ME data than would be expected by chance after 1,000 random rotations of the T2* map 
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on a spherical expansion of each subject’s cortical surface (all p values = 0.001, all Z scores 

> 6.53). This finding indicates that combining echoes according to the T2* at each voxel 

improves the reliability of FC primarily via the incidental dampening of thermal noise (a 

brain-wide effect), but also by enhancing BOLD sensitivity in brain regions with a very short 

T2* (another region-specific effect).

More Reliable Mapping of Individual-Specific Functional Topology in ME Data

The analyses performed to this point in our report have focused on the reliability of 

correlations in BOLD fMRI signals, which are the basis for most rsfMRI studies. However, 

there is increasing interest in higher-level descriptions of an individual’s functional brain 

organization, including the topology (size, shape, and spatial arrangement) of functional 

areas and brain networks, the latter of which is typically calculated using only the strongest 

of these correlations (Gordon et al., 2016, 2017c; Laumann et al., 2015; Power et al., 2011). 

Thus, we next tested whether ME fMRI could be used to obtain more reliable individual-

specific network parcellations. We identified networks brain-wide in each individual using a 

widely used community detection algorithm, termed InfoMap (Rosvall and Bergstrom, 

2008), and the precision mapping procedures developed collectively by Gordon et al., 

(2017c), Greene et al. (2020), and Marek et al. (2018). To aid in the interpretation of the 

maps produced by this routine, Figure 5A shows the networks identified in ME01 when 

using all 6 h of OC-ME + ME-ICA scans (concatenated). A seed (the gray sphere 

highlighted by a black arrow) placed in a fronto-parietal network patch highlights how seed 

FC is strongest within network. Brain networks were mapped in this manner in each of the 

18 densely sampled individuals (the 4 individuals scanned using ME sequences + 14 

individuals from independent SE datasets) using data from single scans and all other 

available scans concatenated (the latter of which serves as a kind of ground truth). 

Reliability was quantified using the adjusted Rand coefficient, which represents the fraction 

of points in the brain identified as belonging to the same network in single-scan and ground 

truth data (with values approaching 1 indicating better agreement after adjusting for chance).

There was a significant main effect of the OC-ME and ME-ICA procedures (Figure 5B; 

F(2,187) = 161.65, p < 0.001), such that networks defined using OC-ME + ME-ICA data 

(red dots in Figure 5B) were more reliable than those defined in OC-ME (green dots in 

Figure 5B; t(142) = 5.42, p < 0.001, Cohen’s d = 0.82) and TE2 (purple dots in Figure 5B; 

t(142) = 15.4, p < 0.001, Cohen’s d = 1.57) data denoised using ICA-AROMA. Next, we 

compared the OC-ME and fast-TR SE data acquired from ME01 (the only participant 

scanned using both ME and fast-TR SE sequences). OC-ME + ME-ICA data yielded 

network maps that were more reliable than those defined using the SE acquisition with a 

faster sampling rate (Figure 5C; t(46) = 6.44, p < 0.001, Cohen’s d = 1.36). Independent SE 

datasets are shown for comparison in Figure 5D. Brain network topologies defined using 

OC-ME + ME-ICA data were significantly more reliable than those in the MSC (Figure 5C; 

t(170) = 9.21, p < 0.001, Cohen’s d = 1.16) and CAST (Figure 5C; t(170) = 3.35, p = 0.001, 

Cohen’s d = 0.65) participants, despite the 2-times difference in scan length. An example of 

functional brain networks defined using data from a single 14.5 OC-ME + ME-ICA scan and 

data from all other scans (5.75 h worth of scanning) is shown in Figure 5E. A seed (the gray 

sphere highlighted by a black arrow) placed in the posterior cingulate reveals that the FC 
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(calculated using data from the single scan) of the seed is strongest within borders of the 

default mode network (borders defined using the large amount of independent data). Similar 

visualizations were created using a variety of cortical and subcortical seeds from subsets (5 

to 14.5 min; in 5-min steps) of data from three randomly selected OC-ME, fast-TR SE, and 

TE2 scans (see Figures S5–S9). Collectively, these findings indicate that more reliable 

descriptions of individual-specific functional brain networks can be obtained from relatively 

small quantities of OC-ME data when signal-decay denoising is used.

DISCUSSION

In this report, we found enhanced reliability of FC and functional brain network topology in 

four densely sampled individuals after echoes were combined (OC-ME) and non-

neurobiological artifacts were removed using a signal-decay-based denoising approach (ME-

ICA). FC reliability increased rapidly with scan duration, such that less OC-ME data was 

necessary to achieve the same level of reliability in three independent SE datasets (n = 14) or 

in fast-TR SE data collected from the same individual (see time × reliability curves in 

Figures 3B and 4C). Several clinically important brain regions that exhibited relatively low 

FC reliability in SE data were more reliable in OC-ME data, especially when ME-ICA was 

used. The increased reliability of FC in OC-ME data was associated with more reliable 

descriptions of individual-specific functional brain networks (see Figure 5). Collectively, 

these findings indicate that ME fMRI is well suited for rapid precision mapping of 

functional networks at the individual level and for tracking changes within individuals over 

time. These enhancements, in turn, could help facilitate clinical neuroimaging research, 

particularly longitudinal studies of episodic forms of psychiatric illness, and for elucidating 

the neurobiological basis of individual differences in cognition and behavior.

The benefits of ME sequences have been studied for over two decades (Posse, 2012), 

beginning with seminal work by Posse et al. (1999) showing that combining echoes 

according to the T2* at each voxel increases BOLD sensitivity. For the most part, however, 

ME fMRI is not widely used—fewer than 1% of the more than 12,000 rsfMRI studies 

published in the last 10 years used a ME sequence. There are likely multiple reasons for this. 

For example, there may be the perception that the benefits of ME fMRI are relatively modest 

or that it is more important to optimize spatiotemporal resolution (i.e., smaller voxels and 

faster sampling rates). ME fMRI has historically entailed a compromise in either full-brain 

coverage or spatiotemporal resolution, but recent technological advances (high-density head 

coils, parallel imaging [Schmiedeskamp et al., 2010], and multi-band acceleration [Xu et al., 

2013]) have made this trade-off less significant. Recent studies have leveraged these 

advances and found that how fMRI signals decay across echoes can be used to infer if they 

originate from neurobiological activity or not (Kundu et al., 2012, 2017), an approach that 

has been used to remove head-motion-related artifacts in rsfMRI scans (Power et al., 2018) 

and enhance statistical power by as much as 149% in task-based fMRI experiments 

(Lombardo et al., 2016). By comparing FC reliability maps derived from three versions of 

our ME fMRI datasets with key preprocessing and denoising procedures omitted or included 

(see Figure 3), our investigation found that ME fMRI can also be used to enhance FC 

reliability. It links this effect to three biophysical signal mechanisms with spatially distinct 

influences: BOLD signal sensitivity, which can be broken down further into thermal noise (a 
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brain-wide effect) and regional differences in the rate of T2* decay (a region-specific effect); 

and S0-dependent artifacts (another region-specific effect). The extent to which ME-ICA 

improves FC reliability more than other denoising strategies that do not leverage signal-

decay information may depend in part on how contaminated the data are by S0-dependent 

artifacts.

The significance of our investigation is 2-fold. First, our data indicate that ME fMRI could 

be used to obtain more stable individual-specific FC-based measurements with less data, 

which has implications for studies of individual differences in functional brain organization 

in both health and disease (Braga and Buckner, 2017; Braga et al., 2019; Finn et al., 2015; 

Gordon et al., 2017a, 2017b, 2017c; Kong et al., 2019; Laumann et al., 2015; Marek et al., 

2018; Seitzman et al., 2019). Second, ME fMRI could be especially useful in clinical 

contexts, where the amount of per-subject data needed to obtain accurate assessments of FC 

and functional brain network topology is a significant bottleneck (O’Connor and Zeffiro, 

2019). Importantly, some brain regions (e.g., lateral prefrontal, posterior parietal, and a 

subset of midline cortical areas) yielded generally reliable FC measurements (reliability 

values ranging from 0.5 to 0.8). However, other regions, including those implicated in 

neurologic and psychiatric illness (subgenual cingulate [Fox et al., 2012; Mayberg et al., 

2005; Pizzagalli, 2014)] and cerebellum [Shakiba, 2014]) exhibited relatively low reliability 

in both our SE datasets and in three independent datasets (Figure 1). This was due in part to 

the fact that these brain regions are susceptible to rapid signal dropout and certain kinds of 

S0-dependent artifacts.

The improved test-retest reliability afforded by ME fMRI is not only statistically significant, 

but also scientifically useful. Low test-retest reliability of FC at the individual level is a 

fundamental obstacle to numerous within-subject study designs, especially in clinical 

neuroimaging. Consider, for example, that if an investigator wanted to understand the effect 

of an intervention on FC in individual patients, it is desirable to minimize artifactual 

variation in FC within subject over time (which can be driven by various kinds of S0-

dependent artifacts, such as head movement levels or instabilities of MRI hardware, and 

removed by ME denoising), so that neurobiologically meaningful changes in FC associated 

with the intervention can be modeled. In other words, the enhanced reliability afforded by 

ME fMRI is a reduction in measurement error, which in turn should improve the power to 

detect brain-behavior effects in both within-subject and cross-sectional studies. ME fMRI 

could, therefore, help facilitate therapeutic intervention studies, biomarker discovery efforts, 

and longitudinal studies of functional network plasticity at the individual level.

Several aspects of this investigation warrant careful consideration. First, our conclusions are 

based on data acquired from four densely sampled individuals. Performing analyses 

separately in each individual enabled a 4-fold replication of all our major findings. However, 

smaller samples can have limited generality. Mitigating this concern to some degree, we 

found that the reliability maps and time × reliability curves derived from the second echo in 

all four ME subjects were comparable to those from 14 individuals from three independent 

SE datasets. It is also worth noting that head motion was relatively low for some of our study 

participants (see Figure S4), suggesting that they represent a best-case scenario with respect 

to their ability to remain still and awake during scanning. Second, there is no empirically 
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tested best set of parameters for a ME fMRI scan, and systematically testing different 

combinations of parameters was outside of the scope of the present study. ME denoising 

itself is an active area of research and development (Caballero-Gaudes et al., 2019; Kundu et 

al., 2012), and the algorithms used here will likely be improved upon in the near future by 

other investigators. Third, we are not advocating for ME fMRI scans as a panacea for the 

challenges inherent to obtaining accurate descriptions of an individual’s functional brain 

organization. If time and funds permit, collecting more data will improve the reliability of 

FC measurements, regardless of the sequence or denoising strategy employed. However, an 

important caveat is that subjects are prone to drowsiness during long rsfMRI scans 

(Tagliazucchi and Laufs, 2014), and fluctuations in arousal or sleep state can reduce the 

stability of BOLD fMRI correlations (Laumann et al., 2017; Wang et al., 2017), which 

further underscores the attractiveness of obtaining reliable measurements from shorter scans, 

if possible.

Finally, it is plain that the rate FC estimates become reliable differs across the 14 individuals 

in the three independent SE datasets (see transparent purple lines representing individual 

participants in Figure 3B) and in our 4-participant ME dataset. What factors, other than 

baseline levels of head motion and other S0-dependent artifacts, could account for this 

variability? Our central hypothesis is that other factors including but not limited to certain 

kinds of breathing patterns (Lynch et al., 2020) (the effects of which cannot be removed 

using ME-ICA alone; see Figure S1), participant drowsiness (Laumann et al., 2017), and 

brain volume (which should affect signal-to-noise by virtue of the physical distance between 

the brain and the receive coil) all contribute to individual differences in FC reliability. A 

larger sample of densely sampled individuals is necessary to fully address this issue.

Obtaining reliable FC-based measurements of individuals has, to date, required collecting 

large quantities of per-subject data (D’Esposito, 2019; Poldrack, 2017; Satterthwaite et al., 

2018), which may not always be feasible for the clinical applications that have been 

proposed for rsfMRI, including pre-operative mapping (Mitchell et al., 2013), gathering 

diagnostic and prognostic information (Drysdale et al., 2017; Dunlop et al., 2017; Fox et al., 

2012), and mapping personalized targets for neuromodulation (McMullen, 2018; Medaglia 

et al., 2020; Weigand et al., 2018). Here, we demonstrate that ME fMRI enables more rapid 

and reliable FC-based measurements in individual subjects by increasing BOLD sensitivity 

and discarding fMRI signals that do not originate from neurobiological activity. By enabling 

more reliable measurements from shorter scan times, ME fMRI data may be especially 

useful for precision functional mapping of individual brains in clinical populations.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Charles J. Lynch (cjl2007@med.cornell.edu).

Materials availability—This study did not generate new unique reagents.
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Data and code availability—There are restrictions to the availability of neuroimaging 

data because the study participants did not consent to data sharing. Code for preprocessing 

multi-echo fMRI data is maintained in an online repository (https://github.com/cjl2007/

Liston-Laboratory-MultiEchofMRI-Pipeline).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants and study design—The study sample consisted of four healthy adult 

participants. The first two participants (“ME01”; 29 year old male, “ME02”; 38 year old 

male) in this investigation underwent 24 × 14.5 min multi-echo fMRI scans. Both underwent 

additional scanning using a separate fast-TR single-echo sequence (SE01: 24 × 14.5 min 

scans, SE02: 2 × 14.5 min scans). Two other participants (“ME03”; 24 year old male and 

“ME04”; 31 year old male) underwent 12 × 14.5 min multi-echo fMRI scans. Participants 

ME01, ME02, and ME04 were study authors C.J.L, J.D.P, and M.A.S., respectively.

Three independent single-echo datasets were included in this investigation. Each of these 

datasets were analyzed “as is” (no additional preprocessing or denoising was performed). A 

brief summary of the sequence parameters used to collect each dataset is provided in the 

Supplementary Information (Table S1).

1. The Midnight Scan Club dataset (Gordon et al., 2017c) was obtained from 

OpenNeuro.org (https://openneuro.org/datasets/ds000224/versions/1.0.1). This 

dataset includes 5 h of (preprocessed, denoised, and surface registered) single-

echo resting-state fMRI data (10 × 30 min scans acquired over two months) 

collected from ten participants aged 24–34 years (mean age = 29.1 ± 3.3 years, 

5F/5M).

2. The Cast-induced Plasticity dataset (Newbold et al., 2020) was obtained from 

OpenfMRI.org (https://openneuro.org/datasets/ds002766/versions/3.0.0). The 

portion of this dataset used here included 5 to 7 h of (preprocessed, denoised, 

and surface registered) single-echo resting-state fMRI data (10 to 14 × 30 min 

scans acquired over consecutive days prior to the casting of their dominant upper 

extremity) collected from three healthy participants (mean age = 29 ± 5.29 years, 

1F/2M). Two of these participants also participated in the Midnight Scan Club 

experiment (CAST01 is MSC02 and CAST02 is MSC06).

3. The MyConnectome dataset was obtained from the project’s website (http://

myconnectome.org/wp/data-sharing/). This dataset included 14 h of 

(preprocessed, denoised, and surface registered) single-echo resting-state fMRI 

data (84 × 10 min scans acquired over 18 months) collected from a 45 year-old 

male participant.

METHOD DETAILS

MRI image acquisition—Data were acquired on a Siemens Magnetom Prisma 3T scanner 

at the Citigroup Biomedical Imaging Center of Weill Cornell’s medical campus using a 

Siemens 32-channel head coil. Multi-echo, multi-band resting-state fMRI scans were 

collected using a T2*-weighted echo-planar sequence covering the full brain (TR: 1355 ms; 

TE1: 13.40 ms, TE2: 31.11 ms, TE3: 48.82 ms, TE4: 66.53 ms, and TE5: 84.24 ms; FOV: 
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216 mm; flip angle: 68°; 2.4mm isotropic; 72 slices; AP phase encoding direction; in-plane 

acceleration factor: 2; and multi-band acceleration factor: 6) with 640 volumes acquired per 

scan for a total acquisition time of 14 min and 27 s. This sequence was generously provided 

by the Center for Magnetic Resonance Research (CMRR) at the University of Minnesota. 

Single-echo, multi-band resting-state fMRI scans (referred to in the text as the “fast-TR” 

single-echo sequence) were collected from participants ME01 and ME02 using T2*-

weighted echo-planar sequences covering the full brain (TR: 800 ms; TE: 30 ms; FOV: 216 

mm; flip angle: 49°; 2.4mm isotropic; 72 slices; AP phase encoding direction; and multi-

band acceleration factor: 6) with 1084 volumes acquired per scan for a total acquisition time 

of 14 min and 27 s. A pair of spin echo EPI images with opposite phase encoding directions 

(AP and PA) but identical geometrical parameters and echo spacing were acquired to correct 

spatial distortions. High-resolution (MPRAGE) T1-weighted image (TR: 2400 ms; TE: 2.28 

ms; FOV: 256; flip angle: 90°, and 208 sagittal slices with a 0.8 mm thickness) and T2-

weighted anatomical images (TR: 3200 ms; TE: 563 ms; FOV: 256; flip angle: 8°, and 208 

sagittal slices with a 0.8 mm thickness) were acquired. Custom headcases were obtained 

from Caseforge (https://caseforge.co) for each subject to improve comfort and minimize 

head motion during scanning (Power et al., 2019b).

Cortical surface generation—The average T1- and T2-weighted images were cropped 

to a smaller field of view (170mm in z plane), co-registered using FSL’s epi_reg tool (via a 

boundary-based cost function with 6 DOF), and corrected for intensity inhomogeneities 

(Glasser and Van Essen, 2011). The T1- and T2-weighted images were co-registered to an 

MNI atlas (hereafter referred to as “ACPC” alignment) using a rigid 6 DOF FLIRT 

transformation. Cortical surfaces were generated using Freesurfer’s “recon-all.v6.hires” 

pipeline. Pial surface placement was refined using the co-registered T2-weighted image by 

specifying the “-T2pial” option. Midthickness surfaces were obtained by averaging the pial 

and white surfaces. Fsaverage-registered left and right hemisphere surfaces (pial, white, and 

midthickness) were brought into register with each other in fs_LR space (Van Essen et al., 

2012) and resampled to the computationally tractable resolution of 32k vertices using 

Connectome Workbench command line utilities.

Multi-echo fMRI preprocessing—Preprocessing of multi-echo data minimized spatial 

interpolation and volumetric smoothing while preserving the alignment of echoes. The 

single-band reference (SBR) images (five total; one per echo) for each scan were averaged. 

The resultant average SBR images were aligned, averaged, co-registered to the ACPC 

aligned T1-weighted anatomical image, and simultaneously corrected for spatial distortions 

using FSL’s topup and epi_reg programs. Freesurfer’s bbregister algorithm (Greve and 

Fischl, 2009) was used to refine this co-registration. For each scan, echoes were combined at 

each time point and a unique 6 DOF registration (one per volume) to the average SBR image 

was estimated using FSL’s MCFLIRT tool (Jenkinson et al., 2002), using a 4-stage (sinc) 

optimization. All of these steps (co-registration to the average SBR image, ACPC alignment, 

and correcting for spatial distortions) were concatenated using FSL’s convertwarp tool and 

applied as a single spline warp to individual volumes of each echo after correcting for slice 

time differences using FSL’s slicetimer program. All denoising was performed on these 

preprocessed, ACPC-aligned images.
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Multi-echo fMRI denoising—Multi-echo ICA (ME-ICA; Dupre et al., 2020; Kundu et 

al., 2012, 2013) denoising designed to isolate spatially structured T2*- (neurobiological; 

“BOLD-like”) and S0-dependent (non-neurobiological; “not BOLD-like”) signals was 

performed using a modified version of the “tedana.py” workflow (https://

tedana.readthedocs.io/en/latest/). In short, the preprocessed, ACPC-aligned echoes were first 

combined according to the average rate of T2* decay at each voxel across all time points by 

fitting the monoexponential decay, S(t) = S0e−t / T2*, using the “nlinfit.m” function in 

MATLAB with least-squares optimization and the initial coefficient values obtained from a 

linear model fit to the log of the data. From these T2* values, an optimally combined multi-

echo (OC-ME) time-series was obtained by combining echoes using a weighted average 

(WTE = TE * e −TE/ T2*), as in Posse et al. (1999). The covariance structure of all voxel 

time-courses was used to identify major signals in the resultant OC-ME time-series using 

principal component and independent component analysis. Components were classified as 

either T2*-dependent (and retained) or S0-dependent (and discarded), primarily according to 

their decay properties across echoes following the decision tree described in Kundu et al. 

(2012). We found that a global influence of respiration (a T2*-dependent signal that is not of 

interest per se; see Figure S1) was retained after removing S0-dependent components. Mean 

gray matter time-series regression was subsequently performed to remove this spatially 

diffuse noise. Two other denoising strategies were performed. Specifically, the OC-ME and 

TE2 time-series were also submitted to ICA-AROMA (Pruim et al., 2015), a top performing 

algorithm for denoising single-echo fMRI data (Ciric et al., 2017), followed by mean gray 

matter time-series regression. Finally, temporal masks were generated for censoring high 

motion time-points using a frame-wise displacement (FD; Power et al., 2012) threshold of 

0.3 mm and a backward difference of two TRs (2 * 1.355 = 2.77 s), for an effective sampling 

rate comparable to historical FD measurements (approximately 2 to 4 s; Power et al., 

2019a). Prior to the FD calculation, head realignment parameters were filtered using a 

stopband Butterworth filter (0.2 – 0.35 Hz) to attenuate the influence of respiration (Power 

et al., 2019a). Concatenated filtered FD traces for each subject can be viewed in the 

Supplemental Information (Figure S4).

Surface processing and CIFTI generation of fMRI data—The denoised fMRI time-

series was mapped to the midthickness surfaces (using the “-ribbon-constrained” method), 

combined into the Connectivity Informatics Technology Initiative (CIFTI) format, and 

spatially smoothed with geodesic (for surface data) and Euclidean (for volumetric data) 

Gaussian kernels (σ = 2.55 mm) using Connectome Workbench command line utilities 

(Glasser et al., 2013). Signals were normalized (z-scored). This yielded time courses 

representative of the entire cortical surface, subcortex (accumbens, amygdala, caudate, 

hippocampus, pallidum, putamen, and thalamus), and cerebellum, but excluding non-gray 

matter tissue.

Functional connectivity reliability maps—Functional connectivity (FC) reliability 

maps were created using the following procedure. For each scan, FC maps were created 

using each point in the brain as a seed. This involved calculating the correlation between 

seed time-courses and the time-courses of all cortical vertices. FC maps were calculated 

using quantities of data corresponding to a range of scan durations (duration calculated 
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before motion censoring), from 1 min to the full duration of individual scans in each dataset, 

in 1 min steps. Next, the same FC maps were created using all other scans (concatenated) 

available for that subject. This second set of FC maps served as a putative ground truth. 

Reliability was calculated at each seed point as the average spatial correlation (R2) between 

individual scan and ground truth FC maps. Thus, high and low reliability values indicate that 

the FC of a given vertex or voxel calculated using the specified amount of data from a single 

scan was similar or dissimilar to FC of that same vertex or voxel when calculated using a 

large amount of independent data. Correlations between pairs of vertices less than 10 mm 

apart in geodesic space were omitted from this calculation to avoid considering correlations 

due to spatial smoothing. Time × reliability curves were obtained by averaging reliability 

values within different anatomical compartments (cortex, subcortical structures, cerebellum) 

at each scan duration. Points in the time × reliability curves associated with single-echo and 

multi-echo datasets were compared statistically using the “ttest.m” function in MATLAB 

(null hypothesis being that the distribution of reliability values observed in independent 

single-echo data has a mean equivalent to the average value observed in multi-echo data). 

We note that this analysis differs from previous investigations of FC reliability in densely 

sampled individuals (Gordon et al., 2017c; Laumann et al., 2015) in two ways. First, the 

reliability values here are reported as R2 and not Pearson correlation r. Second, we evaluated 

the reliability of vertex-to-vertex (and voxel-to-vertex) FC, not parcel-to-parcel FC.

Vertex-wise mapping of functional brain networks—Functional brain networks 

were mapped brain-wide in individual subjects by following procedures developed 

collectively in Gordon et al. (2017c), Greene et al. (2020), and Marek et al. (2018). In short, 

a 59412 × 59412 functional connectivity matrix summarizing the temporal correlation 

between the time-courses of all cortical vertices was generated. Correlations between 

vertices with centroids less than 30 mm apart in geodesic space were set to zero. Community 

assignments were obtained over a range of graph densities (5% to 0.001%) using the 

InfoMap algorithm (Rosvall and Bergstrom, 2008). A template-matching procedure 

described in Gordon et al. (2017c) was used to assign 1 of 15 known brain network identities 

to the InfoMap communities identified at each graph density. Subcortical and cerebellar 

voxels were then assigned to a consensus brain network in cortex using the winner-take-all 

procedure described in Greene et al. (2020) and Marek et al. (2018). We identified 

“integrative” vertices and voxels (those exhibiting strong FC more than one network) brain-

wide by testing if functional connectivity any other network was greater than 66.7% of the 

correlation with the consensus network assignment. Integrative regions were visualized on 

the surface and in the volume using stripes (with stripe colors representing the networks 

present at that point).

Assessing the reliability of functional brain networks—Functional brain networks 

were mapped in the manner described above using data from individual scans and 

concatenated data from all other scans available for each subject (the latter serving as a 

ground truth). Reliability was defined using the adjusted Rand index (calculated using the 

“zrand.m” function from the Network Community Toolbox; http://commdetect.weebly.com), 

which represents the fraction of points in the brain identified as belonging to the same 

network in single scan data and ground truth data after adjusting for chance. The effect of 
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the OC-ME and ME-ICA procedures on the reliability of consensus brain network 

assignments within individuals was assessed using a mixed effects ANOVA model (via the 

“anovan.m” function in MATLAB), with data type treated as a fixed effect and subject 

identity treated as a random effect. Comparisons to the three independent single-echo 

datasets were performed using an independent sample t test (using the “ttest2.m” function in 

MATLAB). The reliability of functional brain networks derived from fast-TR single-echo 

and multi-echo data collected from participant ME01 was performed using a paired t test 

(using the “ttest.m” function in MATLAB).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multi-echo fMRI improves the reliability of functional connectivity in 

individuals

• Benefits of multi-echo fMRI are pronounced in clinically important brain 

regions

• Enhanced reliability is due to better BOLD signal sensitivity and artifact 

removal
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Figure 1. Obtaining Reliable Resting-State Functional Connectivity (FC) Estimates Can Require 
Large Quantities of Single-Echo (SE) fMRI Data Per Subject
The reliability of resting-state FC was evaluated brain-wide in three independent SE rsfMRI 

datasets:

(A) The Midnight Scan Club (MSC) dataset (Gordon et al., 2017c), which consists of 10 

individuals that underwent 10 × 30-min scans (three representative subjects are shown: 

MSC01, MSC04, and MSC06).

(B) The CAST dataset (Newbold et al., 2020), which consists of three individuals that 

underwent 10–14 × 30-min scans (one representative subject shown: CAST01),

(C) The MC dataset (Poldrack et al., 2015), which consists of a single individual that 

underwent 84 × 10-min scans.
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(D) FC reliability maps index (using spatial correlation) how similar the FC of each point in 

the brain is when calculated using the specified amount of data from a single scan versus a 

large amount of independent data (all other scans available for that participant 

concatenated). Values approaching 1 indicate better reliability. The average reliability value 

within FreeSurfer defined cortical and subcortical regions of interest at each scan duration 

(the median value across the 14 subjects) is shown. Brain regions are ordered (in descending 

fashion) from most reliable to least reliable. m, minute.
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Figure 2. A Key Benefit of Multi-echo (ME) fMRI Is Improved BOLD Contrast and Reduced 
Signal Dropout after Echoes Are Combined
(A) A ME fMRI sequence acquires multiple images at different echo times (TE) spanning 

dozens of milliseconds.

(B) Signals decay more rapidly in brain regions with a short T2* value, such as the 

subgenual anterior cingulate cortex (sgACC; purple). Echoes are combined such that those 

near the estimated T2* at each voxel are weighted most heavily, yielding an “optimally 

combined” ME (OC-ME) time series with improved BOLD contrast, less signal dropout, 

and dampened thermal noise.

(C) WTE represents the optimal weight for each echo. T2* values are calculated at each point 

in the brains of ME01 and ME02. Differences in the FC of seed regions with different T2* 
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values help to convey the region-specific effect of the OC-ME procedure. FC maps were 

created using OC-ME and two different kinds of SE data (the second echo of the ME scan 

and a separate fast-TR SE sequence with a faster sampling rate) that were collected from 

both ME01 and ME02. PFC, prefrontal cortex; TE2, second echo of the ME scan.
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Figure 3. The Optimal Combination and ME Denoising Procedures Improve the Reliability of 
Resting-State FC Measurements in Two Densely Sampled Individuals
The reliability of FC estimates in ME01 and ME02 after repeated imaging using a ME fMRI 

sequence (6 h total; 24 × 14.5-min scans acquired over a 9-month period).

(A) Reliability maps were calculated using three different denoising strategies, leveraging 

both (OC-ME + ME-ICA), one (OC-ME + ICA-AROMA), or no (TE2 + ICA-AROMA) 

benefits of ME fMRI.

(B) Time × reliability curves show the average reliability obtained in gray matter, subcortical 

structures, and the cerebellum given different scan durations. Curves from the independent 

SE MC and MSC datasets are provided as comparators. Transparent curves represent 

individual subjects. Solid lines represent the median curve within datasets. Note that the 
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purple lines representing the different independent SE datasets can be distinguished by their 

unique dash spacing patterns. m, minute.
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Figure 4. The Level of Reliability Obtained Using a ME Sequence Is Greater Than a SE 
Sequence with a Fast Sampling Rate
FC reliability maps derived from ME and fast-TR (800 ms) SE data acquired from the same 

individual (sub-ME01).

(A) Insets highlight regions of cortex where differences between the two sets of reliability 

maps were most pronounced.

(B) Reliability values in the cerebellum and in subcortex.

(C) Time × reliability curves show the average reliability value (calculated separately in 

cortex, subcortical structures, and cerebellum) given different amounts and kinds of data 

acquired from sub-ME01.
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Figure 5. Functional Brain Network Topology Is More Reliable in Individuals Scanned Using a 
ME Sequence
(A) Functional brain networks identified brain-wide in ME01 using a precision mapping 

routine and all 6 h of OC-ME + ME-ICA data. A seed (gray sphere) placed in a patch of 

fronto-parietal control network (yellow) in the left lateral PFC of ME01 highlights how FC 

is largely constrained within-network. The effect of the OC-ME and ME-ICA procedures on 

the reliability of individual-specific functional brain network topology was evaluated using a 

mixed-effects ANOVA model. The OC-ME procedure and ME-ICA denoising algorithm 

additively enhanced the reliability (indexed using the adjusted Rand coefficient comparing 

the similarity of network partitions defined using single-scan data and all other scans 

concatenated) of functional topology in the four densely sampled individuals.
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(B and C) Comparison of adjusted Rand coefficients from OC-ME + ME-ICA data to those 

derived from fast-TR SE data (B) collected from the same study participant (ME01) and the 

three independent SE datasets (C).

(D) Functional brain networks mapped using data from a single OC-ME + ME-ICA scan 

and all other OC-ME + ME-ICA scans (concatenated; 5.75 h total) for sub-ME01. The 

resting-state FC (calculated using the single-scan data) of a seed (gray sphere; highlighted 

using an arrow) placed in a default mode network patch is constrained within the borders of 

this network defined using held-out data, indicating high reliability.

p denotes p value.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/

Connectome Workbench Marcus et al., 2011 https://www.humanconnectome.org/software/connectome-workbench

Tedana Dupre et al., 2020 https://tedana.readthedocs.io/en/latest/

FreeSurfer Fischl, 2012 https://surfer.nmr.mgh.harvard.edu/

Infomap Rosvall and Bergstrom, 2008 https://www.mapequation.org/
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