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Early T precursor acute lymphoblastic leukemia (ETP-ALL) exhibits poor clinical outcomes
and high relapse rates following conventional chemotherapeutic protocols. Extensive
developmental flexibility of the multipotent ETP-ALL blasts with considerable intra-
population heterogeneity in terms of immunophenotype and prognostic parameters
might be a target for novel therapeutic interventions. Using a public gene expression
dataset (GSE28703) from NCBI GEO DataSets with 12 ETP-ALL and 40 non-ETP-ALL
samples, such heterogeneity was found to be reflected in their transcriptome as well. Hub
genes were identified from the STRING-derived functional interaction network of genes
showing differential expression between ETP-ALL and non-ETP-ALL as well as variable
expression across ETP-ALL. Nine genes (KIT, HGF, NT5E, PROM1, CD33, ANPEP,
CDH2, IL1B, and CXCL2) among the hubs were further validated as possible diagnostic
ETP-ALL markers using another gene expression dataset (GSE78132) with 17 ETP-ALL
and 27 non-ETP-ALL samples. Linear dimensionality reduction analysis with the
expression levels of the hub genes in ETP-ALL revealed their divergent inclinations
towards different hematopoietic lineages, proposing them as novel indicators of lineage
specification in the incompletely differentiated ETP-ALL blasts. This further led to the
formulation of a personalized lineage score calculation algorithm, which uncovered a
considerable B-lineage-bias in a substantial fraction of ETP-ALL subjects from the
GSE28703 and GSE78132 cohorts. In addition, STRING-derived physical interactome
of the potential biomarkers displayed complete segregation of the B-lineage-skewed
markers from other lineage-associated factors, highlighting their distinct functionality and
possible druggability in ETP-ALL. A panel of these biomarkers might be useful in
pinpointing the dominant lineage specification programmes in the ETP-ALL blasts on a
personalized level, urging the development of novel lineage-directed precision therapies as
well as repurposing of existing therapies against leukemia of different hematopoietic
lineages; which might overcome the drawbacks of conventional chemotherapy.
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INTRODUCTION

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive
hematologic neoplasm of the T lymphocytic compartment,
accounting for 15 and 25% of total pediatric and adult acute
lymphoblastic leukemia (ALL) cases, respectively (Vadillo et al.,
2018). The disease mostly involves cancerous transformation of
the T-lineage primed progenitors (Kraszewska et al., 2012),
reflected in its immunophenotypic resemblance to that of the
T cells (Bene et al., 1995). Interestingly, early T precursor acute
lymphoblastic leukemia (ETP-ALL), a recently discovered
subgroup of T-ALL, shows a considerably divergent
immunophenotype, including low levels of T-lineage
commitment markers along with high expression of one or
more stem cell or myeloid antigens (Coustan-Smith et al.,
2009; Chopra et al., 2014). The leukemic blasts of ETP-ALL
arise from a bone marrow-derived multipotent hematopoietic
progenitor called early thymic progenitor (ETP), designated as
the earliest precursor of thymic T-lymphocytes (Treanor et al.,
2014; Booth et al., 2018). In spite of persisting debates regarding
the deterministic ontogeny of the ETPs, their capability of
producing cells of myeloid (Bell and Bhandoola, 2008; Wada
et al., 2008; Luc et al., 2012) as well as B-lymphocytic (Luc et al.,
2012) lineages have been undisputed. A spectrum of potencies
exists within the ETP population, often marked by lineage-
specific signatures (Haymaker et al., 2012), which gives rise to
considerable intra-population heterogeneity among the ETPs and
influences their developmental outcome according to
microenvironmental cues (Barik et al., 2017; Barik et al.,
2018). This multitude of potencies is reflected in the variability
of lineage-restricted marker expression in the ETP-ALL blasts on
a patient-to-patient basis.

In spite of a relatively low rate of incidence among children
(11%) as well as adults (7.4%), the clinical outcome for ETP-ALL
is often remarkably poor; even worse than other T-ALL subtypes
(Coustan-Smith et al., 2009; Inukai et al., 2012). However,
chemotherapy is the only available tool in defence of this
disease due to the paucity of United States Food and Drug
Administration (FDA)-approved targeted therapies (Castaneda
Puglianini and Papadantonakis, 2020). Conventional
chemotherapeutic strategies to combat T-ALL exhibit
suboptimal clinical efficiency against ETP-ALL (Wood et al.,
2014; Jain et al., 2016; Yang et al., 2019). The presence of
minimal residual disease and the resultant chances of relapse
after such chemotherapeutic interventions constitute a point of
serious concern regarding this disease (Wood et al., 2009; Zhang
et al., 2020). Therefore, making a successful diagnosis is crucial
for the clinical efficiency in case of ETP-ALL treatment, since
being misdiagnosed as a case of generic T-ALL might lead to
application of fallacious therapies.

Several studies have explored the genetic traits of ALL samples
and have identified various mutational and transcriptional
signatures unique to ETP-ALL (Zhang et al., 2012; Neumann
et al., 2013; Zuurbier et al., 2014; Kumar et al., 2019; Wang and
Zhang, 2020). Although these biomarkers successfully
discriminate ETP-ALL from other incidences of T-ALL, one
important caveat still remains: the developmental plasticity of

the ETP-ALL blasts. Several targeted therapies against ETP-ALL
are currently under evaluation, such as Peg-L-Asparaginase
(Patrick et al., 2014), Ruxolitinib (Maude et al., 2015; Verbeke
et al., 2019), Venetoclax (Numan et al., 2018), Venetoclax-plus-
Nelarabine (McEwan et al., 2020) etc., with demonstrated
efficacies against the disease. However, because of the
miscellany of potencies in possession of the ETP-ALL blasts,
any single therapeutic regimen being universally effective against
every single case of ETP-ALL is extremely unlikely, if at all
possible. As a result, an individual with majority of B-lineage-
biased ETP-ALL blasts may not show satisfactory remission upon
treatment with myeloid-targeted therapies, owing to the subtle
differences in a vast range of physiological responses of cells from
different hematopoietic lineages against the same drug. In fact,
different cases of ETP-ALL show different responses against
similar kind of therapies (Bernt et al., 2016; Genescà et al.,
2020; McEwan et al., 2020; Sin and Man, 2021). Again, the
lack of clarity regarding the expression of lineage markers in
ETP-ALL often leads to misclassification of individual ETP-ALL
cases with aberrant non-T marker expression as non-T-lineage
neoplasms (Khurana et al., 2020). Therefore, the so far
underappreciated multi-lineage potency of the ETP-ALL blasts
might be targeted to aid the diagnosis of as well as the therapy
designing against this malignant pathology, especially as a
stepping stone for precision medicine (Tarantini et al., 2021).

Against such a backdrop, this study explored the ETP-ALL
transcriptome available on public databases to pinpoint the hubs
from a functional interaction network of genes showing
significant difference in expression between ETP-ALL and
non-ETP-ALL subjects as well as substantial variance among
the ETP-ALL subjects themselves. Transcript levels of the genes,
therefore, might not only classify ALL into ETP-ALL and non-
ETP-ALL, but might further categorize ETP-ALL into separate
subclasses based on their differential lineage inclinations. This
may potentiate the invention of novel precision therapies
targeting different lineage propensities, which might eliminate
the shortcomings of conventional chemotherapy. Besides, the
findings might open new avenues for the prospective use of B-cell
acute lymphoblastic leukemia (B-ALL) or acute myelogenous
leukemia (AML)-directed therapeutic modalities against ETP-
ALL in a case-by-case manner.

MATERIALS AND METHODS

Data Acquisition and Processing
The flow of work adopted in this study is depicted in Figure 1.
Two publicly available transcriptome datasets (accession
numbers: GSE28703 and GSE78132) containing normalized
gene expression data from ETP-ALL and non-ETP-ALL
leukemic blasts were selected from NCBI Gene Expression
Omnibus (GEO) DataSets (Barrett et al., 2012) after a search
against the keyword “ETP-ALL”. The GSE28703 data, comprising
of 12 ETP-ALL and 40 non-ETP-ALL samples, was used to
discover differential expression signatures between ETP-ALL
and non-ETP-ALL; while the GSE78132 data (GPL96
platform), comprising of 17 ETP-ALL and 27 non-ETP-ALL
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samples, was used for validation of the identified signatures. The
relatively smaller size of the patient cohorts was accepted due to
the relatively rare occurrence rate of ETP-ALL (Coustan-Smith
et al., 2009). Another public microarray dataset (accession
number: GSE13159) was used to evaluate gene expression
levels in acute leukemia of mature leukocytes (T-ALL, B-ALL,
AML) as well as progenitor/precursor-B-cell acute lymphoblastic
leukemia (pro/pre-B-ALL). Detailed information regarding the
datasets is provided in Supplementary Table S1. Probe
annotations and further processing of the datasets were
performed as previously described (Mukherjee et al., 2021).

Clustering
The unsupervised, agglomerative hierarchical clustering-based
dendrogram, constructed on iDEP.92 (Ge et al., 2018) with

top 10,000 variable genes, clustered samples on the basis of
Euclidean distance and complete linkage. Multidimensional
scaling (MDS)-based clustering was conducted on iDEP.92 as
a method of non-linear dimensionality reduction.

Differential Gene Expression Analysis
Identification of differentially expressed genes (DEG) between
sample groups was performed on iDEP.92 using the limma
function with fold-change >2 and FDR (false discovery rate)
<0.1. Genes with standard deviation >2 in expression values
within the ETP-ALL group were selected as variably expressed
genes within ETP-ALL. Gene expression heatmaps of differentially/
variably expressed genes were created on Heatmapper (Babicki
et al., 2016). Venn diagram of differentially regulated genes was built
using InteractiVenn (Heberle et al., 2015).

FIGURE 1 | Diagrammatic representation of the work-flow. The entire work lies on three segments: discovery of transcriptomic signatures from the GSE28703
dataset, validation of the proposed signatures in the GSE78132 (and GSE13159 in some cases) datasets and amalgamation of the validated findings in order to identify
potential lineage-directed diagnostic and therapeutic implementations against ETP-ALL.
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Protein-Protein Interaction Network
Construction
Knowledge-based protein-protein interaction maps involving
genes of interest were retrieved from STRING (Szklarczyk
et al., 2019) and visualized on Cytoscape v3.8.2 (Shannon
et al., 2003). Each node represented a protein, while each edge
represented an interaction between them. For functional
networks, these edges included every possible interaction
criterion (gene neighborhood, gene fusion, gene co-occurrence,
co-expression etc), whereas for physical networks, the edges
signified physical interactions only. For all networks, a
confidence cut-off of 0.4 was taken for edge mapping. Only
the nodes connected to at least one edge were visualized on
the network. Hub genes were identified using the cytoHubba
plugin (Chin et al., 2014). Maximal clique centrality (MCC)
scores were considered the key metric while ranking the genes
in terms of their quality to act as hub genes within the network.

Enrichment Analysis
Over-representation analysis with the differentially expressed
genes between ETP-ALL and non-ETP-ALL was performed on
ConsensusPathDB (Kamburov et al., 2009; Kamburov et al.,
2011) against the ‘REACTOME’ database (for significantly
enriched pathways) and on Enrichr (Chen et al., 2013;
Kuleshov et al., 2016; Xie et al., 2021) against the ‘CORUM’
database (for significantly enriched protein complexes).
Pathways/protein complexes with p-value <0.01 and overlap
>5 genes were mapped onto the pathway network. Edge
thicknesses on the networks described the relative overlap in
genes between the two gene set nodes. Gene set enrichment
analysis (GSEA) against the ‘GO biological process’ (for
pathways) and ‘TF.Target.TRRUST’ (for transcription factors)
databases for ETP-ALL samples with higher and lower levels of
hub gene expression than the corresponding cohort mean was
performed on iDEP.92, with FDR <0.2. Pathway enrichment on
Cytoscape was carried out using the ‘STRING Enrichment’
function on the ‘StringApp’ plugin (Doncheva et al., 2018).
The whole genome network was used as the background,
while the ‘STRING Clusters’ database was used as the
reference for pathway mappings in the converged network.
‘REACTOME pathways’ database was used for pathway
mappings in the networks of individual hub genes. The
‘MSigDB hallmark’ and ‘CORUM’ databases on Enrichr were
used as reference for pathway enrichment and protein complex
enrichment, respectively, of genes variably expressed among
ETP-ALL samples. All enrichment analyses were carried out
assuming hyper-geometric probabilistic distributions of the
reference gene sets within the respective gene lists in each case.

Classifier Performance Analysis
The ability of genes as binary classifiers in discriminating between
ETP-ALL and non-ETP-ALL was tested using receiver operating
characteristic (ROC) analysis on ROCplot (Fekete and Győrffy,
2019). Magnitude of the area under curve (AUC) statistic was
considered representative of classifier quality. Corresponding
confusion matrices denoted the extent of true and false
prediction rates in the classification process for individual classifiers.

Association Analysis
The pairwise correlation matrix of all ETP-ALL and non-ETP-
ALL samples, constructed on iDEP.92, was composed of
Pearson’s correlation coefficients between each pair of samples,
denoting their whole transcriptomic correlation. Linear
dimensionality reduction in terms of principal component
analysis (PCA) with normalized expression values of selected
genes in ETP-ALL was carried out on ClustVis (Metsalu and Vilo,
2015). Normalization of expression values of individual genes was
performed with respect to their cognate mean expression levels in
the non-ETP-ALL group to yield a measure of co-expression
trends across different lineages. For analyzing associations of
individual hub gene expression with particular lineages, the ETP-
ALL cohort was divided into two groups based on higher and
lower expression levels of the individual hub genes compared to
their corresponding mean expression, followed by analysis of
lineage marker expression in these groups. Correlation between
the expression levels of individual genes and the leukemia
subtypes based on GSE13159 data was observed on BloodSpot
(Bagger et al., 2019).

Personalized Lineage Score Formulation
For prediction of personalized scores indicating net lineage skew
in leukemic blasts from ETP-ALL patients, expression values of
each hub gene were normalized with respect to the population
mean expression values of the respective genes. Next, the
normalized expression values were transformed to a fold-
change value with respect to the stem-like condition by the
following formula:

TransformedExpression Score
� Normalized expression score of hub gene
÷ Normalized expression score ofPROM1

Lineage scores were further computed as geometric means of
transformed expression scores of all genes displaying skew
towards individual lineages (adapted from Ravichandran et al.,
2021). Formulae for calculation of the respective lineage scores
are as follows (TES: Transformed Expression Score).

Myeloidlineagescore
� [TES(KIT)×TES(HGF)×TES(ANPEP)×TES(CXCL2)]1/4

B − lineage score � [TES(NT5E) × TES(CXCL2)]1/2
T − lineage score � TES(CDH2)

Lineage score for unidentified bias

� [TES(CD33) × TES(IL1B)]1/2

All lineages with lineage score values within 10% error range of
the maximum lineage score for an individual sample were
assigned to the respective sample.

Statistics and Data Visualization
Statistical analyses were carried out on GraphPad Prism v5.0 for
Windows, GraphPad Software, La Jolla, California, United States.
Column plots were constructed using the mean and standard
error of mean (SEM). Box plots represented the mean and
interquartile range. Whiskers extended till the 5th and 95th
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FIGURE 2 | Contrasting transcriptomic features between ETP-ALL and non-ETP-ALL. (A) Expression level of CD5 in ETP-ALL and non-ETP-ALL groups from
GSE28703 dataset. Statistical significance was calculated using two-tailed unpaired Student’s t-test. (B) Rooted dendrogram of all samples from GSE28703 dataset
showing unsupervised hierarchical clustering between ETP-ALL and non-ETP-ALL. (C) Multidimensional scaling (MDS) plot of ETP-ALL (red circle) and non-ETP-ALL
(cyan triangle) samples from GSE28703. (D) Volcano plot representing differentially expressed genes (fold change >2, false discovery rate <0.1) between ETP-ALL
and non-ETP-ALL groups from GSE28703. Red dots represent genes upregulated, while blue dots represent genes downregulated in ETP-ALL compared to non-ETP-
ALL. (E) Row z-score normalized unclustered heatmap of expression levels of top 20 differentially expressed genes between ETP-ALL and non-ETP-ALL groups from
GSE28703. (F) Network of REACTOME pathways enriched in genes upregulated in ETP-ALL. Diameter and colour intensity of nodes represent gene set size and statistical
confidence, respectively. (G) Network of protein complexes from CORUM enriched in genes upregulated in ETP-ALL. (H) Network of REACTOME pathways enriched in
genes downregulated in ETP-ALL (upregulated in non-ETP-ALL). (I) Network of protein complexes from CORUM enriched in genes downregulated in ETP-ALL.
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percentile, while remaining points were shown as outliers. Violin
plots, constructed on BoxPlotR (Spitzer et al., 2014), additionally
represented the Kernel density distributions aligned sidewise. For
statistical comparisons, two-tailed unpaired Student’s t-test with
95% confidence interval was performed. Benjamini–Hochberg
procedure was applied to compute false discovery rates for
multiple comparisons (Benjamini and Hochberg, 1995).
Bubble plots represented the overlap between test and
reference gene sets and -log10FDR along the axes, while bubble
diameters were proportional to gene set sizes.

RESULTS

ETP-ALL Blasts Exhibit Pronounced
Transcriptomic Differences in Comparison
With Non-ETP-ALL
To design transcriptome-based diagnostic signatures of ETP-
ALL, the first step was to test if the immunophenotypic
differences between ETP-ALL and non-ETP-ALL (Coustan-
Smith et al., 2009) are reflected in their transcriptome. Quality
of the processed data from the discovery dataset (GSE28703) was
assessed by checking the box plot (Supplementary Figure S1A)
and density distribution (Supplementary Figure S1B) of
normalized expression values from individual samples. In
addition, significantly different CD5 expression between the
two groups (Figure 2A) supported their respective ETP-ALL
and non-ETP-ALL status (Chopra et al., 2014). Unsupervised
hierarchical clustering on a rooted dendrogram (Figure 2B)
showed clear divergence between the two groups. Only one
non-ETP-ALL sample was present as an outlier in the ETP-
ALL branch, while the non-ETP-ALL branch carried no
contamination from the ETP-ALL group. Similarly, discernible
clustering between the two ALL groups was observed on the
multidimensional scaling plot (Figure 2C). Such distinguishable
transcriptomic patterns between ETP-ALL and non-ETP-ALL
not only supported the biological differences between them, but
also pointed out the necessity to acknowledge the biological
properties of ETP-ALL as a separate entity in order to design
prospective therapies against the disease. The extent of
upregulated and downregulated transcripts (Figure 2D) was
comparable between the two groups, indicating no global
transcriptional shift in any of them. This idea of balanced
transcriptomic alterations was further supported by the MA
plot (Supplementary Figure S1C) and scatter-plot of average
expression values in the two ALL groups (Supplementary Figure
S1D), showing near-similar counts (Supplementary Figure S1E)
of DEGs (Supplementary Table S2) in both directions. Genes
showing higher expression in ETP-ALL were mostly related to
non-T lineages as well as hematopoietic stemness, while many of
the genes showing elevated expression in non-ETP-ALL were
associated with T-lineage commitment (Figure 2E). These
transcriptomic contrasts underpinned the pathway-level
disparity between the two groups. ETP-ALL blasts showed
enrichment in Toll like receptor (TLR) cascades and pro-
inflammatory cytokine (Interleukin-1, Interleukin-17,

Interferon-γ) signalling pathways (Figure 2F, Supplementary
Table S3), likely to be mediated by inflammatory protein
complexes containing Transforming Growth Factor (TGF)-β,
Phospholipase C-γ etc (Figure 2G, Supplementary Table S4).
Non-ETP-ALL blasts displayed higher propensity towards cell
cycle progression, cell division as well as T-cell receptor-mediated
and co-stimulatory signalling events (Figure 2H, Supplementary
Table S3), where cell cycle checkpoint complexes and T cell
maturation factors such as CD3, RAG (Recombination activating
gene) clusters plausibly play a pivotal part (Figure 2I,
Supplementary Table S4).

ETP-ALL Bears Considerable Intra-Group
Transcriptomic Diversity
Interestingly, a high fraction of subjects among the ETP-ALL
group showed lower transcriptome-wide correlation (Figure 3A),
while transcriptome from most of the non-ETP-ALL cases were
tightly correlated among themselves; yielding a statistically
significant difference between the distributions of their
correlation coefficients (Figure 3B). Many of the top genes
showing very high standard deviations among the ETP-ALL
cases were associated with various hematopoietic lineages
(Supplementary Figure S2A). Top pathways (Supplementary
Figure S2B, Supplementary Table S5) and protein complexes
(Supplementary Figure S2C, Supplementary Table S6)
associated with these genes, expected to show variable
activities across the ETP-ALL cohort, were of diverse
functional categories; starting from cell survival and apoptosis
to metabolism and hemostasis. Among the 251 genes
(Supplementary Table S7) contributing most to this intra-
group variability of ETP-ALL, 75 and 33 genes, respectively,
exhibited higher and lower transcript levels in ETP-ALL
compared to non-ETP-ALL (Figure 3C, Supplementary Table
S8). These 108 (75 + 33) genes, supposedly at the root of the
transcriptomic heterogeneity within the ETP-ALL group, were
also differentially expressed between ETP-ALL and non-ETP-
ALL, ensuring this variability to be ETP-ALL-specific. To identify
potential key drivers effectuating this transcriptomic diversity of
ETP-ALL, the 108 genes were integrated into a functional
protein-protein interaction (PPI) network (Figure 3D). Based
on maximal clique centrality (MCC) scoring (Supplementary
Table S9), top 10 nodes were selected as hub genes (Figure 3E),
which displayed the highest degree of centrality across the entire
network, therefore could be targeted to achieve maximal success
in perturbing the network. An appreciable level of connectivity
among the hub genes themselves (Figure 3F) supported their
operational centrality.

Most of the Hub Genes Exhibit Contrasting
Expression Between ETP-ALL and
Non-ETP-ALL
After requisite quality assessments (Supplementary Figure S3), a
second dataset (GSE78132) was analyzed to affirm the distinctive
expression patterns observed in the discovery dataset. Compared
to non-ETP-ALL samples, the ETP-ALL group expressed higher
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FIGURE 3 | Transcriptomic variability within the ETP-ALL group. (A) Pair-wise correlation matrix of global gene expression levels between each sample from
GSE28703. (B) Box-plot of intra-group Pearson’s correlation coefficients in ETP-ALL and non-ETP-ALL groups. Statistical significance was calculated using two-tailed
unpaired Student’s t-test. (C) Venn diagram of different sets of differentially expressed genes. Tangerine, green and purple circles represent genes upregulated in,
downregulated in and altered (standard deviation >2) across ETP-ALL, respectively. (D) Functional protein-protein interaction network of genes up/downregulated
in as well as altered across ETP-ALL. Constructed on Cytoscape v3.8.2. (E)Maximal Clique Centrality (MCC) score of top 30 hub nodes from the network in Figure 3D.
Top 10 hub nodes are labelled in red. (F) Shortest interaction path of top 10 hub genes within the network. Constructed on Cytoscape v3.8.2.
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FIGURE 4 | Validation of the hub genes as diagnostic biomarkers of ETP-ALL. (A) Expression levels of conventional ETP-ALL markers in ETP-ALL and non-ETP-
ALL groups from GSE78132 dataset. Statistical significance was calculated using two-tailed unpaired Student’s t-test. (B) Expression levels of hub genes in ETP-ALL
and non-ETP-ALL groups from GSE78132 dataset. Two-tailed unpaired Student’s t-test was used to estimate the statistical significance. (C) Receiver operating
characteristic (ROC) curves of hub genes. AUC (area under curve) values indicate prediction accuracy of the genes as biomarkers. (D)Confusion matrices denoting
classification qualities of hub genes. For all hub genes apart from CDH2, ‘True positive’ indicates % of ETP-ALL cases with higher expression than ROC cutoff; ‘False
negative’ indicates % of ETP-ALL cases with lower expression than ROC cutoff; ‘False positive’ indicates % of non-ETP-ALL cases with higher expression than ROC
cutoff; ‘True negative’ indicates % of non-ETP-ALL cases with lower expression than ROC cutoff. The annotations are opposite for CDH2.
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FIGURE 5 | Altered activities of transcription factors across ETP-ALL subpopulations expressing different levels of the hub genes. The ETP-ALL cohort from the
GSE28703 dataset was divided into subpopulations on the basis of high and low levels of individual hub gene expression (details in ‘Enrichment analysis’ under ‘Materials
& Methods’), followed by GSEA against the ‘TF.Target.TRRUST’ database. Normalized enrichment score (NES) of top 30 transcription factor modules, at most, were
represented on the column plots.
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levels of stem cell marker CD34 as well as myeloid markers
CD11B and HLA-DRA, and lower levels of T cell commitment
markers CD1A and CD8A, in this dataset (Figure 4A),
concordant with the expected trends. Nine of the ten hub
genes exhibited statistically significant differences in expression
between the two groups, showing good agreement with the
findings from the discovery dataset (Figure 4B). AUC
parameters for six of the nine hub genes (KIT, PROM1,
ANPEP, CD33, CDH2 and CXCL2) on ROC plots were
comprehensively higher (>0.75) than those of the others
(Figure 4C). Three genes among the latter four, apart from
MPO, showed satisfactory AUC values (>0.65). Reliability of
the classification performances by the genes between ETP-ALL
and non-ETP-ALL in terms of true positivity rate and true
negativity rate, as observed on the corresponding confusion
matrices (Figure 4D), was also in the range of reasonable to
very good. Therefore, these nine genes (KIT, PROM1, ANPEP,
CD33, CDH2, CXCL2, HGF, NT5E, and IL1B) were selected as
candidate diagnostic biomarkers of ETP-ALL.

Expression Levels of the Proposed ETP-ALL
Biomarkers are Indicative of Their
Developmental Bias
Since the hub genes were pivots of the transcriptomic variations
across ETP-ALL samples, it was hypothesized that these genes
might have crucial involvements in the multi-lineage
diversification of the ETP-ALL blasts. Bisection of the
GSE28703 ETP-ALL cohort based on individual hub gene
expression yielded many genes with differential expression
across subpopulations (Supplementary Figure S4). Subsequent
gene set enrichment analyses between ETP-ALL subpopulations
with high and low expression levels of each hub gene revealed
marked alterations in several pathways (Supplementary Figure
S5) and transcription factor activities (Figure 5) of hemato-
developmental significance. Such observations hinted towards
the fact that variable expression of these genes might act as
signatures of different hematopoietic lineage induction processes
in the multipotent ETP-ALL blasts. To further establish the
relationship between hub gene expression and lineage fate
decisions, the hub genes as well as certain developmental
markers (transcription factors as well as surface proteins)
relevant to different hematopoietic branches were overlaid on
the two-dimensional PCA plane (Figure 6A), where proximity
between genes was proportional to the extent of their co-
expression within the ETP-ALL cohort from the GSE28703
dataset. The assumed associations between the hub genes and
the respective lineages were validated by the expression levels of
lineage marker genes in the bisected subpopulations within the
ETP-ALL cohort. Expression of T-lineage markers CD7 and
HES1 varied in concordance with CDH2 expression
(Figure 6B), while B-lineage markers CD19 and EBF1
significantly varied with NT5E levels (Figure 6C). Signature of
lymphoid commitment at the expense of myeloid potency was
ascertained by the expression trends of IL7R (common lymphoid
marker) and CEBPA (myeloid marker) along with CDH2 and
NT5E in individual ETP-ALL subjects (Figure 6D). Despite their

common lymphoid bias, CDH2 and NT5E did not affect B- and
T-lineage marker expression, respectively (Supplementary
Figures S6A,B), while showing a common reciprocal trend
with myeloid-associated gene expression (Supplementary
Figure S6C). NT5E, additionally, showed a quasi-significant
(0.05 < p < 0.1) inverse correlation with stemness marker
CD34 (Supplementary Figure S6D), its close neighbour on
the PCA plot. PROM1 expression exhibited positive
correlation with its nearest neighbour CD34, along with a
decline in the levels of CD38 (Figure 6E) as well as the
lineage markers (Supplementary Figure S6E) in the PROM1hi
subgroup. The myelo-monocytic marker CEBPA, appearing in
the vicinity of HGF, KIT and ANPEP, displayed robust
association with the expression levels of these genes
(Figure 6F). Concomitantly, the lymphoid markers exhibited
an inverse trend with respect to these three hub genes
(Supplementary Figures S6F,G). CXCL2, juxtaposed to B- as
well as myeloid-lineage markers on the PCA plot, showed
significant agreement with the levels of B-lineage-specific
(Figure 6G) as well as myeloid-oriented (Figure 6H) markers.
However, the myeloid predisposition of CXCL2 was more
pronounced for dendritic cell-specific markers CD11C and
IRF8 than granulo-monocytic marker CEBPA. Neither CD33
(Figure 6I) nor IL1B (Figure 6J) exhibited consistency with
the expression levels of their nearest neighbour CD34 as well
as CD19, which, despite being distant on the PCA plane, was
assumed to have a probable association with these genes due to
their proximity to NT5E. Replication of these observations in the
validation cohort (GSE78132) reinforced the proposed
biomarkers as indices of lineage bias in ETP-ALL
(Supplementary Figure S7).

Developmental Skew of the Proposed
ETP-ALL Biomarkers are Corroborated by
Their Expression Levels in B-ALL and AML
Understanding the developmental predisposition of the leukemic
blasts from ETP-ALL patients might potentiate the use of existing
treatment modalities targeting lineage-restricted, mature acute
leukemia against ETP-ALL. Considerable consistency was
observed in terms of lineage-skewed expression of myeloid-
biased KIT, HGF, ANPEP; B-lineage-biased NT5E; T-lineage-
biased CDH2 and myeloid plus B-lineage-biased CXCL2
(Figure 7A) in ETP-ALL (from GSE28703; normalized to
non-ETP-ALL) and in B-ALL, T-ALL and AML (from
GSE13159; normalized to T-ALL). For example, the extent of
expression of the myeloid-skewed marker KIT in ETP-ALL was
comparable to that in AML, and was significantly higher than
those in non-myeloid leukemia such as B-ALL and T-ALL,
further validating the correlation between its expression and
myeloid lineage bias. Despite no correlation with any
B-lineage marker, levels of both CD33 and IL1B in ETP-ALL
were comparable with those in B-ALL. However, their levels were
significantly higher in ETP-ALL than in progenitor/precursor-B-
ALLs (Figure 7B). AlbeitNT5E, their close neighbour on the PCA
plane, exhibited expressional similitude between ETP-ALL and
B-ALL, its levels in pro/pre-B-ALL groups were higher than those
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FIGURE 6 | Inclination of the proposed biomarkers towards different hematopoietic lineages. (A) Principal component analysis (PCA) plot of normalized expression
scores (from GSE28703) of the hub genes along with standard markers of hematopoietic lineages. Lineage affiliation of the known markers are as follows; CD34:
stemness; CEBPA, CSF3R: myelo-monocytic; EBF1, PAX5, CD19, CD79A: B-lineage; CD7, HES1, BCL11B, CD1A: T-lineage; SPI1, ITGAX, IRF8, TCF4: dendritic cells.
(B) Expression of CD7 andHES1 along with different levels of CDH2. (C) Expression of CD19 and EBF1 alongwith different levels of NT5E. (D) Expression of CDH2,
NT5E, IL7R, and CEBPA across different ETP-ALL samples from GSE28703. (E) Expression of CD34 and CD38 along with different levels of PROM1. (F) Expression of
CEBPA along with different levels of HGF, KIT and ANPEP. (G) Expression of CD19 and CD79A along with different levels of CXCL2. (H) Expression of CEBPA, CD11C,
and IRF8 along with different levels of CXCL2. (I) Expression of CD19 and CD34 along with different levels of CD33. (J) Expression of CD19 and CD34 along with different
levels of IL1B. Two-tailed unpaired Student’s t-test was used to compute the statistical significance for each comparison.
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FIGURE 7 | Resemblance in expression status of the proposed biomarkers in ETP-ALL and different leukemia subtypes. (A) Fold change in expression levels of the
proposed biomarkers in ETP-ALL, B-ALL, T-ALL, and AML. (B) Fold change in expression levels of CD33 and IL1B in ETP-ALL and pro/pre-B-ALL. (C) Fold change in
expression levels of NT5E in ETP-ALL and pro/pre-B-ALL. For (A–C), Expression levels of the genes in ETP-ALL were derived from GSE28703 and normalized with
respect to their mean expression values in non-ETP-ALL, while expression levels of the genes in pro/pre-B-ALL, B-ALL, T-ALL, and AML were derived from
GSE13159 and normalized with respect to their mean expression values in T-ALL. (D) Correlation dendrogram of CD33 and IL1B expression levels across different
leukemia subtypes from GSE13159. Constructed on BloodSpot. (E) Correlation dendrogram of NT5E expression levels across different leukemia subtypes from
GSE13159. Constructed on BloodSpot. (F) PCA plot of the proposed biomarkers and standard lineage markers (from Figure 6A) with lineage demarcation boundaries
(orange: stemness, purple: B-lineage, blue: T-lineage, green: dendritic cell, red: myelo-monocytic, grey: unclear lineage skew), drawn on the basis of the consolidated
outcomes. Two-tailed unpaired Student’s t-test was used to calculate the statistical significance, wherever applicable.
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in ETP-ALL (Figure 7C), highlighting possible differences in
lineage orientation of these biomarkers. Among all leukemia
subtypes, CD33 exhibited a robust enrichment in AML and
CML (chronic myelogenous leukemia), while IL1B correlated
best with pediatric ALL and considerably with AML (Figure 7D).
NT5E, on the other hand, was not enriched in any malignancy of
myeloid origin (Figure 7E). Agglomerating all these information,

distinct boundaries were drawn on the 2D PCA plane,
demarcating the developmental inclinations of the component
genes (Figure 7F). CDH2 and NT5E belonged to the T-lineage
(blue) and B-lineage (purple) clusters, respectively; while PROM1
existed in the stemness (orange) cluster. Unlike KIT, HGF, and
ANPEP belonging exclusively to the myelo-monocytic (red)
cluster, CXCL2 was present in the overlapping zone between

FIGURE 8 | Formulation of a personalized score signifying the net lineage bias of the ETP-ALL blasts. (A) Mathematical derivation of the lineage score from the
expression values of hub genes from individual patient samples. (B) Calculation of lineage score for the GSM710933 sample from the GSE28703 dataset. The lineage
with the highest lineage score (labeled in red) was assigned to the sample. (C,D) Predictive lineage assignments for each sample fromGSE28703 (C) andGSE78132 (D)
based on the lineage score calculation.
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B-lineage and dendritic cell-lineage (green) clusters. CD33 and
IL1B were assigned to a separate cluster of uncertainty (grey)
owing to their promiscuity in terms of lympho-myeloid
specification. Of note, this grey cluster was located right
between the B-lineage and stemness clusters, suggestive of
their inclination towards a state in between stem cell-like
pluripotency and lineage induction.

Hub Gene Expression Might Predict the Net
Lineage Bias of the ETP-ALL Leukemic
Blast Populations on a Personalized Level
Owing to the substantial inclination of the hub genes towards
different hematopoietic lineages, their collective expression levels
might be considered hallmark of the net developmental bias of the
entire leukemic blast population in individual ETP-ALL subjects.
However,manual predictions in such casesmight be erroneous and
highly biased. Therefore, the expression scores of all these potential
ETP-ALL biomarkers were put into a single quantitative frame
(Figure 8A), which would enable automated prediction of the net
lineage bias of the leukemic blasts on a personalized basis. As ETP-
ALL involves leukemic conversion of multipotent stem-like
hematopoietic cells, expression level of the stemness marker
PROM1 was selected as reference standard for transformation
of the expression levels of individual hub genes into comparable
scores. Furthermore, transformed scores for different lineages for
individual patients were calculated by considering the geometric
means of the personalized transformed score(s) of all the markers
inclined towards individual lineages. For example, normalization
and transformation of the hub gene expression levels in the
GSM710933 sample from the GSE28703 ETP-ALL cohort
revealed a strong myeloid bias within the leukemic blasts
(Figure 8B). Continuing this trend, the proposed framework
indicated the net lineage inclination in every single ETP-ALL
sample from the GSE28703 (Figure 8C) and GSE78132
(Figure 8D) datasets. While many samples displayed a robust
skew towards the myeloid lineage, a notable proportion of the
ETP-ALL cases showed considerable B-lineage bias. Interestingly,
many samples exhibited a mixed skew towards myeloid and
B-lineages as well as the unidentified process associated with
CD33 and IL1B, indicating the existence of individual ETP-ALL
patients with a spectrum of multiple lineage inclinations.

B-Lineage-Oriented Interactome in
ETP-ALL Exhibits Exclusive
Compartmentalization Within the Hub Gene
Physical Interaction Network
Specificity in expression of the proposed markers in ETP-ALL of
different lineage inclinations not only supported their presumed
lineage bias, but also raised possibilities for these markers and the
nexus of their associated proteins to be used directly as druggable
targets against cases of ETP-ALL with specific developmental
skew(s). Therefore, mining the symbiosis among the total
physical interactome of these genes was of utmost importance,
as any mode of therapeutic interventions against them is expected
to perturb the functioning of all these interactors together.

Although enrichment analyses based on the physical
interaction networks of the individual genes unveiled the
downstream functions performed by their individual
interactomes (Supplementary Figure S8), this was not enough
to recognize the relative overlap among them. Interestingly, the
converged physical interactome comprising the proposed
biomarkers along with their primary and secondary interactors
(Figure 9A) exhibited two distinct clusters. The larger cluster
consisted of hub genes with different lineage propensities, while
the smaller cluster contained only two of the proposed
biomarkers: NT5E and CXCL2, the only genes having strong
B-lineage inclination. The larger cluster was enriched in an
assorted list of pathways (Figure 9B, left panel), where
individual pathways were mapped in an overlapping fashion,
onto interactors of different hub genes (Figure 9B, right panel).
The smaller cluster over-represented mostly three events: purine
nucleotide signaling, collagen metabolism and CXCR1/2
signaling (Figure 9C, left panel). The pathway mappings were
well-separated among the interactors of the two hub genes
(Figure 9C, right panel), indicating their non-redundant
actions towards B-lineage priming.

DISCUSSION

Analysis of the cellular transcriptome is widely used to generate
holistic ideas about disease pathogenesis and pinpoint critical
markers for their diagnosis, prognosis and therapeutic targeting
(Casamassimi et al., 2017). In this study, analyses of the ETP-ALL
transcriptome unveiled a pool of genes whose expression levels
might act as binary sorters between ETP-ALL and non-ETP-ALL
within an ALL cohort and simultaneously predict the
specification bias of the leukemic blasts from individual ETP-
ALL patients. The study eventually proposes a novel
transcriptional phenotype of ETP-ALL as:
KIT+HGF+ANPEP+NT5E+CDH2−PROM1+CXCL2+CD33+IL1B+,
which might be used in conjunction with the conventional
biomarkers (Coustan-Smith et al., 2009). The race and ethnicity-
dependent variations in global diversity of ETP-ALL (Hunger and
Mullighan, 2015) must be taken into account while considering an
optimum cut-off for the proposed diagnostic markers in
distinguishing ETP-ALL from other ALLs. One strategy to avoid
this issue might be to normalize the gene expression scores with
respect to the corresponding population mean (as done in the
present work) before fixing a diagnostic cut-off, thereby reasonably
nullifying the race and ethnicity-associated variations. Of note,
ANPEP and CD33 are already enlisted as immunophenotypic
ETP-ALL markers (Jain et al., 2016). KIT, NT5E, PROM1, and
CDH2 are cell surface proteins, which makes them potentially
eligible for being used in immunophenotypic identification of ETP-
ALL. Besides, HGF, IL1B, and CXCL2 are potential soluble markers
of ETP-ALL due to their secreted nature. Assuming a linear
relationship between their observed transcript levels and
expected protein levels in these contexts, all these markers might
therefore be added to the existing panel of ETP-ALL biomarkers for
multiparametric flow cytometry-based immunophenotypic
analyses. Use of this updated panel would not only increase the
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FIGURE 9 | Unique clustering pattern within the interactome of the proposed biomarkers. (A) Merged physical interactome of the proposed biomarkers. The
biomarker genes are denoted by red nodes, while the primary and secondary interactors are denoted by yellow nodes. (B,C) Bubble plots (B,C: left panel) depicting
over-represented pathways in the left (B) and right (C) cluster, respectively. Individual pathways were mapped onto the participant genes (B,C: right panel). Sizes of the
bubbles on the bubble plots are directly proportional to the gene set sizes. Colours on the pathway-mapped networks denote individual pathways, as colour-coded
on the corresponding bubble plots.
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specificity in diagnosis of ETP-ALL, but would also facilitate early
detection of the inherent lineage bias of the ETP-ALL blasts on a
personalized basis, effecting prompter and more specific actions by
the clinicians.

Despite recent developments in single-cell RNA sequencing
explicating the intra-population heterogeneity in ETP-ALL
(Anand et al., 2021) as well as ETPs (Zhou et al., 2019;
Lavaert et al., 2020), this study did not investigate the ETP-
ALL transcriptome on a single-cell resolution. An individual
ETP-ALL patient might (and often do) harbour a
heterogeneous community of leukemic blasts due to their
underlying multipotency (Kumar et al., 2019). Since
therapeutic modules targeted against ETP-ALL would act
against the entire community of neoplastic lymphoblasts, this
study focussed onto the single subject-level transcriptome of
ETP-ALL to establish a platform for precision medicine
against the dominant leukemic blast subpopulations in
individuals. The proposed ETP-ALL markers identified by this
study, showing diverse propensities towards different
developmental outcomes, might act as hallmarks of lineage
priming in ETP-ALL blasts. Consequently, their expression
levels in an individual patient might evoke an idea of the net
developmental inclination of the entire leukemic blast population
in that patient (Figure 8). GATA3, one of the top 30 hub genes
identified by this study (Figure 3E), has been reported to split the
ETP-ALL patients into subpopulations with different potencies
depending upon its expression (Fransecky et al., 2016). This
study, in addition to all related studies done so far, provides
with a mathematical framework for the detection of potential
lineage inclinations on a personalized level. Thus, more such
subpopulations within the ETP-ALL patient cohorts might be
identified on the basis of such multi-parametric analyses, which
might improve the clinical outcome of ETP-ALL to a significant
extent by opening new avenues for large-scale drug repurposing.

The incompletely differentiated ETP-ALL blasts are not true
mimics of the differentiated leukemic blasts from B-ALL or AML;
resonated by their high levels of stem cell-associated gene
expression (Coustan-Smith et al., 2009). Therefore it is not
easy to devise lineage-targeted therapies against them.
Targeting random non-T-lineage markers of mature
hematopoietic cells such as CD14 or CD19 in case of ETP-
ALL might not be fruitful because of their incompletely
differentiated status, where the blasts might not abundantly
express those particular lineage markers. Contrarily, expression
of the biomarkers proposed in this study varies considerably
across ETP-ALL subjects. Distances along the first principal
component on the PCA plane (Figure 7F) signified greater
disparity between the expression patterns of CD34 and the
mature non-T-lineage markers (such as CSF3R, CD19),
compared to those between CD34 and the corresponding
lineage markers proposed in this study (such as KIT, HGF,
NT5E). This indicates the ETP-ALL blasts to exist in an
intermediate state between absolute stemness and complete
lineage fixation, where the expression levels of the proposed
markers might act as better indicators of specification than the
levels of the mature-stage lineage markers. Close inspection of the
physical interactome of the proposed markers, hence, might be

profitable in defining the cellular processes associated with the
lineage-priming checkpoints within ETP-ALL, which might be
ideal therapeutic targets. Since some of the markers are even cell-
surface expressed, they might also be exploited for targeted
delivery of therapeutics specifically to the ETP-ALL blasts. In
fact, CD33-targeted delivery of IMGN779 against ETP-ALL
in vitro has already yielded promising results (Khogeer et al.,
2019), making such superficial biomarkers lucrative targets for
the delivery of therapeutics.

The considerable B-lineage inclination in a sizeable fraction of
ETP-ALL samples (Figures 8C,D) coupled with the isolated
presence of the B-lineage-related cluster within the entire
interactome associated with the hub genes (Figure 9A)
highlights the necessity of acknowledging the B-lineage bias of
ETP-ALLwith utmost importance. Because of the partition between
the B- and non-B-lineage networks, therapeutic tweaking inside the
non-B interactome would most likely be insufficient against
B-lineage-primed ETP-ALL blasts. Incidentally, in a limited sized
cohort, relapse after >100 days of remission post-chemotherapy was
observed in every single ETP-ALL patient expressing B-lineage
markers on the leukemic blasts (Garg et al., 2019). Till date, no
chemotherapeutic protocol has exclusively targeted the B-lineage-
associated pathways like adenosine receptor signaling in ETP-ALL.
This under-appreciation of B-potency in selective ETP-ALL cases
might effectuate the prognostic worsening as well as high relapse
rates of B-lineage-inclined ETP-ALL over the others. The markers
proposed in this study, thus, might facilitate the detection of specific
cases of ETP-ALL with significant B-lineage predisposition along
with simultaneous targeting of the primary pathways (such as
adenosine signaling) encompassing the B-lineage markers.

Multiple studies have uncovered the molecular phenomena
behind the lineage plasticity of ETPs, and have designated
certain genes as barcodes of particular specification programmes
in these multipotent cells (Chiara et al., 2021; Hosokawa and
Rothenberg, 2021). However, to the best of our knowledge, this
study is the first of its kind to delineate the developmental pliability
of the neoplastic forms of these multipotent cells, bringing forth
new opportunities to subclassify multipotent ETP-ALL samples
based on their lineage bias. This strongly recommends the
invention of novel therapeutic approaches as well as opens up
possible prospects of repurposing existing B-ALL or AML-directed
therapies on a personalized mode. In parallel, the current study
suggests the presence of ETP-ALL samples with mixed lineage
propensities or unidentified developmental bias, calling for further
basic as well as translational research in order to formulate
appropriate clinical strategies in these aspects. On top of all,
such observations merit many more high-throughput studies
with ETP-ALL blast samples from patients of a wide range of
socio-biological factors (such as age, ethnicity etc) which affect the
hematopoietic quality-control checkpoints, to gain further insights
into the deeper mechanisms of leukemogenesis.
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