
Food Chemistry: Molecular Sciences 4 (2022) 100066

Available online 23 December 2021
2666-5662/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Metabolomics reveals key resistant responses in tomato fruit induced by 
Cryptococcus laurentii 

Qiong Tang, Xiaodong Zheng, Wen Chen, Xiang Ye, Pengcheng Tu * 

College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products 
Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China   

A R T I C L E  I N F O   

Keywords: 
Tomato (Solanum lycopersicum) 
Cryptococcus laurentii 
Metabolomics 
Resistant response 
Phenylpropanoid biosynthesis pathway 
Biocontrol 

A B S T R A C T   

To investigate the mechanisms underlying inducible resistance in postharvest tomato fruit, non-targeted 
metabolome analysis was performed to uncover metabolic changes in tomato fruit upon Cryptococcus laurentii 
treatment. 289 and 149 metabolites were identified in positive and negative ion modes, respectively. A total of 
59 metabolites, mainly including phenylpropanoids, flavonoids and phenolic acids, were differently abundant in 
C. laurentii-treated tomato fruit. Moreover, key metabolites involved in phenylpropanoid biosynthesis pathway, 
especially chlorogenic acid, caffeic acid and ferulic acid were identified through KEGG enrichment analysis. 
Enhanced levels of phenolic acids indicated activation of the phenylpropanoid biosynthesis pathway, which is a 
classic metabolic pathway associated with inducible resistance, suggesting that its activation and consequent 
metabolic changes contributed to inducible resistence induced by C. laurentii. Our findings would provide new 
understanding of resistance induction mechanism in tomato fruit from the metabolic perspective, and offer novel 
insights for new approaches reducing postharvest loss on tomato.   

1. Introduction 

The cherry tomato (Solanum lycopersicum var. cerasiforme) is a 
nutritionally and economically important vegetable crop, as well as a 
model plant for biocontrol research (Tao et al., 2020). As a climacteric 
fruit, preharvest latent infection and postharvest cross infection are 
major causes of postharvest rot of tomato (Altuntas & Ozkurt, 2019). 
The main fungal pathogens responsible for postharvest diseases of to-
mato are Botrytis cinerea and Alternaria alternata, which would dwell on 
the surface temporarily or for a long time until the fruit is ripe and se-
nescent, otherwise infect fruit tissues through mechanical wounds 
(Altuntas & Ozkurt, 2019). Generally, pathogen spores germinate 
rapidly after entering the fruit wound, then activate related pathogenic 
mechanisms thereby leading to fruit rot and deterioration(Zang, Jiang, 
Ma, Li, Yin, & Yuan, 2020). Control of postharvest fungal diseases of 
cherry tomato currently relies on chemical fungicides, however overuse 
of these chemical fungicides has enabled increasingly widespread 
resistance. Moreover, toxic residues of chemical fungicides and their 
accumulation have posed potential risks to the environment, food safety 
as well as human health (Cordova, Amiri, & Peres, 2017). Therefore, it is 
of significance finding new methods to control postharharvest diseases 

of cherry tomato. 
Among non-fungicidal methods reported, application of safe and 

effective microorganisms, especially biocontrol yeasts with antagonistic 
effects on pathogens, for biological control of postharharvest diseases 
has received much research attention during past decade, and is 
considered as one of the most promising alternatives to chemical fun-
gicides (Droby, Wisniewski, Teixido, Spadaro, & Jijakli, 2016). Crypto-
coccus laurentii is a postharvest biocontrol microbial strain that has been 
extensively studied at home and abroad, with mounting evidence that it 
can not only effectively and directly inhibit a variety of fungal diseases 
in fruit including apples, pears, peaches (Lai, Renna, Yarema, Ruberti, 
He, & Brandizzi, 2018), cherry tomatoes (Zang, Jiang, Ma, Li, Yin, & 
Yuan, 2020), grapesDhanasekaran, citrus (Li, Li, Ji, Chen, Tian, & Qin, 
2019), waxberries, cherries and strawberries (Zhang, Sun, Yang, Chen, 
Li, & Zhang, 2015), but also significantly induce resistant responses to 
develop and enhance their own abilities of defense against diseases in 
pear, jujube, peach, grape and cherry tomato fruit (Tang, Zhu, Cao, 
Zheng, Yu, & Lu, 2019). 

We previously investigated effects of C. laurentii inhibiting patho-
genic bacteria as well as the mechanism underlying enhanced disease 
resistance in fruit. First, in tomato induced by C. laurentii in the early 
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stage, it was demonstrated that SlPR5, a resistance gene in tomato, was 
significantly up-regulated by C. laurentii treatment, and SlPR5 protein is 
the key resistance protein for inhibition of the infection of Alternaria 
alternata (Guo, Zhao, Wang, Yu, Miao, & Zheng, 2016). Further studies 
established that the resistance of tomato induced by C. laurentii was 
dependent on the concentration and induction time of yeast treatment. 
For instance, at the concentration of 1 × 108 cells/mL with induction 
time of 48 h, C. laurentii treatment significantly improved the resistance 
of tomato fruit against B. cinerea and A. alternata. Mechanisms of 
C. laurentii-induced resistance in tomato were mainly associated with 
enhanced activities of resistance-related enzymes (SOD, POD and PAL), 
activation of signaling pathways of salicylic acid, brassinolide and 
abscisic acid, and induction of overexpression of disease-resistance 
genes (Lai, Cao, Yu, Wang, Zhang, Zheng, et al., 2018). In addition, 
transcriptomics and proteomics results showed that C. laurentii treat-
ment enhanced transcriptional expression of related genes in tomato 
fruit that were involved in secondary metabolic pathways, disease de-
fense, resistance signaling pathways, and plant hormone signaling 
pathways, including the ethylene signaling pathway (Tang, Zhu, Cao, 
Zheng, Yu, & Lu, 2019). Also, previous studies have shown that the cell 
wall of C. laurentii or chitin extracted from its cell wall could also 
significantly enhance the resistance of tomato fruit to B. cinerea, and the 
induction mechanism may be related to increased activities of 
resistence-related enzymes, callose deposition, reactive oxygen accu-
mulation and activation of salicylic acid signaling pathway (Sun, Fu, Jin, 
Chen, Zheng, & Yu, 2018; Sun et al., 2018). Admittedly metabolic 
changes in tomato fruit during postharvest pathological progression are 
extremely complex, how C. laurentii treatment induces and enhances 
disease resistance in tomato fruit from the perspective of metabolic 
pathways and associated metabolites remains unknown. 

Metabolites are metabolic products that directly influence the 
physiology in plants. Metabolites produced by plants can be roughly 
divided into two categories: primary and secondary metabolites (Feng, 
Ding, Li, Wang, & Cui, 2020). Primary metabolites are essential for 
maintaining plant bioactivity and growth (Mamat, Azizan, Baharum, 
Noor, & Aizat, 2020), while secondary metabolites are more involved in 
coping with stress resistance and plant diseases (Carmona-Hernandez, 
Reyes-Perez, Chiquito-Contreras, Rincon-Enriquez, Cerdan-Cabrera, & 
Hernandez-Montiel, 2019). Biotic and abiotic stresses in plants usually 
involves a series of metabolic changes, including start of oxidation 
protective enzyme system, accumulation of osmotic protective agents, 
activation of resistance-related pathways and so forth, which will alter 
numerous associated metabolic pathways in plant tissues and cells, a 
new metabolic balance would then be rebuilt with alteration of various 
metabolic products leading to a distinct metabolic profile (Bueno & 
Lopes, 2020; Feng, Ding, Li, Wang, & Cui, 2020; Putri, Yamamoto, 
Tsugawa, & Fukusaki, 2013). Metabolomics enables comprehensive 
study of the complex metabolic processes and products, and elucidation 
of secondary metabolic pathways and networks (Shu et al., 2020). 
Metabolomics makes qualitative, quantitative and dynamic analysis of 
low-molecular weight (<1000) metabolites in a given physiological time 
and environmental condition of organisms, organs, tissues, or cells 
(Feng, Ding, Li, Wang, & Cui, 2020). In particular, widely-targeted 
metabolome analysis based on liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) is a fast and reliable method for the detection 
of a wide-spectrum of plant metabolites to find the relationship between 
metabolites and physiological and pathological changes (Osorio et al., 
2020). 

In order to further elucidate resistance-motivating factors and 
resistance-inducing mechanisms by which C. laurentii induces disease 
resistance and associated metabolic responses in fruit, the present study 
aimed to apply metabolomics approach for identification of key me-
tabolites in C. laurentii-induced internal resistance responses in tomato. 
The results will provide new evidence on mechanisms of C. laurentii- 
induced resistance, offering new insights regarding improvement of the 
biocontrol effectiveness of C. laurentii. 

2. Materials and methods 

2.1. Plant materials and microorganisms 

Tomato (Solanum lycopersicum var. cerasiforme) of the cultivar 
‘QianXi’ without infections or injuries were hand-picked during the red- 
ripening stage from Hainan Lingshui Modern Agriculture Demonstration 
Base in Lingshui country, Hainan Province, China, and quickly trans-
ported to our laboratory in Zhejiang University. C. laurenti (Kufferath) 
Skinner (CGMCC No. 3590) is a strain stored in our laboratory. Selection 
of tomato fruit and the cultivation of C. laurentii were conducted as 
previously described by Tang et al (Tang, Zhu, Cao, Zheng, Yu, & Lu, 
2019). Tomato fruits were then dipped in sterile distilled water (con-
trol), or 1 × 108 cells mL− 1 suspension of C. laurentii for 10 min (treat-
ment). The fruits were stored in enclosed plastic trays with high Relative 
Humidity (90–95%) at 25 ◦C. Samples were collected 48 h later. 

2.2. Sample preparation and metabolite extraction 

The experiment was divided into two groups, each with 100 to-
matoes. The treatment of tomato fruit was conducted as previously 
described by Lai et al (Lai, Cao, Yu, Wang, Zhang, Zheng, et al., 2018). 
Samples were collected 48 h after treatment. 6 ripe fruit were peeled and 
combined as a biological sample. 6 biological samples were created per 
tomato group (total ≥ 36 fruit). Two treatment groups were set up, 
sterile water control group and C. laurentii treatment group. Obtained 
samples were stored at − 80 ◦C until metabolite extraction. A sample of 
50 mg was weighed and placed in a 1.5 mL Eppendorf tube and added 
with 800 μL extract (methanol: water = 7:3, V: V, − 20 ◦C precooling) 
and 20 μL internal standard. Two small steel balls were added in and 
ground in a tissue grinding machine (50 Hz, 5 min). After ultrasonic 
treatment at 4 ◦C for 30 min, the samples were placed in a refrigerator at 
− 20 ◦C for 1 h. The samples were centrifuged at 4 ◦C and 14,000 rpm for 
15 min. After centrifugation, 600 μL supernatant was taken and filtered 
through a 0.22 μm membrane. The filtered samples were placed in a 
bottle for LC-MS analysis. 20 μL of each sample was mixed into QC 
(Quality control) samples which were used to evaluate the repeatability 
and stability of LC-MS analysis. QC samples were analysed one in ten 
samples and the results were shown in Fig. S1. 

2.3. Untargeted UPLC-MS/MS analysis 

Metabolites in fruit extracts were isolated and detected by the Waters 
2D UPLC (Waters, USA) tandem Q Exactive high resolution mass spec-
trometer (Thermo Fisher Scientific, USA). The chromatographic condi-
tions were as follows. Aliquots (5 μL) were injected on to a Hypersil 
GOLD aQ column (1.9 µm, 100 mm*2.1 mm, Thermo Fisher Scientific, 
USA). The mobile phase consisted of aqueous solution (Liquid A) con-
taining 0.1% formic acid and 100% acetonitrile (liquid B) containing 
0.1% formic acid.The following steps were used for elution: 0 ~ 2 min, 
5% B solution; 2 ~ 22 min, 5%~95% B solution;95% B solution, 22 ~ 
27 min.27.1 ~ 30 min, 5% B solution.The flow rate was 0.3 mL/min, the 
column temperature was 40℃, and the injection volume was 5 μL. 

Q Exactive mass spectrometer (Thermo Fisher Scientific, USA) was 
used to collect primary and secondary mass spectrometry data. The 
range of m/z was 150 ~ 1500, the first-order resolution was 70,000, the 
maximum injection time was 100 ms. Top 3 candidates were selected to 
fracture according to the ionic strength, then the secondary information 
was collected. The secondary resolution was 35000, AGC for 2e5, 
maximum injection time (IT) of 50 ms, fracture energy (stepped an nce) 
was set to: 20,40,60 eV. The parameters of the ion source (ESI) were set 
as follows: the sheath gas flow rate was 40, aux gas flow rate was 10, 
spray voltage positive ion mode was 3.80, negative ion mode was 3.20, 
capillary temperature was 320℃, and aux gas heatertemp was 350 ◦C. 
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2.4. MS data and bioinformatics analysis 

A summary of the metabolomic studies is shown in Fig. 1. 

2.4.1. Data pre-processing 
Raw data collected by LC-MS/MS was imported into Compound 

Discoverer 3.1 (Thermo Fisher Scientific, USA) for data processing. It 
mainly includes: peak extraction, retention time correction within and 
between groups, adjoint ion combination, missing value filling, back-
ground peak marking and metabolite identification. Finally the molec-
ular weight, retention time, peak area and identification results were 
obtained. Metabolites were identified in combination with BGI Library 
and mzCloud database. 

The result of Compound Discoverer 3.1 was exported and then im-
ported into metaX for data preprocessing. It mainly included: (a) using 
the Probabilistic Quotient Normalization (PQN) to normalize data and 
obtain relative peak area; (b) Using Quality control-based robust LOESS 
signal correction (QC-RLSC) to correct batch effect; (c) Compounds with 
a coefficient of variation (CV) of relative peak area greater than 30% in 
all QC samples were deleted. 

2.4.2. Data quality control(QC) 
The quality of data was evaluated by QC sample test repeatability. 

The contents included chromatogram overlap of QC samples, Principle 
Component Analysis (PCA), peak lift number and peak response in-
tensity difference. 

2.4.3. Classification and functional annotation of detected metabolites 
Identified metabolites were annotated by classification and func-

tional annotation. The Human Metabolome Database contains chemical, 
molecular/biochemical, and clinical information of metabolites, sup-
porting metabolic pathway and spectrogram search. Kyoto Encyclopedia 
of Genes and Genomes（KEGG)PATHWAY database is the core of KEGG 
database, which can introduce numerous metabolic pathways and their 
relationships through its powerful graphical function. Pathway func-
tional annotation was carried out through the KEGG PATHWAY data-
base to identify the major biochemical metabolic pathways and signal 
transduction pathways involved in metabolites. 

2.4.4. Statistical analysis and identification of differentially accumulating 
metabolites 

Multivariate statistical analysis and univariate analysis were used to 
screen different metabolites between groups. Principal Component 
Analysis (PCA) and Partial Least Squares Method-Discriminant Analysis 
(PLS-DA) were used for multivariate statistical Analysis. PCA is an un-
supervised pattern recognition method, First, a PCA model was estab-
lished between the comparative analysis group to observe the 
distribution and separation trend of the two groups of samples. Before 
the PCA model was established, log2 transformation was performed on 
the data, and then Pareto scaling was used to perform scaling on the 
data. PLS-DA is a supervised statistical method, which calculated Vari-
able Important for Projection (VIP) to measure the influence intensity 
and explanatory ability of the expression patterns of metabolites on the 
classification and discrimination of samples of each group, so as to assist 
the screening of metabolic markers (Westerhuis et al., 2008). The PLS- 
DA model between the two groups of samples was established after 
log2 logarithm conversion of the data. The scaling method is Par, and 
the 7 fold Cross Validation was performed when the model was set up. In 
order to judge the quality of the model, 200 response permutation tests 
(RPT) were performed on the PLS-DA model. 

Fold- Change (FC) analysis and T test (Student’s T test) were per-
formed on the obtained data. FC was obtained through variation mul-
tiple analysis, p-value was obtained through T-test, and Q-value was 
obtained through False Discovery Rate (FDR) correction. The screening 
criteria for differential metabolites were as follows: (1) The VIP of the 
first two principal components of the PLS-DA model ≥ 1, (2) fold- 
change ≥ 1.2 or ≤ 0.83, and(3) P-value < 0.05. 

2.4.5. Cluster analysis and enrichment analysis of metabolic pathways of 
differentially metabolites 

Cluster analysis was conducted for differential metabolites, and the 
log2 conversion and Z-score normalization treatments were used on the 
data during the analysis. Hierarchical Cluster was used for clustering 
algorithm and the Euclidian distance was used for distance calculation. 
The metabolic pathway enrichment analysis of differential metabolites 
was carried out based on KEGG database, and the metabolic pathway 
with P-value < 0.05 was a metabolic pathway with significant enrich-
ment of differential metabolites. Moreover, bubble diagrams were 
drawn for pathways with significant enrichment of differential 
metabolites. 

Fig. 1. A summary of the metabolomic study.  
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2.5. Validation and determination of key secondary metabolites in tomato 
pulp 

2.5.1. Isolation of chlorogenic acid, caffeic acid and ferulic acid 
Phenolic acids were isolated from extracts according to 2.2 described 

methods. 

2.5.2. HPLC analysis 
Ultimate 3000 (Thermo Fisher Scientific, USA) equipped with C18 

column (4.6 × 150 mm, 5 μm) and UV detector was adopted for isolation 
and determination of Phenolic acids. The Water (A liquid) and Aceto-
nitrile (B liquid) were used as mobile phases with under the column 
temperature of 35 ◦C. The flow rate was the same as 2.3 described. The 
detection wavelength and injection volume were 320 nm and 20 μL, 
respectively. Phenolic acids were identified by the retention time and 
the UV–vis spectra of standards. 

3. Results 

3.1. Quality control (QC) of the mass spectrometry data 

The base peak chromatogram (BPC) of all QC samples well over-
lapped in both positive and negative modes, and the retention time and 
peak response intensity fluctuated little, indicating that the instrument 
was in a good state during sample detection (Fig. S1). In addition, PCA 
analysis shows an excellent stability of QC samples (Fig. 2A). RSD ratio 
refers to the ratio of the number of compounds whose CV of relative peak 
area is less than or equal to 30% to the number of all detected com-
pounds in QC samples. If the RSD ratio is greater than or equal to 60%, 
the data quality is qualified. As shown in Fig. 2B, the RSD ratio in pos-
itive and negative modes is 94% and 91%, respectively. Therefore, QC 
results indicated that the experimental instrument was stable during 
data collection process and the collected data quality is ensured. Under 
positive ion mode condition, a total of 1821 features were detected 

Fig. 2. Quality control of the data. (A) PCA score graph of QC samples (a) Positive ion mode; (b) Negative ion mode. (B) CV profiles of the compounds (a) Positive ion 
mode; (b) Negative ion mode. The two lines perpendicular to the X-axis are 20% and 30% CV guides, and the lines parallel to the X-axis are 60% CV guides. 
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(Table S1), 289 of which had identification information, while under the 
negative ion mode condition, a total of 1092 features were detected, 
with 149 features being identified (Table S2). 

3.2. Classification and functional annotation of identified metabolites 

Classification and functional annotation of identified metabolites 

Fig. 3. Classification and functional annotation of 
detected metabolites. (A)Bar chart of metabolite 
classification under the (a) Positive ion mode; (b) 
Negative ion mode. The X-axis represents the number 
of metabolite classifications, and the Y-axis repre-
sents the metabolite classification entries. (B) Bar 
chart of KEGG function comment under the (a) Pos-
itive ion mode; (b) Negative ion mode. The X-axis 
represents the number of metabolite annotations, 
and The Y-axis represents the KEGG athway 
annotated.   
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was conducted. As shown in Fig. 3A, in positive mode, identified me-
tabolites were mainly distributed in fatty acids, compounds and de-
rivatives, amino acids and compounds; while in negative mode, they 
were mainly centralized in carbohydrates, polyketides and amino acids, 
which usually are compounds with biological roles. After KEGG pathway 
annotation (Fig. 3B), identified metabolites were mainly involved in 
biosynthesis of other secondary metabolites and amino acid metabolism 
pathways in positive and negative ion modes. 

3.3. Multivariate analysis of identified metabolites and screening of the 
differential metabolites 

PLS-DA analysis clearly separated the two cultivars with a signifi-
cance of 0.01 (p-value) under both positive and negative ion mode 
conditions (Fig. 4A). Hierarchical cluster analysis also disclosed distinct 
metabolic patterns associated with control and C. laurentii-treated 

groups, respectively (Fig. 4B). Together PLS-DA and hierarchical cluster 
analysis suggested that control and C. laurentii-treated groups had 
distinct metabolite profiles. 

To identify key differential metabolites induced by C. laurentii 
treatment, differential metabolites were screened with a fold change ≥
1.2 (upregulated) or ≤ 0.83 (downregulated) in C. laurentii-treated 
group compared to the control group. These metabolites were further 
screened using a variable importance in projection (VIP) with a VIP 
value ≥ 1 from PLS-DA model in addition to a p-value < 0.05. A total of 
59 differential metabolites were identified (Table S3). Of these, 32 
metabolites were upregulated and 7 metabolites were downregulated in 
positive ion mode, while 16 metabolites were upregulated and 4 me-
tabolites were downregulated in negative ion mode, which were visually 
displayed by volcano plots (Fig. 4C). These 59 key differential metab-
olites can be categorized into 14 classes, mainly including phenyl-
propanoids, flavonoids and phenolic acids (Fig. 4D). 

Fig. 3. (continued). 
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Fig. 4. Screening and classification of differential metabolites between the control and C. laurentii-treatment groups. (A) core diagram of PLS-DA analysis model 
under the (a) Positive ion mode; (b) Negative ion mode. The horizontal axis is the first principal component and the vertical axis is the second principal component. 
The number in brackets is the score of the principal component, indicating the explanatory ability of the principal component to the whole model. (B) Cluster 
diagram of differential metabolites under the (a) Positive ion mode; (b) Negative ion mode. Each row in the figure represents a differential metabolite, each column 
represents a sample, the color represents the expression quantity, and the green to red corresponds to the expression quantity from low to high. (C) Volcano diagram 
of differential metabolites under the (a) Positive ion mode; (b) Negative ion mode. The volcano diagram was used to visually display the selected differential ions. 
Blue indicated significantly down-regulated differentially expressed ions, and red indicated significantly up-regulated differentially expressed ions. The circle rep-
resented the ion with VIP greater than or equal to 1, “×” were the ion with VIP<1, and the insignificant ion is gray. (D) Pie chart depicting the biochemical 
classification of the differential metabolites identified between the control and C. laurentii-treatment groups. 
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3.4. Classification and KEGG enrichment analysis of differential 
metabolites 

We next mapped these 59 metabolites into the KEGG database. 
Majority of these metabolites were mapped to metabolic pathways and 
metabolites biosynthesis, which was as expected (Fig. S3). Subse-
quently, we performed KEGG pathway enrichment analysis, in order to 
identify significantly-altered metabolic pathways between these two 
groups. Enrichment analysis distinguished 8 specialized plant pathways 
as significantly different (p < 0.05) (Fig. 5). Key metabolites involved in 
phenylpropanoid biosynthesis pathway, especially chlorogenic acid, 

caffeic acid and ferulic acid were identified through KEGG enrichment 
analysis. Enhanced levels of phenolic acids indicated activation of the 
phenylpropanoid biosynthesis pathway, which is a classic metabolic 
pathway associated with inducible resistance (Oliva, Guy, Galili, Dor, 
Schweitzer, Amir, et al., 2021). 

3.5. Key metabolites and metabolic pathways following C. laurentii 
application 

We focused on key metabolites and metabolic pathways that are 
potential contributors to disease resistance in tomato induced by 

Fig. 4. (continued). 

Fig. 5. Bubble diagram of the metabolic pathway enrichment analysis. The X-axis enrichment factor is the number of different metabolites annotated to this pathway 
divided by all identified metabolites annotated to this pathway. The higher the value, the higher the ratio of different metabolites annotated to this pathway. Dot size 
represents the number of differentially expressed metabolites annotated to this Pathway. 
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C. laurentii. Phenylpropanoid biosynthesis pathway is paramount in 
resistance induction of tomato fruit against biotic and abiotic stresses 
(reference). 8 phenylpropanoids were identified as differentially abun-
dant (Table 1), suggesting activation of phenylpropanoid biosynthesis 
pathway in tomato fruit following C. laurentii application. Levels of 
caffeic acid, chlorogenic acid and ferulic acid (key metabolites of phe-
nylpropanoid biosynthesis pathway) were significantly higher in tomato 
upon C. laurentii treatment compared to control according to results of 
mass spectrometry-bassed metabolite profiling (Fig. 6B-a, b&c). In 
order to verify the metabolomiscs results, levels of caffeic acid, chloro-
genic acid and ferulic acid in tomato pulp were qualitatively and 
quantitatively determined by HPLC (Fig. S2). Trends of HPLC deter-
mination results were consistent with that of UPLC-MS/MS determina-
tion results (Fig. 6B-d, e&f). Taken together, C. laurentii treatment 
significantly induced production of chlorogenic acid, caffeic acid and 
ferulic acid in tomato, indicating activation of phenylpropanoid 
biosynthesis pathway. 

4. Discussion 

Tomato in postharvest storage would be seriously affected by path-
ogen infections, which leads to tomato rot and tremendous economic 
losses (Chaouachi et al., 2021). Induced resistance to pathogens in 
postharvest tomato by biotic elicitors such as C. laurentii has become a 
promising alternative to synthetic fungicides (Gu et al., 2021; Tang, Zhu, 
Cao, Zheng, Yu, & Lu, 2019). Postharvest pathological changes in fruit 
involve a number of key metabolites, meanwhile, induction of disease 
resistance in plants is intertwined with regulations of multi-gene in-
teractions and multi-metabolic processes (Li, Cao, Wang, Lei, Ji, Xu, 
et al., 2021). Metabolite profiling enables comprehensive study of the 
complex metabolic processes as well as metabolic products in fruit, 
thereby identifying key functional metabolites and elucidating the sec-
ondary metabolic network. Non-targeted metabolomics has been suc-
cessfully used for large-scale metabolite profiling and comparative 
metabolomics of many important plant species (Zou et al., 2020). 
However, mechanisms underlying enhanced disease resistance of to-
mato fruit after C. laurentii-induced treatment has not been investigated 
thoroughly, in particular, changes in metabolites and metabolic path-
ways have not been studied. In this study, we used UPLC-MS/MS-based 
non-targeted metabolomics to profile differential metabolites by 
C. laurentii-induced treatment. We identified 438 metabolites (289 
under the positive ion mode and 149 under the negative ion mode), 59 
(39 under the positive ion mode and 20 under the negative ion mode) of 
which were differentially accumulated in C. laurentii-induced treatment 
group compared to control. This study offers evidence of resistance- 
induced mechanism by C. laurentii through the lens of metabolic 
changes. 

Plants use complex defense systems to fight pests and diseases, and 
production of a large number of low-molecular secondary metabolites 
with antibacterial activity to enhance the structural defense barrier is 
one of them (Lu, Wang, Zhu, Lu, Zheng, & Yu, 2015). Secondary me-
tabolites in plants mainly comprise phenylpropanoids, terpenoids, 

steroids, terpenoids and flavonoids (Magalhaes, Borges, Laumann, 
Caulfield, Birkett, & Blassioli-Moraes, 2020). It is previously reported 
that phenylpropanoids, including trans-cinnamic acid, para-coumaric 
acid, caffeic acid, ferulic acid and benzoid acid derivatives, play an 
pivotal role in plant defense against the invasion of pathogens and 
herbivorous insects (Oliva, et al., 2021). Moreover, phenylpropanoids 
are also involved in regulation of plant growth (Isah, 2019). Among 
phenylpropanoids responding to C. laurentii treatment, our results show 
that levels of chlorogenic acid, caffeic acid and ferulic acid were 
significantly higher in C. laurentii-treated groups, which may be asso-
ciated with enhanced disease resistance in tomato induced by C. laurentii 
(Fig. 6). Chlorogenic acid has certain inhibitory effect on both bacteria 
and fungi resulting from its effects of destroying the cell wall and 
membrane structure of bacteria. Meanwhile, when the hydroxyl group 
on the quinine group of chlorogenic acid combine with the free amino 
group, its inhibitory effect on fungi would become stronger (Tajner- 
Czopek, Gertchen, Rytel, Kita, Kucharska, & Sokol-Letowska, 2020). In 
addition to possessing strong antioxidant capability, ferulic acid also has 
outstanding antibacterial activity. Lattanzio et al. detected 12 kinds of 
phenolic acids against 5 fungi (Sclerotinia sclerotiorum, Fusarium oxy-
sporum, Altenaria sp., Botrytis cinerea, Penicillium digitatum), and it was 
found that ferulic acid had the strongest bacteriostatic activity (Ou, 
2002). In conclusion, C. laurentii treatment might enhance the disease 
resistance of tomato via increased contents of chlorogenic acid, caffeic 
acid and ferulic acid in fruit. 

The abundance of flavonoids is a key indicator of antioxidant activity 
(Zhang, Yang, Tong, Hu, Zhang, Tian, et al., 2021). Our metabolomics 
analysis identified 14 flavonoids (Table S1 and Table S2), and 2 of them 
(Mulberrin and Morin) were differentially accumulated in C. laurentii- 
treated group (Table S3). Differences in levels of flavonoids suggested 
that the enhanced resistance of tomato induced by C. laurentii could 
originated from increased antioxidant activity. In addition, the levels of 
salicin and isobutyl 4-hydroxybenzoate were remarkably increased, 
suggesting that these phenolic acids may also contribute to C. laurentii- 
induced resistance in tomato fruit. 

KEGG enrichment analysis revealed that metabolites involved in 
phenylpropanoid biosynthesis pathway were significantly altered in 
C. laurentii-treated group compared to control, which was consistent 
with our previous experimental results of high-throughput tran-
scriptome sequencing (Tang, Zheng, et al., 2019), providing evidence 
that phenylpropanoid biosynthesis pathway plays an important role in 
C. laurentii-induced postharvest resistance of tomato from perspectives 
of both gene and metabolite levels (Fig. 6A). PAL, the key branch point 
enzyme, catalyses the first step of the phenylpropanoid pathway, lead-
ing to production of phenolic compounds, and is believed to be activated 
by JA/ET signaling in plant defense responses (Lu, Wang, Zhu, Lu, 
Zheng, & Yu, 2015). In our previous research, expression levels of the 
key genes involved in phenylpropanoid biosynthesis pathway (e.g., 
PAL1, C4H, 4CL3, ATOMT, and cinnamoyl-CoA reductase) were up- 
regulated. In the present study, metabolite profiling results confirmed 
that contents of caffeic acid and ferulic acid involved in phenyl-
propanoid biosynthesis pathway were significantly increased (Fig. 6B). 

Table 1 
Differentially abundant phenylpropanoids induced by C. laurentii treatment in tomato fruit.  

Ion mode Name Fold change p.value VIP RT [min] Molecular Weight Formula Compound Class  

Pos Skimmin  2.6  0.014  2.3  4.20  324.08439 C15 H16 O8 Phenylpropanoids Up 
Pos Chlorogenic acid  2.4  0.004  2.0  4.64  354.09496 C16 H18 O9 Phenylpropanoids Up 
Pos 7-Methoxycoumarin  1.9  0.033  1.3  4.82  176.04733 C10 H8 O3 Phenylpropanoids Up 
Neg N-feruloyloctopamine  5.3  0.025  2.8  7.25  329.12636 C18 H19 N O5 Phenylpropanoids Up 
Neg Caffeic acid  3.5  0.018  2.3  4.57  180.04221 C9 H8 O4 Phenylpropanoids Up 
Neg Ferulic acid  3.0  0.026  1.9  6.15  194.0578 C10 H10 O4 Phenylpropanoids Up 
Neg Isochlorogenic acid B  2.8  0.001  2.0  6.66  516.12683 C25 H24 O12 Phenylpropanoids Up 
Neg Cryptochlorogenic acid  2.3  0.001  2.0  4.42  354.09519 C16 H18 O9 Phenylpropanoids Up 

Differentially abundant compounds were identified using thresholds of VIP (variable importance in projection) ≥ 1.0 and fold change ≥ 1.6 (up-regulated) in 
C. laurentii-treated tomato fruit compared to control. 
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Strong relevance was observed between increased mRNA expression 
levels of genes related to phenolic acid synthesis (Tang, Zheng, et al., 
2019) and their increased levels (Fig. 6B) in C. laurentii-treated tomato 
fruit. Given the importance of phenylpropanoid biosynthesis pathway 

and associated phenolics in the defensive response against postharvest 
pathogenic attack (Bennett & Wallsgrove, 1994), combined with 
increased levels of key enzymes (PAL, C4L, C3H, COMT) and metabo-
lites (caffeic acid and ferulic acid) in tomato following C. laurentii 

Fig. 6. Effect of Cryptococcus laurentii treatment on the phenylpropanoid biosynthesis pathway (A) and the level of three phenolic acids (B), including chlorogenic 
acid, caffeic acid and ferulic acid in tomato fruit. Asterisks indicates significant differences (P ≤ 0.05) according to Studentś t-test. 
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treatment, it is possible that activaiton of phenylpropanoid biosynthesis 
pathway is one major contributor to the resistance induction mecha-
nisms for C. laurentii. Admittedly future studies are warranted for further 
validation, nevertheless, our results provided evidence supporting the 
role of phenylpropanoid biosynthesis, which is of significance for the 
community of biocontrol research. 

5. Conclusions 

Taken together, in the present study, LC-MS/MS-based metab-
olomics analysis was applied to systematically study enhanced resis-
tance of tomato induced by C. laurentii. These results provide 
comprehensive information on metabolite compositions, abundances 
and pathways in tomato upon C. laurentii treatment. In conclusion, 
metabolic alterations including differential levels of phenylpropanoids, 
flavonoids and phenolic acids in addition to activaiton of phenyl-
propanoid biosynthesis pathway might be one of the underlying mech-
anisms of resistance enhancement in tomato induced by C. laurentii. 
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