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In recent years, biology-inspired superhydrophobic technology has attracted extensive
attention and has been widely used in self-cleaning, anti-icing, oil–water separation, and
other fields. However, the poor durability restricts its application in practice; thus, it is
urgent to systematically summarize it so that scientists can guide the future development of
this field. Here, in this review, we first elucidated five kinds of typical superhydrophobic
models, namely, Young’s equation, Wenzel, Cassie–Baxter, Wenzel–Cassie, “Lotus,” and
“Gecko” models. Then, we summarized the improvement in mechanical stability and
chemical stability of superhydrophobic surface. Later, the durability test methods such as
mechanical test methods and chemical test methods are discussed. Afterwards, we
displayed the applications of multifunctional mechanical–chemical superhydrophobic
materials, namely, anti-fogging, self-cleaning, oil–water separation, antibacterial,
membrane distillation, battery, and anti-icing. Finally, the outlook and challenge of
mechanical–chemical superhydrophobic materials are highlighted.
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INTRODUCTION

Nature has incubated many sophisticated superhydrophobic creatures during long-term evolution and
natural selection (Sanchez et al., 2005; Liu et al., 2010).Water droplets are spherical on the lotus leaf surface
and can roll away the pollution form the surface, which is caused by the chemical composition and special
structure of the surface of the lotus leaf. The waterproof composition and microscopic rough structure on
the surface of the lotus leaf cause the superhydrophobic phenomenon. This is known as the “Lotus Effect”
confirmed byW. Barthlott and C. Neihuis. In addition, many fascinating superhydrophobic phenomena in
nature have been uncovered, such as low-adhesion water striders, water-collecting beetles, high-adhesion
rose petals, and gecko feet. Inspired by these natural superhydrophobic phenomena, lots of
superhydrophobic materials have been developed and used in many fields, self-cleaning (Wang et al.,
2022; Jung and Bhushan, 2009; Lou et al., 2020), anti-icing (Lv et al., 2014; Boinovich and Emelyanenko,
2013; Rico et al., 2020; Xie et al., 2022; Zhang et al., 2021a; Yang et al., 2022; Chen et al., 2021; Liu et al.,
2019a), anti-fogging (Yoon et al., 2020a; Feng et al., 2021; Sun et al., 2014; Wen et al., 2014), antibacterial
(Wu et al., 2016;Wang et al., 2020a;Ma et al., 2020; Ye et al., 2021), fluid drag reduction (Li et al., 2019a; Hu
H. et al., 2017; Liu et al., 2019b), liquid separation (Lv et al., 2017; Gu et al., 2019a, b; Chen et al., 2016; Zhang
et al., 2022), membrane distillation (Liao et al., 2020; Guo et al., 2021; Ji et al., 2021), fog harvest (Zhu et al.,
2016a; Zhu and Guo, 2016a; Zhong et al., 2018), etc.
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The construction of superhydrophobic materials is based on
the combination of micro/nano structures and low surface energy
chemicals (Fu et al., 2019; Wang et al., 2020a). The micro/nano
structures are vulnerable to mechanical wear and chemical
corrosion in practical application (Verho et al., 2011; Milionis
et al., 2016; Tian et al., 2016). Once the superhydrophobic surface
is worn or impacted by external pressure, the structure collapses
and the chemical substances are worn off, causing the
hydrophobic properties to be partially or completely lost
immediately and cannot be recovered. In addition, the
superhydrophobic materials suffer from the degradation
induced by UV exposure and chemical reactions with solvents.
Therefore, the development of superhydrophobic materials with
excellent mechanical durability and chemical stability are highly
desired.

In this review, we illustrated the recent development of
multifunctional mechanical–chemical superhydrophobic
materials. At first, the theories about superhydrophobic
surfaces including Young’s equation, Wenzel model,
Cassie–Baxter model, Wenzel–Cassie model, “lotus” model,
“gecko” model are elucidated. Then, we summarized the
improvement in mechanical stability and chemical stability of
superhydrophobic surface. Later, the durability test methods such
as mechanical test methods (sandpaper abrasion, tape-peeling,
knife-scratch, finger wiping, Taber abrasion, impact test) and
chemical test methods (solution immersion, UV irradiation,
electrochemical) are discussed. Afterwards, the applications of
multifunctional mechanical–chemical superhydrophobic
materials are elaborated. Finally, conclusion and prospects of
multifunctional mechanical–chemical superhydrophobic
materials were discussed.

THEORY OF SUPERHYDROPHOBICITY

Wetting Definitions
If the interaction between liquid molecules and solid molecules is
stronger than that between liquidmolecules, the liquid will spread
on the solid surface, which is called wetting phenomenon.
Wettability is generally characterized by the contact angle of

liquid on the solid surface. (Figure 1A) (Tuteja et al., 2007; Xia
and Jiang, 2008; Bormashenko, 2019). When water contact angle
(WCA) is lower than 10°, the surface is superhydrophilic. And the
hydrophilicity is called at 10°–65°, hydrophobicity is denominated
at 65° <CA < 150°. Especially, when theWCA is greater than 150°,
the sample exhibits superhydrophobicity. Recently, through
Jiang’s theoretical research and experimental operation (Xia
and Jiang, 2008; Zhu et al., 2021a), it is proved that CA of 65
defines non-wetting and wetting.

Young’s Equation
In 1805, Thomas Young carried out force analysis on the three-
phase interface and proposed a force analysis model called
Young’s equation (Young, 1805), which was only applicable to
the contact angle value of water droplets with ideal smooth
surface when they reached equilibrium state on the surface.

γSV � γSL + γLVcosθ,

where θ is the static water contact angle; γSV, γSL, and γLV
represent surface tension of solid–vapor, solid–liquid, and
liquid–vapor, respectively.

Wenzel Model
Based on Young’s equation, Wenzel linked the roughness factor
of the surface with the water contact angle by calculating the
adhesion force balance in the surface wetting process (Wenzel
and Robert, 1936), and the linear relationship between Young’s
contact angle and apparent contact angle are acquired:

cos θw � rcosθ ,

where r is the roughness factor, which is determined by the ratio
of the actual surface area to the projected surface area, and θw and
θ represent the water CA in respective apparent and original
states.

According to theWenzel model (Figure 1B), r can be regarded
as the amplification factor in a mathematical relationship, which
will make the hydrophilic surface more hydrophilic; on the
contrary, for a hydrophobic surface, it will make the surface
more hydrophobic.

FIGURE 1 | (A) Wetting definitions. (B) Wenzel model. (C) Cassie–Baxter model. (D) Wenzel–Cassie model. (E) “Lotus” model. (F) “Gecko” model (Zhu et al.,
2020).
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Cassie–Baxter Model
Cassie–Baxter model (Cassie and Baxter, 1944) can be used to
analyze the wettability of porous hydrophobic fabric surface. On
the basis of Young’s equation, it is concluded that the apparent
contact angle is the sum of the contributions of each contact
phase (fabric and air (pore)):

cos θCB � fSLcosθ + fLV cos θ′ ,

where fSL and fLV, respectively, show the fraction between the
solid–liquid and liquid–vapor interface at the contacted area and
air (fSL+fLV = 1). θCB and θ′ are the apparent contact angle of
liquid droplets on rough surface and the contact angle of liquid on
ideal air surface (θ’ = 180°), respectively. The wetting state
described by Cassie is shown in Figure 1C. The droplet is
suspended on the convex surface, and the contact area
between the surface and the droplet is very small.

Wenzel–Cassie State
The research of Lafuma and Quéré (Lafuma and Quéré, 2003)
shows thatWenzel–Cassie model is an intermediate state between
Wenzel model and Cassie model (Figure 1D) where water
droplets are semi-filled on solid surface. The Cassie state will
transform to the Wenzel state under the stimulation of external
energy such as droplet impact, mechanical vibration, and droplet
evaporation.

“Lotus” Model
“Lotus” model (Gao and McCarthy, 2006) is a special Cassie
model, lotus leaf surface microscale mastoid and surface wax to
give it a repellent ability, These structures (Figure 1E) reduce the
contact area between solid surface and liquid, and water droplets
are in a semi-suspended state, so pollutants can be rolled away by
the falling water droplets, which gives a self-cleaning performance
on lotus leaf.

“Gecko” Model
The “gecko” model (Jin et al., 2005) comes from the classical
superhydrophobic nanotube structure, and has good adhesion
performance. It is similar to Wenzel model. One is in direct
contact with the external atmosphere, and the other is trapped in
the nanotube. Due to the change of air volume in the nanotubes,
the negative pressure in the nanotubes increases, resulting in high
CA, which makes the nanotubes have high adhesion to water
(Figure 1F).

IMPROVEMENT IN THE MECHANICAL
STABILITY

Self-Hardness
Cement (Song et al., 2017a), diamond (Yang et al., 2014; Wang
et al., 2017; Wang et al., 2020b), and alloys (Qiao et al., 2018; Wu
et al., 2018) have inherently high hardness and are thus ideal
materials to develop superhydrophobic surfaces with an
enhanced mechanical robustness. A superhydrophobic
concrete (Figure 2A) was prepared by combining metal mesh
covering and fluoroalkylsilane modification (Song et al., 2017a).

The obtained concrete can retain its superhydrophobic property
after a sandpaper wear test (a pressure of 1100 Pa, standard
sandpaper of 360#, and abrasion distance of 8 m). In addition,
the superhydrophobic concrete is able to endure the knife-scratch
and the hammer blow tests. This effectively demonstrates the
remarkable mechanical strength of as-prepared
superhydrophobic concrete. For its own hard materials, his
preparation method is simple and easy to obtain, but because
of the lack of materials, it is not suitable for large-scale
production.

Porous Materials
Sponges (Zhu et al., 2013; Cheng et al., 2019a; Dong et al., 2020),
textiles (Luo et al., 2021; Zhou et al., 2021), foamed nickel (Hu
et al., 2017; Eum et al., 2019; Wang et al., 2021), and other
materials (Hou Y. et al., 2015) with multiple layers and porous
(Figure 2B), due to their large specific surface area, even if part of
the material surface is rubbed off, the material still remains, so it
has abrasion resistance and is an excellent superhydrophobic
material. Superhydrophobic textiles (Luo et al., 2021) are
manufactured by decorating the textiles modified by
polydopamine (PDA) with MXene (Ti3C2Tx) and then coating
with polydimethylsiloxane (PDMS). The obtained
superhydrophobic breathable textiles still maintain
superhydrophobic properties in the sandpaper wear test
(moving 2 cm with traction under the weight of 50 g), which
demonstrates the robustness of the superhydrophobic textiles.
Porous material is one of the recent research hotspots, which has
the advantages of simple operation, low production cost, and
suitable for large-scale production, while at the same time, porous
materials have been widely used in separation, catalysis, and other
fields.

“Paint + Adhesive” Method
In order to reduce the dependence of superhydrophobic surface
on substrate and strengthen the interface bonding force, a
strategy of “Paint + adhesive” was developed to prepare
superhydrophobic surface. The surface superhydrophobic layer
is connected with the substrate by an intermediate layer, which
can not only anchor the micro-nano structure on the surface, but
also serve as a shielding layer to provide additional protection for
the substrate, thus obviously improving the mechanical
properties of superhydrophobic surface and preparing durable
superhydrophobic surfaces on various substrates. Lu et al. (Lu
et al., 2015) proposed a “paint + adhesive” strategy to build a
durable superhydrophobic surface for the first time. TiO2

nanoparticles modified by fluorosilane, was dispersed in
ethanol solution and sprayed on the adhesive-coated substrate.
The adhesive can firmly adhere the TiO2 nanoparticles
(superhydrophobic layer) to the substrates that the obtained
superhydrophobic surface shows a water CA of >160° even
after wiping with fingers, impacting with water droplets, and
40 cycles of sandpaper abrasion (standard glasspaper, grit no. 240,
and moved for 10 cm). Based on the above “paint + adhesive”
method, many organic/inorganic adhesives and
superhydrophobic materials are used to develop
superhydrophobic surfaces with good durability (Figure 2C)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9473273

Luo et al. Mechanical–Chemical Superhydrophobic Materials

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


(Zheng et al., 2021). The method can improve the binding force
between the substrate and the superhydrophobic material, and
can be produced on a large scale which has wide selectivity to the
substrate. However, the superhydrophobic layer is affected by
external mechanical friction or chemical corrosion, and its service
life is greatly reduced.

“Armor”
Armoring strategy is to use materials with excellent mechanical
properties to protect the surface micro-nano structures, which is
similar to the function of armor. At present, nano-scale armor
and microscale armor are mainly used. In 2020, Wang and
coworkers (Wang et al., 2020c) fabricated a robust
superhydrophobic surface via constructing surface texture at
two different length scales, including superhydrophobic
nanostructures and a microstructure frame (Figure 2D). The
microstructure frame is made up of an array of microscale
inverted-pyramidal cavities, which can house the
superhydrophobic nanostructure and act as a protective
“armor” to avoid the destruction of the superhydrophobic
nanostructure by abradants. The combination of
superhydrophobic nanostructures and the protective
microstructure frame ensures that the obtained
superhydrophobic surface could tolerate more than 1000
abrasion cycles and even under tape-peeling tests, Taber
abrasion tests, and scratch tests. The armor model provides a
new idea for the preparation of durable superhydrophobic
materials, but it is still in the exploratory stage because of its
complex preparation method.

IMPROVEMENT IN THE CHEMICAL
STABILITY

Improving the chemical stability of superhydrophobic surface is
also a research hotspot in recent years. At present, the common
preparation methods to improve the chemical stability of
superhydrophobic surface include chemical etching, spraying,
electrochemical deposition, sol-gel method and electrostatic

spinning. However, they have their own advantages and
disadvantages. (Table 1).

Chemical Etching
Chemical etching method refers to the preparation of
superhydrophobic surface by using the strong corrosiveness of
strong acid/alkali solution to construct a micro/nano composite
structure on the substrate, which is simple to operate and fast to
react. Xu et al. (Xu et al., 2020a) used nitric acid solutions with
different concentrations to etch the nickel mold, discussed the
importance of etching time and chemical solution concentration,
and then copied the surface pattern of the chemical etching
template to obtain a large-area micro/nano-structured
polydimethylsiloxane (PDMS) film with superhydrophobicity.
The film shows superhydrophobicity even under high-strength
friction, and also has excellent acid and alkali resistance (excellent
liquid repellency even after contacting with 1 M HCl, 1 M NaOH
and 1 M NaCl solutions for 96 h), ultraviolet resistance, and
optical transparency.

Spraying
The spraying method uniformly disperses and overlays the raw
materials of micro/nanoparticles on the surface of the base
material to mode a uniform coating with a certain structure,
which is not limited to the shape and size of the base material,
simple and convenient to operate, low in cost, and high in coating
efficiency. Yokoi et al. (Yokoi et al., 2015) deposited
perfluorodecyl trichlorosilane on the surface of alkali-treated
polyester, and then sprayed silica modified by fluorosilane on
the surface of modified polyester to acquire a transparent
superhydrophobic surface. The contact angle of the sample
remained above 150° after 100 wear cycles under the pressure
of 10 kPa, and the sample had strong repulsion to strong acid and
alkali (the contact angle and sliding angle of acidic and alkaline
aqueous solutions with pH values ranging from 2 to 14 were
measured. The contact angle of all solutions was over 150°, and
the sliding angle was less than 15°), which indicates that the
prepared superhydrophobic polyester mesh not only had high
mechanical strength, but also had good acid and alkali resistance.

FIGURE 2 | Mechanical superhydrophobic models: (A) Self-hardness: the surface of cement (Song et al., 2017a). (B) Porous materials: the surface of textile and
sponge (Shang et al., 2020; Ozkan et al., 2020). (C) “Paint + adhesive”method (Qing et al., 2019; Zhu et al., 2020). (D) Schematic diagram of a strategy to enhance the
mechanical robustness of superhydrophobic surfaces by containing hydrophobic nanostructures in protective microstructures “armor” (Wang et al., 2020c).
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Electrochemical Deposition
Electrochemical deposition (Lee et al., 2021) method refers to the
preparation technology of depositing one or more materials on
the workpiece surface of the anode, while the cathode undergoes a
reduction reaction. She et al. (She et al., 2014) performed
electroless nickel plating on the pre-treated AZ91D
magnesium alloy and then electrodeposited the nickel-cobalt
alloy coating, obtaining a superhydrophobic surface with a
contact angle of 167.3 ± 1.3° and a rolling angle of about 1°,
and the corrosion current density is three orders of magnitude
lower than that of the blank sample, the corrosion rate is about
0.06% of the blank sample, which shows it has better corrosion
resistance and pH stability.

Sol–Gel Method
Sol–gel method refers to the use of highly chemically active
compounds as precursors, hydrolysis, and condensation
reaction in the liquid phase to form a stable transparent sol
system, after polymerization, gel is formed, and then by drying,
sintering curing treatment to prepare micro and nano pore
structure, so as to give the surface of the material hydrophobic
properties. Su et al. (Su et al., 2017) prepared hydrophobic sol by
teosilicate ethyl ester and polydimethylsiloxane according to a
certain mass ratio. Polyester fabric absorbed sol by immersion
and reacted with acid to prepare superhydrophobic polyester
surface with good mechanical stability. The prepared
superhydrophobic textiles have excellent durability in
deionized water, various solvents (the CAs were almost
unchanged and still above 150° immersed in deionized water,
hexane, hexane and toluene hexane for 168 h), strong acid/alkali
solutions (the superhydrophobic textiles still had water repellency
after being immersed in HCl solution for 60 h or an aqueous
NaOH solution for 48 h) and boiling water/ice water.

Electrostatic Spinning
Electrospinning (Wan et al., 2022) is a kind of method in which
polymer solution forms a jet under the action of high-voltage
electrostatic force, and finally one-dimensional nanofibers are
prepared. The superhydrophobic surface can be obtained by
covering the surface of the substrate with nanofiber membrane
and then modifying it with low surface energy substances. It has
the advantages of low spinning cost, simple manufacturing
device, various kinds of spinnable substances, controllable
process, etc. Cui et al. (Cui et al., 2018) prepared
superhydrophobic anticorrosive coating on aluminum
substrate by electrospinning. Polyvinylidenefluoride (PVDF)/
stearic acid nanofibers are used to construct micron/
nanometer superhydrophobic structures to provide long-term
corrosion protection. After corrosion in 3.5% NaCl solution for
30 days, it still had excellent corrosion resistance.

DURABILITY TEST

Mechanical Durability Test
Inspired by lotus leaves, superhydrophobic surfaces have huge
potential applications. However, their practical application is

limited by poor durability. When exposed to harsh mechanical
or chemical conditions, they can easily lose their functions.
Scientists also try to adopt various methods to improve the
durability of materials, so we need to establish a test method
for superhydrophobic durability. At present, there are many
testing methods of superhydrophobic durability, which can be
summarized into two aspects: one is mechanical durability test,
such as sandpaper abrasion, tape-peeling, knife-scratch, finger
wipe, Taber abrasion, and impact test, the other is chemical
durability test, such as acid-base test, solution immersion, UV
irradiation, and electrochemical corrosion.

Sandpaper Abrasion Test
The sandpaper abrasion test is a commonmethod to test the wear
resistance of superhydrophobic surface at present. During the
sandpaper abrasion test (Figure 3A) (Zhu et al., 2018a; Wang
et al., 2018; Cheng et al., 2019b), a certain load is applied on the
superhydrophobic material, and the material is rubbed on the
sandpaper. The surface between the superhydrophobic material
and the sandpaper acts as a wear surface. Sandpaper abrasion test
is the most common evaluation method, which has good
practicability. However, at present, the test standards are not
uniform and the test error is relatively large. Li et al. (Li et al.,
2019b) studied the effects of superhydrophobic coatings prepared
with different filler particle sizes on surface morphology and
hydrophobic properties under the same load, different abrasive
particle sizes and friction distances. The results show that with the
same filler content, the larger the filler particle size, the greater the
wear resistance.

Tape-Peeling Test
Tape peeling (Figure 3B) (Wu et al., 2017a; Zhang et al., 2018;
Ghasemlou et al., 2019; Ji et al., 2019) is one of the easiest ways
to determine the surface abrasion resistance of
superhydrophobic materials, which is to fully contact the
tape with the surface of the tested material under a certain
pressure, and then peel off at a certain angle and speed. This
method is mainly used to test the adhesion strength of
superhydrophobic coating and its rough structure to
substrate. However, this method can only evaluate the
firmness of coating and substrate, but not the strength of
superhydrophobic surface, which has certain limitations. By
observing the SEM diagram, Zhao et al. (Zhao et al., 2020)
compared the number of nanoparticles per unit area before
and after peeling, evaluated the binding strength of silica
particles with different sizes and epoxy resin substrate, and
optimized the superhydrophobic surface durability by
adjusting the ratio of different particle sizes to fillers.

Knife-Scratch Test
Considering that the superhydrophobic surfaces are often
subjected to scratches in practical application, such as car
scratches, knife scratch is selected as a typical test to evaluate
the mechanical wear resistance of superhydrophobic surfaces.
This method is suitable for fields with high requirements for
mechanical stability, but the current testing standards are not
uniform (Carmalt et al., 2015; Wu Y. et al., 2017; Ghasemlou
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et al., 2019). As shown in Figure 3C, the knife is used to scrape the
superhydrophobic surface, resulting in a dense array of wide and
deep scars on the surface. Wu et al. (Wu et al., 2017a) used knives
to form wide and deep lattice marks on the superhydrophobic
wood, however, water droplets can easily roll down from it
without leaving any traces, indicating that the
superhydrophobicity still exists.

Finger Wiping Test
As shown in Figure 3D, the finger wipe test (Carmalt et al., 2015;
Wu et al., 2017a) is to wipe the surface of the superhydrophobic
material repeatedly with the finger in the same direction, and then
test the change of the contact angle of the material surface. Finger
wiping test can preliminarily evaluate the durability of
superhydrophobic surface, and the experimental operation is
convenient and easy. Liu et al. (Liu et al., 2019a) designed and
prepared a new type of polyfluorinated organic
superhydrophobic coating based on mercaptan-olefin click
reaction. The coating has excellent superhydrophobicity and
self-cleaning properties, and has good adhesion to the
substrate, which still maintains excellent superhydrophobicity
after finger wiping.

Taber Abrasion Test
Taber friction (Figure 3E) (Ye et al., 2017; Zhu et al., 2018b) is
also a kind of friction test, which is carried out in a special Taber
friction testing machine. The machine consists of three parts: a
turntable that clamps the sample, a friction wheel and a load.
During the experiment, the superhydrophobic material is
clamped on the turntable. Then, load a certain weight of the
friction wheel for rotating friction, and take out the test piece
after the specified number of revolutions to test its
superhydrophobic performance. This method has certain
evaluation criteria, the experimental operation is convenient
and the data is accurate. Peng et al. (Peng et al., 2018) observed
the variation of coating contact angle and coating thickness with
Taber abrasion cycles under three different loads (150, 200 and
250 g). After 100 wear cycles, the CA of PTFE coating remained

above 150° under 150 and 200 g loads and decreased to 146°

under 250 g loads.

Impact Test
There are two types of impact tests (Figure 3F). One is the water
impact test (Zhu et al., 2018b), and the other is the sand impact
test (Zhu T. et al., 2020). It is mainly a method to tilt the
superhydrophobic surface at a certain angle, impact the
surface with sand or water drops at a certain height, and
evaluate the change of surface hydrophobicity. This method
can effectively evaluate the outdoor durability of
superhydrophobic materials. Deng et al. (Deng et al., 2012)
used candle soot and silica to prepare superhydrophobic
coating. To explore the mechanical properties of the coating,
water drop impact and sand wear tests were carried out. Sand
particles with a diameter of 100–300 mm hit the surface from a
height of 10–40 cm. Although the coating surface is impacted by
sand to form a cave, its microstructure has little change.

Chemical Durability Test
Solution Immersion
At present, superhydrophobic materials have been used in
various industries; however, their low corrosion resistance
hinders their wider application. Therefore, there is a need to,
at a relatively low-cost technology, improve the corrosion
resistance of these materials. At the same time, scientists used
a chemical solution immersion method to test the chemical
resistance of materials.

In acidic solution (Si et al., 2015; Zhu et al., 2018a), high
concentration of H+ will hydrogenate with superhydrophobic
materials, which will destroy their original properties and make
them lose superhydrophobic properties. In alkali solutions, the
chemical properties of strong base are relatively active, with
strong reducibility, easy to react with other substances, so as
to achieve corrosion. In chloride-containing solutions, because
the radius is small and it has strong penetration ability, chloride
ions are most likely to pass through the tiny voids in the oxidation
film to get to the metal surface, interact with the metal to get

FIGURE 3 |Wear resistance test: (A) Sandpaper abrasion. (B) Tape-peel test. (C)Knife-scratch test. (D) Finger wiping test. (E) Taber abrasion test (Ye et al., 2017).
(F) Sand or water impact test.
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soluble compounds, which changes the structure of the oxide film
and causes corrosion of the metal. In aqua regia, aqua regia is a
very corrosive liquid that can corrode the surface of the material.
However, polytetrafluoroethylene (PTFE), the king of organic
plastics, is not corroded by aqua regia, so researchers immersed a
superhydrophobic material made of polytetrafluoroethylene in
aqua regia to test its corrosion resistance.

Ultraviolet Light Irradiation
Ultraviolet light irradiation (Zhu et al., 2018a) is one of the
common methods for testing the aging of materials, which is
mainly tested by putting superhydrophobic materials under a
certain wavelength and power ultraviolet lamp, evaluate the
attenuation degree of the surface contact angle with the
extension of irradiation time. This method is mainly used for
evaluating and testing the outdoor durability of
superhydrophobic materials. Huang et al. (Huang et al., 2021)
used polytetrafluoroethylene (PTFE) particles to prepare powder
coatings without solvent and chemical modification. Due to the
high bond energy and chemical inertia of PTFE, the surface
contact angle of the coating remained above 160° after UV
irradiation for 84 h, showing excellent chemical durability.

Electrochemical Corrosion
Electrochemical corrosion (Yu et al., 2018) means the corrosion
of metal due to electrochemical action in a conductive liquid
medium, and current is generated during the corrosion process.
When metal is placed in an aqueous solution or in a moist
atmosphere, a microcell, also known as a corrosive cell, forms on
the surface of the metal, oxidation reaction happens on the anode,
so that the anode is dissolved, reduction reaction happens on the
cathode, generally only play the role of electron transfer. This
method can effectively evaluate the outdoor durability of metallic
superhydrophobic materials.

APPLICATIONS

Anti-Fogging
Changing the wettability of the surface is a common method of
anti-fogging, and two extreme cases are usually paid attention to:
superhydrophilicity and superhydrophobicity. The hydrophilic
anti-fogging method, which makes the surface of the substrate
highly hydrophilic, the contact angle between the surface of the
material and water approaches zero, and makes the water vapor
quickly spread on the surface of the substrate after condensation
to constitute a transparent water film, which has been deeply
studied. Generally, superhydrophobic materials are able to firmly
bond with the surfaces of other materials, and water droplets are
easy to roll on the superhydrophobic surface. Therefore, it can be
inferred that the droplets formed by condensation of water vapor
on the surface can also roll off the surface of hydrophobic
materials quickly, thus having anti-fogging pe rformance.

Medical endoscopes have promoted the development of
medical careers, but endoscopes are prone to mirror fogging
due to liquid adsorption and high humidity, which reduces
visibility. Lee et al. (Lee et al., 2020) applied a laser to

construct a lubricant-infused directly engraved nano/micro
structured surface (LIDENS) on the lens, (Figure 4A), which
can repel various liquids after chemical modification of the
LIDENS lens (Figure 4B). Among them, the injection of
lubricant can smoothen the rough surface structure and
improve the transmittance. The low cost of LIDENS Nuclear
density and dynamic coalescence can remove droplets under
gravity, thereby preventing fogging (Figure 4E). At the same
time, the mechanical durability of the LIDENS directly etched on
the surface morphology was tested, after 30 times of tape peeling
(Figure 4C), the SEM images in Figure 3D shows that the dentate
wrapped by F-SAM has no obvious topological changes, which
proves it has good mechanical properties (Figure 4D).

Yoon et al. (Yoon et al., 2020b) prepared a wet
superhydrophobic coating, which maintained excellent anti-
fogging performance. The top of the coating is a PDMS
micro-well with low surface energy, which shows
superhydrophobicity, and the bottom is a sacrificial oil
(silicone oil) embedded polymer-silica nanocomposite as
hydrophilic part, which guides the upper layer of water vapor
condensation to the lower layer. The coating can prevent the
formation of fog and maintain optical transparency during
condensation.

Self-Cleaning
The lotus leaves that “come out of silt but do not dye” are typically
natural self-cleaning surfaces. In addition, many animals and
plants in nature have a superhydrophobic surface with self-
cleaning property, such as rice leaves (Bixler and Bhushan,
2012; Nishimoto and Bhushan, 2013; Lee et al., 2017; Xu
et al., 2020b), pitcher plants (Song et al., 2017b; Huang et al.,
2017; Li et al., 2020a), cicada wings (Oh et al., 2017), butterfly
wings (Nishimoto and Bhushan, 2013), gecko feet (Stark et al.,
2016), snail shells (Nishimoto and Bhushan, 2013), fish scales
(Waghmare et al., 2014), shark skin (Bixler and Bhushan, 2014).
Water droplets can capture dust particles and roll away easily
when arriving at the superhydrophobic surface, which offers the
superhydrophobic surface its self-cleaning property.

Wu et al. (Wu et al., 2021) proposed an efficient solution
modification method to prepare superhydrophobic F-PE/SiO2

foam materials (Figure 5A), which shows a water CA of 158 ± 2°

(Figure 5D). The polyethylene foam has an interconnected three-
dimensional skeleton, which is composed of a polyethylene
skeleton and irregular pores (Figure 5C). The interconnected
three-dimensional skeleton results in an enhanced wear
resistance for the polyethylene foam. The polyethylene foam
still exhibits superhydrophobic property even after sandpaper
friction and water impact (Figure 5B). In addition, F-PE/SiO2

foam also shows excellent self-cleaning performance (Figure 5E).
Photocatalysis (Liu et al., 2020a; Sutar et al., 2020; Zhu et al.,

2021b) can produce self-cleaning effects (Zhu et al., 2020b).
Superhydrophobic materials with photocatalytic performance
can convert light energy into chemical energy to decompose
organic pollutants. During this process, the decomposed organic
pollutants leave the surface of superhydrophobic material in the
form of gas, and the residual solid particles will be taken away
with the spreading of water film.
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Our team (Zhu et al., 2021c) mixed TiO2 NPs, epoxy resin and
1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS) through
stirring and ultrasonic treatment to compose an inorganic
organic superhydrophobic coating (IOS-PA) (Figure 6A). The
presence of TiO2 NPs enables the degradation of Nile red
(Figure 6B). The superhydrophobicity of IOS-PA is preserved
after sandpaper abrasion (Figure 6C) and sand impact
(Figure 6D), indicating the excellent mechanical durability. At
the same time, after being stored in acidic (pH = 1) solution for
4 h and saline (pH = 7) and alkaline (pH = 14) solutions for 8 h,
the high WCA and low RA remained on the coating samples
(Figures 6E–G). Moreover, the layer we studied had
multifunctional self-cleaning ability, which can not only
remove stains by gravity rolling of water, but also decompose
organic dyes by ultraviolet (Figure 6H).

Oil–Water Separation
Frequent oil spills cause serious global water pollution (Liu et al.,
2017; Zhu et al., 2020c; Huettel, 2022), which poses an urgent
need for efficient solutions to oil–water separation. The
traditional methods for oil–water separation include gravity

separation (Saththasivam et al., 2016), filtration, centrifugation
(Liu et al., 2018), flotation (Rocha e Silva et al., 2018) and
electrochemical methods (Kwon et al., 2010). However, most
of them have low separation efficiency and complicated operation
(Wang et al., 2019). Superhydrophobic material has high
separation speed and efficiency and is a promising way to
solve this serious matter (Zhu and Guo, 2016b; Kong et al., 2022).

Shang and his team (Shang et al., 2020) have prepared an
environmentally friendly and sustainable superhydrophobic or
superoleophilic castor oil-based nanocomposite on cotton fabric
using a thiol-ene chemical method initiated by ultraviolet light
(Figure 7A). The cotton fabric has a rough surface and possesses
a water CA of ~160° and a water SA of 7.5° (Figure 7B). The water
droplets can penetrate into the pristine fabric immediately
because of the capillary effect which is caused by the porosity
and abundant hydroxyl groups on the fabric (Figure 7D). In
addition, high-strength superhydrophobic cotton fabrics can
withstand at least 30 sandpaper wear cycles without losing
their superhydrophobicity (Figure 7C). At the same time, the
functional cotton fabric can separate kinds oil and water mixtures
and emulsions with high separation efficiency (Figure 7E).

FIGURE 4 | (A)Manufacturing process diagram of anti-fogging endoscope. (B)Picture of various liquids on the LIDENS (scale bar: 1 cm). (C)Schematic diagram of
tape-peeling. (D) SEM images after 10, 20, 30 tape-peel experiment cycles (scale bars: 20 μm). (E) Continuous photographic images after exposed glass (left) and
LIDENS (right) are placed on distilled water (~80°C, 100% relative humidity) for about 3 cm and 60 s (Lee et al., 2020).

TABLE 1 | Advantages and disadvantages of different methods.

Method Advantages Shortcoming Large-scale production

Chemical etching Convenient preparation High requirements on etching time, soaking time, etc. Yes
Cheap raw materials
High success rate

Spraying Easy to control Poor adhesion short service life Yes
Low cost
High spraying efficiency

Electrochemical deposition Mature technology simple operation High cost high equipment requirements No
Sol–gel method Heat-resistant, low-cost, simple operation Easy to crack long preparation time Yes
Electrostatic spinning How spinning cost many kinds of textiles Need to be done at high-voltage high energy consumption No

Simple operation
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Tang et al. (Tang et al., 2021) proposed a cheap,
environmentally friendly and pollution-free method to prepare
superhydrophobic calcium carbonate (CaCO3) which coated
stainless steel mesh (SSM). In the experiment, the
superhydrophilic CaCO3-SSM was firstly prepared by using
the biomineralization method induced by bacteria, and
immersed in stearic acid (SA) to obtain a superhydrophobic
SA/CaCO3-SSM. This has regular and large-size micro-pores,
and thus shows high oil flux to various oil/water mixtures
(0.2–9.12 × 104 L m−2·h−1) and high efficiency in separation
(>94.8%). In addition, the SA/CaCO3-SSM also exhibits
outstanding wear resistance.

Zhou et al. (Zhou et al., 2016) modified the interior of the PU
sponge using (3-mercaptopropyl) trimethoxysilane and graphite
oxide by solvent heat treatment, resulting in a graphene layer
resembling a crater that was firmly attached to the polyurethane
skeleton. Graphene/PU sponges are superhydrophobic with a
WCA of over 160° and can effectively separate oil and water.

The recent development of superhydrophobic materials
provides a simple and inexpensive solution for oil-water
separation. For example, Tudu and Kumar (Tudu and Kumar,
2019) use TiO2 nanoparticles and perfluorodecyltriethoxysilane
(PFDTS) to make superhydrophobic steel and copper mesh.
Yan’s group (Yan et al., 2020) prepared superhydrophobic
cotton fabric by combining micro-nano-binary structure of
polydopamine (PDA) with grafting of octadecyylamine (ODA).

Antibacterial Action
The adhesion and proliferation of bacteria on the surface of
objects will lead to the formation of biofilms, which poses huge
challenges for medical, health, and industrial applications

(Monteiro et al., 2022). The antibacterial material based on
superhydrophobicity is an emerging method recently (Li S.
et al., 2020; Lan et al., 2021). The information of bacterial
biofilm involves transportation, adhesion, firmness, and
reproduction. The strategies to remove biofilms on the
surface of substrates mainly include preventing bacteria from
adhesion (Chung et al., 2012) and killing bacteria that have
attached.

Ye et al. (Ye et al., 2021) used PDMS as the adhesive to attach
fluorinated mesoporous silica nanoparticles (F-MSNS) and
quaternary ammonium functionalized microporous silica
nanoparticles (Q-MSNS) (Figure 8A) to the surface of various
fabrics (Figure 8C), and the resulting textiles showed obvious
synergistic antibacterial effects against Escherichia coli and
Staphylococcus aureus by “repellent” (Figure 8B), which is
mainly because the superhydrophobicity can repel most
bacteria, and Q-MSNS on the surface of cotton fabric can
effectively kill some bacteria (Figure 8E). At the same time,
due to the surface of F/Q-MSNS coating being rough, even after
600 times of friction, the surface of the coating is still
superhydrophobic (Figure 8D).

Ou et al. (Ou et al., 2016) selected polydopamine as an
adhesive to prepare a superhydrphobic cotton coated with
silver nanoparticles. The polydopamine can increase the
binding between silver cotton fibers and nanoparticles, so as to
prevent silver nanoparticles from dropping from the surface of
cotton fibers. At the same time, the fabric composite has obvious
antibacterial effect on Staphylococcus aureus and
Escherichia coli.

Zhu et al. (Zhu et al., 2021d) prepared a superhydrophobic
coating solution by dispersing hydrophobic silica nanoparticles

FIGURE 5 | (A) PE foam and F-PE/SiO2 foam schematic diagram of foam plastic preparation process. (B) Illustration of sandpaper abrasion for the foam surface.
(C) The SEM image of F-PE/SiO2 foam. (D)Water on the surface of F-PE/SiO2 foam. (E) Picture of 30° inclined F-PE/SiO2 foam polluted by sands before and after water
drop washing (Wu et al., 2021).
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(Aerosil® gaseous silica) in ethanol at a concentration of 2.5 w/w
%. Compared with the bare surface, the attachment amount of
SARS-CoV-2 on the superhydrophobic (SHPB) surface was
significantly reduced, up to 99.99995%. This suggests that the
as-prepared coating can effectively resist the adhesion of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by
repelling virus-carrying droplets.

Membrane Distillation
Membrane distillation (MD) (Laqbaqbi et al., 2017; Hong et al.,
2022) is a bright desalination technology because it is capable of
treating highly saline water. Deng et al. (Deng et al., 2019) created
a unique bilayer composite membrane using the
superhydrophobic selective skin of amorphous polypropylene
(APP) and the support composition of electrospun

FIGURE 6 | (A) Schematic illustration of fabrication of IOS-PA. (B) UV–Vis spectra of Nile red solution showing decomposition by F-ER-TiO2 NPs every 1 h. The
insets are optical photos of the color variations. (C) The WCAs of the paint-coated surfaces were tested after each abrasion cycle, and stable superhydrophobicity was
obtained with almost all WCAs larger than 150°. (D) After sand impact for 50 cycles, theWCAs of the coatings remained high, also showing super water repellency.When
placed in pH = 1 (E), pH = 7 (F), and pH = 14 (G) solutions for 2, 4, and 8 h, respectively, the coating still manifested super water repellency with highWCAs and low
RCAs. (H)Multifunctional self-cleaning was shown on the coating, where sand particles could be removed by rolling water, and organic dye could be decomposed by UV
light (Zhu et al., 2021c).
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polyvinylidene fluoride (PVDF) nanofibers. The permeable vapor
flux of the superhydrophobic APP/PVDF membrane is 53.1 kg/
(m2•h), and the permeable conductivity is stable. At the same
time, it has great applicability in MD desalination.

Lu et al. (Lu et al., 2016) developed a porous polyvinylidene
fluoride (PVDF) three-porous hollow fiber membrane with

superhydrophobicity. The three-pored hollow fiber has
greater mechanical strength than traditional single-pored
fibers. Under the supreme coating conditions (0.025 wt%
Teflon® AF 2400, 30 s), a superhydrophobic surface was
obtained which contact angle is 151°. At the same time,
Teflon® AF 2400-coated membrane has higher stability,

FIGURE 7 | (A) Schematic diagram of superhydrophobic cotton fabrics prepared by spray deposition of the thiol−ene resin and UV curing. (B) SEM images of the
superhydrophobic CO/POSS/SiO2 coated cotton fabric and the insets are the correspondingWCA and SA. (C) Schematic illustration of the sandpaper abrasion and CA
and SA changes after different separation cycles. (D) Photos of different liquids on coated fabrics. (E) Schematic illustration of the separation process of the oil/water
mixture and separation efficiency and flux of petroleum ether/water mixture after different separation cycles (Shang et al., 2020).

FIGURE 8 | (A) Schematic illustration of the configuring process of functionalized textiles. (B) Bacterial shielding experiments of cotton fabrics. (C) SEM images of
the textiles. (D) Picture of a water drop (10 μl) on the treated cotton fabrics surface before and after 600 abrasion cycles. (E) The schematic diagram of anti-bacterial
action (Ye et al., 2021);
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which average flux is 21 kg m−2 h−1 and rejection rate is 99.99%
in 60°C desalination applications.

Distilled water is produced by the differential partial
pressure of steam due to the different temperatures between
hot brine and cold deionized water, which drives the transfer of
steam from the feed stream to the distillate stream (Figure 9E).
Su et al. (Su et al., 2019) used electronic co-spinning/spraying
(ES2) with chemical vapor welding to produce
superhydrophobic films with mechanical strength, high
porosity and robustness (Figure 9A), which also has
outstanding vapor permeability (Figure 9F). The prepared
superhydrophobic film WCA is bigger than 150° and SA is
lower than 10° (Figure 9B). Compared with the
superhydrophobic film deposited on the surface of
fluorinated nanoparticles, the superhydrophobic film has
stronger wettability and wear resistance on MD, the surface
of WCA and SA has little change after different ultrasonic
treatment time (Figure 9C), and the surface morphology of the
solid superhydrophobic film does not change greatly after
observation on SEM (Figure 9D).

Battery
Solar cells (Hegazy, 2001; Liang et al., 2020) are popular because
of their low-cost, friendly environment, and renewable
characteristics (Syafiq et al., 2018). However, in practical
application, the solar cells will affect the efficiency due to the
influence of environmental temperature, dust, and wind speed.

Therefore, we need to develop a solar cell board which can resist
pollution. Superhydrophobic materials can be used in batteries on
account of their low surface energy and surface roughness, and
they have the characteristics of self-cleaning.

Wu et al. (Wu et al., 2017b) developed a viable lithium-O2

battery with lithium metal negative electrode in a humid
environment (relative humidity of 45%), which prevents H2O
by constructing a superhydrophobic quasi-solid electrolyte
(SHQSE) (Figure 10A). In Figure 10B, the water contact
angle is larger than 150°, which indicates that the SHQSE
membrane is superhydrophobic and the SHQSE membrane
has mechanical stability due to the porous substrate of
nonwoven fabrics. From Figure 10C, it displays the classic
discharge and charge profiles during cycles, which shows that
the hydrophobic effects may take a vital part in the achievement
of safe and permanent Li-air battery.

Liang et al. (Liang et al., 2020) used plasma-improved
chemical vapor deposition (PECVD) to prepare SiO2 as the
bottom layer, and then hydrolyzed and condensed epoxy
propylpropyltrimethoxysilane (KH560) at both ends to shape a
network structure as an intermediate connecting layer. The
hydrophilic SiO2 modified by hexamethyldisilazane (HMDS)
to obtain the top superhydrophobic layer. The structure of the
superhydrophobic surface is like the double layer structure of
phospholipid in the cell membrane. Compared with the bare glass
panel, the glass cover plate used in solar cells greatly improves the
efficiency of utilization.

FIGURE 9 | (A) Schematic diagram of the ES2 process for fabricating robust superhydrophobic membrane. (B) The WCA and SA of robust superhydrophobic
membrane. (C)WCA and SA of the r-SH membranes after different durations of ultrasonication. (D) SEM surface morphology of ES2-derived robust superhydrophobic
membrane 270 min before (left) and after (right) ultrasound. (E) The mechanism of membrane distillation. (F) Vapor flux and conductivity of superhydrophobic
electrospun fiber membrane (Su et al., 2019).
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Zhi et al. (Zhi and Zhang, 2018) first formed three-
dimensional nanopores crosslinked network by the
volatilization of pore-forming agents during calcination, then
make the silica nanoparticles attached on the pore structure is
formed on the double scale structure, thus forming a kind of
superhydrophobic coating, a coating made of surface display

WCA is 157.9°, which method is simple, and low coating can
be applied in the solar cell cover glass.

Others
The principle of superhydrophobic anti-icing (Maitra et al., 2014;
Boinovich et al., 2015; Liu et al., 2020b) is to cut down the contact

FIGURE 10 | (A) Schematic diagram of solid Li-O2 battery in humid atmosphere on basis of the superhydrophobic quasi-solid electrolyte (SHQSE). (B) SEM image
of the original nonwoven fabric and the insets are the corresponding water CA. (C) The typical discharge–charge profiles of Li-O2 batteries when relative humidity is 45%
(Wu et al., 2017b).

FIGURE 11 | (A) The manufacturing process of EP coating, superhydrophobic ZIF-8/POTS coating and ZIF-8/POTS/EP coating. The pictures of (B–D)Q235 steel
sheet and (E–G) ZIF-8/POTS/EP coating after (B,D) 2 h in −20°C refrigerator, and after (C,F) 0.1s and (D,G) 2 s of dripping 0°C water droplets on their surfaces. (H) The
schematic of sandpaper abrasion test, and (I) the change of abrasion length on the CA. (J) The change of pH values of water droplet on the CA of ZIF-8/POTS/EP
coating, inset picture is the photograph of litmus colored water droplets with different pH value on ZIF-8/POTS/EP coating (Chen et al., 2021).
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area between water drop and the superhydrophobic surface, and
postpone the frozen time of water droplets on the surface.
Meanwhile, before freezing, water droplets slide down with the
help of gravity, reducing the possibility surface icing.

Chen et al. (Chen et al., 2021) structed a superhydrophobic
composite coating on the basis of MOF (ZIF-8) nanoparticles and
organic resins, which shows superhydrophobicity and the water
contact angle is 168.2° because of the rough structure of ZIF-8
nanoparticles and the low surface energy (Figure 11A). After
being rubbed with sandpaper or immersed in different pH value
(Figures 11H–J), the superhydrophobicity can still be
maintained, showing that the coating has excellent wear

resistance and chemical stability. Figures 11B–G shows the
freezing process of the coating surface after dripping 0°C water
and the results reveal that the ZIF-8/POTS/EP superhydrophobic
coating exhibits great anti-icing properties.

A superhydrophobic surface with a low rolling angle helps to
reduce the resistance of the water surface, and the existence of the
surface microstructure can make the liquid flow through the
superhydrophobic surface to form a gas-liquid two-phase flow,
resulting in a slip flow phenomenon, reducing the velocity
gradient on the boundary surface, thereby reducing the
resistance of the liquid flowing through the solid surface
(Venkateshan et al., 2016; Zheng et al., 2020).

FIGURE 12 | (A) Schematic diagram of manufacturing process of Fabric-S-MAPOSS-F; Durability tests through (B) knife-scratching, (C) hand twisting, (D) finger
hand touch, and (E) turbulent water flow impact. (F) Common droplets (kerisine, dyed with oil red dye; glycol, colorless; blended oil, yellow; water; vinegar, brown; milk,
lacte) on fabric, and liquid repellency of Fabric-S-MAPOSS-F after immersion in 98% H2SO4 for 30 min and 300°C heating for 2 h (Luo et al., 2020).

FIGURE 13 | (A)WCA and RA on the surface after abrasion test. (B)Water collection rate changedwith the precursor of Cu and TiO2. (C)Schematic of the abrasion
test. (D) Schematic diagram of self-made fog collection system, H and T represent the humidity thermometer (Zhu and Guo, 2016a).
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Luo et al. (Luo et al., 2020) prepared a sturdy and durable
fluorinated 8-Methacryl polyhedral oligomeric
silsesquioxane Cage Mixture-based superamphiphobic
fabric (Fabrics-S-MAPOSS-F) (Figure 12A), which could
easily float on the surface of water or mixed oil, and could
resist high temperature and acid corrosion (Figure 12F). The
navigation speed of Fabrics-S-MAPOSS-F in water and
mixed oil is increased by 2.5 times, and the drag
reduction rate is up to 154.7%. As shown in
Figure 12B–E, the mechanical stability of the
superamphiphobic fabric is evaluated through knife-
scratching, finger hand touch, hand twisting, and
turbulent water flow impact, the results show that Fabrics-
S-MAPOSS-F is still superhydrophobic.

The beetle (Zhu et al., 2018c; Zhu et al., 2019; Zhu et al., 2021e)
uses the special structure of the shell to collect water to provide itself
with water resources. The cactus spines have a round cone-shaped
wedge structure with Laplace pressure and surface energy gradient on
the surface to achieve water collection (Zhu et al., 2016b). Inspired by
natural creatures, lots of superhydrophobic materials are developed
for water collection (Zhang et al., 2021b; Zhu et al., 2021f).

Zhu et al. (Zhu and Guo, 2016a) used copper particles and
titanium dioxide particles to prepare coatings with
superhydrophobic properties which can be used for water
collection (Figure 13D). As shown in Figure 13B, when the
molar ratio of the prepared sample precursor is 9:1, the water
collection rate is the biggest water collection rate of 1309.9 mg h−1

cm−2, and showed an approximate WCA and RA of 155.11, 4.51,
respectively. After sandpaper friction (Figure 13C), it is observed
that there is no great change inWCA and RA (Figure 13A) due to
the excellent adhesion of epoxy resin is helpful to improve the
surface firmness, indicating that the coating has excellent
mechanical wear resistance.

CONCLUSION

Superhydrophobic materials with outstanding mechanical and
chemical stability are highly vital in practical application. This
review elaborates the progress of mechanical–chemical
superhydrophobic materials in recent years. Firstly, the typical
superwetting models are introduced, such as “Young’s contact,”
“Wenzel,” “Cassie,” “Wenzel–Cassie,” “Lotus,” and “Gecko”
model. Secondly, some mechanical–chemical superhydrophobic
models and corresponding tests to evaluate mechanical and
chemical durability are discussed. Finally, the application of these

mechanical–chemical superhydrophobic materials is described.
Although great scientific progress has been made in the research
of durable superhydrophobic surfaces, up to now, almost no
superhydrophobic surface can withstand all types of wear required
by strict industrial requirements and commercial standards.
Therefore, the following are some of our views and opinions:

(1) There are a great many studies to increase the mechanical
properties of superhydrophobic materials, and there are
many differences in the durability tests carried out.
However, unified standards to measure the durability of
superhydrophobic materials are lacking and should be
formulated.

(2) At present, the durable superhydrophobic surface has not
been widely employed in practical application, which
indicates that the development of durable
superhydrophobic surface should take practical application
into consideration.

(3) In the preparation of superhydrophobic materials, many
used organic materials are harmful to the human body
and environment. Environment-friendly materials and
green preparation technology are highly recommended.

We believe that a comprehensive and depth review will
provide strategic guidance for the development of
multifunctional durable superhydrophobic materials, and that
the most challenging aspect is to create a durable
superhydrophobic material without affecting wettability. We
believe that a comprehensive review can provide new ideas for
the development and application of superhydrophobic materials.
The research of durable superhydrophobic materials is constantly
developing and innovating, and its research will become a hot
development direction in the next few years.
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