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Sepsis is a diseasewith highmortality.1–7However, the original
notion of sepsis as the invasion of blood and tissues by
pathogenic microorganisms has long come to be replaced, in
the antibiotic era, by the recognition that in many cases, the
main causes of death arise not so much from the replication of
the pathogen per se but from the host’s “innate immune”
response to the pathogen.8–11 In particular, microbial replica-

tion is not even necessary (and most bacteria in nature are
dormant12–16), as this response is driven by very potent17

inflammation-inducing agents such as the lipopolysaccharides
(LPSs) of gram-negative bacteria18 and equivalent cell wall
materials such as lipoteichoic acids from gram-positive bac-
teria.19–22 To this end, such release may even be worsened
(i.e., the Jarisch–Herxheimer reaction23–26) by antibiotic
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Abstract A well-established development of increasing disease severity leads from sepsis
through systemic inflammatory response syndrome, septic shock, multiple organ
dysfunction syndrome, and cellular and organismal death. Less commonly discussed
are the equally well-established coagulopathies that accompany this. We argue that a
lipopolysaccharide-initiated (often disseminated intravascular) coagulation is accom-
panied by a proteolysis of fibrinogen such that formed fibrin is both inflammatory and
resistant to fibrinolysis. In particular, we argue that the form of fibrin generated is
amyloid in nature because much of its normal α-helical content is transformed to
β-sheets, as occurs with other proteins in established amyloidogenic and prion
diseases. We hypothesize that these processes of amyloidogenic clotting and the
attendant coagulopathies play a role in the passage along the aforementioned path-
ways to organismal death, and that their inhibition would be of significant therapeutic
value, a claim for which there is considerable emerging evidence.
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therapy.27–30 In unfavorable cases, this leads to an established
cascade (►Fig. 1)31 in which the innate immune response,
involving proinflammatory cytokines such as interleukins 6, 8,
and 1β, monocyte chemoattractant protein-1, and tissue ne-
crosis factor α,32 becomes a “cytokine storm”33–37 leading to a
“systemicinflammatoryresponsesyndrome” (SIRS),38–43septic
shock,4 multiple organ failure44 (MOF, also known as multiple
organ dysfunction syndrome, MODS45,46), and finally organis-
mal death. All of the above is well known andmay be taken as a
noncontroversial background. Nevertheless, it is still unclear
whether apoptotic47 and necrotic48 cell death is minimal49 or
significant. Despite this knowledge, “the recent inability of
activatedproteinC to showanoutcomebenefit in a randomized
controlledmulticenter trial2 and the subsequent withdrawal of
the product from commercial use add to the growing stockpile
of failed therapeutics for sepsis.”50 (This last failure was prob-
ably due to an excessively anticoagulant activity.)

Most recently51 (but see also Churpeket al52), definitions of
sepsis have come to be based on organ function and the
Sequential (Sepsis-Related) Organ Failure Assessment (SOFA)
Scores.53These latter take intoaccount themultisystemnature
of sepsis and include respiratory, hemostatic (but only based
on platelet counts), hepatic, cardiovascular, renal, and central
nervous system measurements. A SOFA score of 2 or greater
typically means at least a 10% mortality rate. Specifically,
sepsis isdefinedasa life-threateningorgandysfunctioncaused
by a dysregulated host response to infection. Septic shock is
defined as a subset of sepsis in which underlying circulatory
andcellularmetabolismabnormalities areprofoundenoughto
increase mortality substantially.

►Table 1 (based on Vincent et al53) shows the potential
values that contribute to the SOFA score.

Absent from ►Fig. 1, and from the usual commentaries
of this type, is any significant role of coagulopathies,
although these too are a well-established accompaniment
of SIRS/sepsis,54–69 and they will be our focus here. They

Fig. 1 A standard cascade illustrating the progression of infection through
sepsis, systemic inflammatory response syndrome, and death.

Table 1 Potential values that contribute to the SOFA scorea

SOFA score 1 2 3 4

Respiration
PaO2/FiO2

(mm Hg)

<400 <300 <200
(with respiratory support)

<100
(with respiratory support)

Coagulation
10�3/platelets/mm

<150 <100 <50 <50

Liver
Bilirubin mg/dL
(μM)

1.2–1.9
(20–32)

2–5.9
(33–101)

6–11.9
(102–204)

>12
(>204)

Cardiovascular
Hypotension

MAp < 70
mm Hg

Dopamine � 5b or
dobutamine
(any dose)

Dopamine > 5
or epinephrine �0.1 or
norepinephrine � 0.1

Dopamine > 15
or epinephrine > 0.1 or
norepinephrine > 0.1

CNS
Glasgow Coma Score

13–14 10–12 6–9 <6

Renal
Creatinine, mg/dL
(μM) or urine output

1.2–1.9
(110–170)

2–3.4
(171–299)

3.5–4.9
(300–440)
Or <500 mL/d

>5
(>440)
or <200 mL/d

Abbreviations: CNS, central nervous system; SOFA, Sequential (Sepsis-Related) Organ Failure Assessment.
aBased on Vincent et al53 and shows the potential values that contribute to the SOFA score.
bCatecholamine and adrenergic agents administered for at least 1 hour; doses in μg/kg/min.

Seminars in Thrombosis & Hemostasis Vol. 44 No. 3/2018

Amyloid Coagulopathies in Septic Shock Kell, Pretorius 225

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



form part of an emerging systems biology analysis,16,18,70–80

in which iron dysregulation and an initially minor infection
(e.g., in rheumatoid arthritis81,82) are seen to underpin the
etiology of many chronic inflammatory diseases normally
considered (as oncewere gastric ulcers83) to lack amicrobial
component.

Here we develop these ideas for those conditions that are
recognized as involving a genuine initial microbial invasion,
together with sepsis and inflammation driven (in particular)
by the cell wall components of bacteria (although we note
that the same kinds of arguments apply to viruses84 and to
other infections).

Normal Blood Coagulation and
Coagulopathies

Historically, there are two main pathways of activation
described that lead “normal” blood coagulation to form a
clot, as occurs, for example, in response tovesselwall damage
or exposure of blood to negatively charged surfaces. They
have been expertly reviewed many times85–90 (e.g., are
known in the older literature, respectively, as “extrinsic”
and “intrinsic” pathways). ►Fig. 2 shows a basic model of
coagulation (redrawn from Kell and Pretorius74 under a
CC-BY license); typically, assembly of fibrin fibers proceeds
in a stepwise fashion. In short, after damage to a blood vessel,
collagen is exposed and factor (F) VII interacts with tissue
factor (TF), forming a complex called TF-FVIIa. FXa and its
cofactor Va form the prothrombinase complex and activate
thrombin through prothrombin. Finally, the terminal stages

of the coagulation pathway happens, where a cross-linked
fibrin polymer is formed as a result of fibrinogen (typically
present in plasma at 2–4 g/L) conversion to fibrin and cross-
linking due to the activation of FXIII, a transglutaminase.
Thrombin activates FXIII into FXIIIa, which, in turn, acts on
soluble and insoluble fibrin to polymerize it into insoluble
cross-linked fibrin clot. This fibrin clot, when viewed under a
scanning electronmicroscope, consists of individually visible
fibrin fibers, discussed in the next paragraphs (see ►Fig. 3A

for a representative healthy clot structure created when
thrombin is added to plasma.74,91–93

The normal picture of fibrinogen polymerization involves
the removal of two fibrinopeptides (i.e., fibrinopeptides A and
B) fromfibrinogen,which is normally rich inα-helices, leading
to its self-association through “knobs and holes,” but with
otherwise no major changes in secondary structure.77,80

Coagulopathies occur when the rate of clot formation or
dissolution is unusually fast or slow, and in the case of chronic
inflammatory diseases, these seem largely to coexist as hy-
percoagulationandhypofibrinolysis, arguably implying a com-
mon cause.74 In a series of papers, we have shown in several
diseases, such as stroke,94–96 type 2 diabetes,93,97 Alzheimer’s
disease,79,98,99 and hereditary hemochromatosis,92 that the
fibrin clots induced by added thrombin adopted the form of
“densematted deposits” instead of their usual “spaghetti-like”
appearance. The same kinds of effect could also be induced by
unliganded (i.e., free) iron,92,100–102 although no molecular
explanation was (or could be) given. We pick this up in the
Amyloid-Like Conformational Transitions in Fibrin(ogen) sec-
tion. First however, we need to deal with two other topics.

Fig. 2 The classical coagulation pathways, where assembly of fibrin fibers proceeds in a stepwise fashion (redrawn from Kell and Pretorius74

under an open access CC-BY license).
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Endotoxin-Induced “Disseminated Intravascular
Coagulation”
Endotoxin (LPS) may also induce a runaway form of
hypercoagulation57,103–117 known as disseminated intravas-
cular coagulation (DIC). There is significant evidence now
that DIC is reasonably well defined46,118–120 and that it can
directly lead to MOF and death (Cunningham and Nelson,121

and see the following). We hypothesize here that the form of
clotting in DIC in fact involves autocatalytic fibrin(ogen) self-
organization leading to amyloid formation, which is consis-
tent with the faster clot formation in the presence of en-
dotoxin98 and which we have recently shown can occur in
vitrowithminiscule amounts of LPS.80 In particular, thismay
be a major contributor to the various stages of sepsis, SIRS,
MODS, and ultimately of organismal death.

Prions, Protein Free Energies, and Amyloid Proteins
Although it was originally shown that at least some proteins,
when denatured and renatured, could revert to their original
conformation,122,123 implying that this was (isoenergetic
with) the one of lowest free energy, this is now known not

tobeuniversal. Leaving aside chaperones and the like, onefield
in which proteins of the same sequence are well known to
adopt radically different conformations, with a much more
extensive β-sheet component (that is indeed thermodynami-
cally more stable), is that of prion biology.124,125 Thus, the
prion protein is normally in an α-helix-rich conformation
known as PrPc. However, it can also adopt a proteinase
K-resistant form of the same sequence, known as PrPSc.126–131

The PrPc and PrPsc conformations and the catalysis of the
conversion to itself by the latter of the former are very well
known. The key point for us here, however, is indeed that this
definitely implies77,124,125,128,132–136 that proteins that may
initially fold into a certain, ostensibly “native,” conformation
can in fact adopt stable and more β-sheet-rich conformations
of a lower free energy, separated from that of the original
conformation by a potentially significant energy barrier.

Amyloid-Like Conformational Transitions in
Fibrin(ogen)
Asmentioned earlier, the general view (also see the following)
is that no major secondary structural changes occur during

Fig. 3 The results of thrombin-mediated blood clotting. (A–C) Micrographs taken with a Zeiss LSM 800 superresolution Airyscan confocal
microscopy using the α Plan-Apochromat 63x/1.46 Oil DIC M27 Elyra objective. (D) Micrograph taken with a Zeiss LSM 510 META confocal
microscope with a Plan-Apochromat 63x/1.4 Oil DIC objective. (A) Healthy platelet poor plasma (PPP) with added thioflavin T (ThT) (5-μM
exposure concentration) and thrombin. (B) The same PPP, with added lipopolysaccharide (LPS) (0.2 ng/L exposure concentration), followed by
addition ThT and thrombin. (C) The same PPP, with added LPS followed by LPS-binding protein (2 ng/L final exposure concentration) followed by
addition ThT and thrombin. (D) PPP, with added LPS (0.2 ng/L exposure concentration), followed by addition ThT and thrombin.
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normal fibrin formation.77,85,87 However, we know of at least
three circumstances inwhichfibrin can (i.e., isknown to) adopt
a β-sheet-rich conformation: (1) in the case of specific mutant
sequences of the fibrinogen a chain,137–143 (2) when fibrin is
stretched mechanically beyond a certain limit,144–150 and (3)
when formed in the presence of certain small molecules,
including bacterial LPS.76,80,151 Thus, it is well established
that fibrin can form β-sheet-rich amyloids, although it is
assumed that conventional blood clotting involves only a
“knobs-and-holes” mechanism, without any major changes
in secondary structure.85–90,152,153 We hypothesize here that
the “densematteddeposits” seenearlierare in factβ-sheet-rich
amyloids, and that it is this coagulopathy in particular that
contributes significantly to the procession of sepsis along or
through the cascade of toxicity outlined in ►Fig. 1. To be
specific, we consider that the binding of the LPS must be to
fibrinogen itself since only this is preexisting and we have
demonstrated it directly using isothermal calorimetry.80 We
note too that there is almost no “free” LPS except immediately
after its addition/liberation from a bacterium, and that the
kinetics of fibrinogen polymerization during thrombin-in-
duced clotting are so fast that it is not necessary to invoke
subsequentbindingofLPStoprotofibrilsandsoonaspartof the
mechanism of amyloidogenesis and toxicity.

In particular, thioflavin T (ThT) is a stainwhose fluorescence
(whenexcitedat440–450 nmorso) ismassivelyenhancedupon
binding to β-sheet-rich amyloids154–163 (whose conformation
differsmarkedly from that of “normal” β-sheets in proteins, else
it would stain most such proteins). ►Fig. 3A to C show micro-
graphs taken of clots with a Zeiss superresolution microscope
using Airyscan technology (Carl Zeiss), and ►Fig. 3D shows a
micrograph taken using a Zeiss confocalmicroscope (see legend
for specific detail).►Fig. 3A is a micrograph of healthy platelet
poor plasma (PPP) with added ThT and thrombin. This is a
representative micrograph to show “normal” clot structure,
whereas ►Fig. 3B and D shows healthy PPP with added LPS
and ThT. High-resolutionAiryscan technology (►Fig. 3B) shows
ThTbinding to areaswhere β-sheet-rich amyloidswere induced
by LPS. ►Fig. 3C shows PPP preexposed to LPS, followed by
exposure to LPS-binding protein, ThT, and thrombin. LPS-bind-
ing proteinwas able to reverse the formation of the β-sheet-rich
amyloids areas created by preexposure to LPS. Confocal micro-
scopy (►Fig. 3D) also shows this ThT binding to β-sheet-rich
amyloid areas. However, individual binding areas are not as
clearly visible aswith the Airyscan technology. Nonetheless, the
extent of β-amyloid formation in the LPS-treated over the two
controls is very striking.

We also note the important analyses of Strickland et al to
the effect that β-amyloid can interact with fibrin(ogen)164–170

and cause it to become refractory to fibrinolysis.170–173

Inflammatory Nature of Fibrin

The fact that fibrin itself is, or can be, inflammatory is well
established108,174–179 and does not need further elaboration.
Our main point here is that in none of these studies has it
been established whether (or to what extent) the fibrin is in

an amyloid form or not so far. Certainly, it is very well
established that amyloids can be inflammatory.180–183

Further Evidence for the “Trigger” Role of
LPS in Large-Scale Amyloid Formation

In our previous studies,80 we found that LPS (endotoxin) at a
concentration of just 0.2 ng/L could trigger the conversion of
some 108 times more fibrinogen molecules,80 and that the
fibrin fibers so formed were amyloid in nature. (A very large
amplification of structuralmolecular transitions could also be
induced by LPS in a nematic liquid crystal.184–186) Only some
kind of autocatalytic processes can easily explain this kind of
polymerization, just as occurs in prions,77,129,131 where iron
may also be involved.70,71,187–189 To be explicit, the only
feasible explanation is one in which an initial fibrinogen
molecule with bound LPS adopts, at least on the loss of its
fibrinopeptides, conformations inwhich the subsequent fibri-
nopeptide-less fibrinogens must also change their conforma-
tions to bind to it and so on asfibrinogens becomeprotofibrils,
protofibrils becomefibrils, and so on. Put another way, if LPS is
the only (and highly substoichiometric) addition to thrombin-
induced fibrin formation, there must be an “autocatalytic
process,” somewhat analogous to a prion, that must be taking
place since rather than having conventional strands of fibrin,
we have amorphous, denatured β sheets.

Cytotoxicity of Amyloids

Cytotoxicity of amyloids is so well known98,182,190–197 that it
barely needs rehearsing. However, the relative toxicities of
soluble material, protofibrils, fibrils, and so on are less well
understood,198 in part because they can equilibrate with each
other even if added as a “pure” component (of a given narrow
NBequilibrate range).Althoughthelargerfibrilsaremuchmore
easily observable microscopically, there is a great deal of
evidence that it is the smaller ones that are the more
cytotoxic.199–216 So far as is known, almost all (cf. Holm
et al217) the established forms of amyloid are cytotoxic. How-
ever, thetestshavenot yetbeenperformedfor thefibrinversion
since it has only very recently been discovered.77,80 This is an
urgent task for the future.

Sequelae Consistent with the Role of
Amyloids in the “Sepsis Cascade” to Organ
Failure and Death

If vascular or systemic amyloidogenesis really is a significant
contributor to the worsening patient conditions as septic
shock moves toward MOF/MODS and death, with the cyto-
toxic amyloids (whether from fibrin and/or otherwise) in
effect being largely responsible for the MOF, then one might
expect it to be visible as amyloid deposits in organs such as
the kidney (whether as biopsies or postmortem). It is cer-
tainly possible to find evidence for this,218–223 and our
proposal is that such amyloid should be sought using ThT
or other suitable staining in autopsy tissue.
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Hypo- or Hypertensive States

A hallmark of most of the chronic, inflammatory diseases that
we have considered here and elsewhere (as cited) is that they
are either normotensive or (to varying degrees) hypertensive.
By contrast, sepsis and septic shock are strongly hypotensive
(accompanied by hypoperfusion),224–228 and their normal-
ization is considered a crucial factor for lowering mortality.
Consequently, this bears a brief discussion. Of course, at one
level, it is common in biology that something can be a stimulus
(e.g., of blood pressure) at a low concentration and can be an
inhibitor at a high concentration (this is known as “horm-
esis”229–231). At a descriptive level, this is clearly happening
here. As it stands, however, we can find no literature that has
comparedchanges in tensionas thedoseofendotoxin isvaried,
with the doses given in such studies of endotoxin-induced
shock normally being sufficient to induce significant hypoten-
sion.232–234 It is, however, of considerable interest that this
endotoxin-inducedhypotension (andother sequelae) could be
relieved by antithrombin (e.g.,233,235–247), implying a contri-
buting role for coagulopathies in the hypotension otherwise
observed, albeit other mechanisms are possible.238

How Might This Understanding Lead to
Improved Treatment Options?

Over the years, there have been many high-profile failures of
therapies for various aspects of severe inflammation, sepsis,
septic shock, and SIRS. These include therapies aimed at

endotoxin itself (Centoxin),248–250 and the use of recombi-
nant activated protein C251 or Drotrecogin alfa.2,250,252,253

Anticytokine and anti-inflammatory treatments have also
had, at best, mixed results.254,255

However, the overall picture that we have come to is given
in►Fig. 4. This implies thatwemight hope to stop theprogress
of the sepsis/SIRS/MODS cascade at any (preferably several256)
of several other places, including through iron chela-
tion,70,71,257,258 the use of anti-inflammatory agents, the use
ofanticoagulantssuchasheparin178orantithrombin,233,238,243

and the use of stimulants of fibrinolysis.259 The success of
heparin260,261 (see also Zarychanski et al, van Roessel et al, and
Okamoto et al262–264) is especially noteworthy in the context of
the present hypothesis, though it may have multiple (not
simply directly anticoagulant) actions.265,266 The same is
true of antithrombin.233,235–247,267,268However, antithrombin
has also not been efficacious, especially in combination with
heparin269 and is globally not recommended in sepsis therapy
guidelines.4,270 Indeed, suppressing coagulation in sepsis glob-
allymaybe inimical, as it is thought to serve a protective role in
the initial stages of the disease.271 It is also noteworthy that
high-density lipoprotein (HDL) cholesterol is a protective
against sepsis18,272–274 (HDL are antioxidant275 and anti-
inflammatory276 and can also bind and neutralize endo-
toxin277–279). Therefore, the beneficial role of certain statins
in sepsis280,281 should be seen in the context of their much
more potent anti-inflammatory role70 rather than in any
(modest) role involved in lowering overall serum cholesterol.
Phospholipid emulsions may also serve.282

Fig. 4 A systems biology model of the development of coagulopathies during sepsis, systemic inflammatory response syndrome, and multiple
organ dysfunction syndrome. An elementary systems biology model of how iron dysregulation can stimulate dormant bacterial growth that can,
in turn, lead to antigen production (e.g., of lipopolysaccharide [LPS]) that can then trigger inflammation leading to cell death70,71 and a variety of
diseases. While it is recognized that this simple diagram is very far from capturing the richness of these phenomena, there is abundant evidence
for each of these steps, starting with (0) an infection/gut dysbiosis and the creation of a (dormant) blood and tissue microbiome. This is typically
accompanied by (1) iron dysregulation, which is known to be present in many diseases, as both cause and result (5) and as an important cause of
inflammation (6) and even organism death (10). Iron, in turn, feeds bacterial growth (2), leading to production of, for example, LPS with an
accompanying upregulated inflammatory cytokine profile (3), leading to disease (4). In inflammation both apoptotic death (8) and
coagulopathies (7) are well-known phenomena. In turn, apoptotic death can lead to organism death (9).
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Wehave noted previously (reviewed in Kell and Pretorius74)
that such “dense matter deposits” (now recognized as amyloid
forms) aremuchmore resistant to fibrinolysis than is “normal”
fibrinogen.Theworkinghypothesishere is that theβ-sheet-rich
forms are more resistant to proteolysis because (as in prions,
wherethestructuresareknown)theresiduesnormally targeted
by the relevant proteases are no longer exposed. Clearly, the
removalof suchstructureswouldbenefit fromthedevelopment
of novel proteases to which they are susceptible.

Recombinant soluble human thrombomodulin (TM-α) is a
novel anticoagulant drug and has been found to have signifi-
cant efficacy in the treatment of sepsis-based DIC,247,283–293

albeit fully powered randomized trials are awaited,294,295

again adding further weight to our hypothesis. As Okamoto
et al264 point out, “In the European Union and the USA, the
2012 guidelines of the Surviving Sepsis Campaign do not
recommend treatment for septicDIC.4,296 In contrast, in Japan,
aggressive treatment of septic DIC is encouraged,”297–300 and
that “that Japan is one of the countries that most effectively
treats patients with septic DIC.”264 A recent meta-analysis of
randomized controlled trials for the efficacy and safety of
anticoagulant therapy demonstrated that such therapy has a
survival benefit in those with sepsis-induced DIC, but not in
the overall populationwith sepsis or even in populations with
sepsis-induced coagulopathy.271Wenote that the influence of
soluble TM may be mediated by its indirect thrombin inhibi-
tion by binding and not localizing it to a sitewhere protein C is
activated.

Thus, if it is accepted that the type of fibrin that is formed
is substantially of the amyloid variety, then anticoagulant
and other drugs that inhibit or reverse such amyloid pro-

cesses should also be of value,301 as they seem to be in
Alzheimer-type dementia.165,302,303

Concluding Remarks

Weconcludebyshowingour lineof thought in►Fig. 5. There is
by now abundant evidence that coagulopathies involving
fibrin clots are a major part of sepsis, SIRS, septic shock,
MODS, DIC, and organismal death. We have invoked further
evidence that the typeoffibrin involved is anamyloid formand
have suggested that it is this that is especially damaging. This
definitely needs to be tested further, for instance, using
appropriate stains155,304 and/or X-ray measurements305–307

in concert with cellular toxicity assays. The former could easily
be performed in or near the intensive therapy unit. LPS and
other substances have now been shown to cause anomalous
forms of fibrin, which opens up many novels lines of work,
such that reducing or eliminating themmight be worthwhile,
for example,with LPS-binding protein. Finally, as a corollary of
the above, we suggest that anticoagulant therapies that inhibit
or reverse those β-amyloid forms of fibrin production will be
especially valuable. To this end, lowering the levels of fibrino-
gen itself would seem to be a desirable aim.308
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Fig. 5 A schematic representation outlining our hypothesis based on current knowledge (A), experimental evidence for our hypothesis
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