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Despite the growing number of the vaccinated population, COVID-19, caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global health
burden. Obesity, a metabolic syndrome affecting one-third of the population, has proven
to be a major risk factor for COVID-19 severe complications. Several studies have
identified metabolic signatures and disrupted metabolic pathways associated with
COVID-19, however there are no reports evaluating the role of obesity in the COVID-19
metabolic regulation. In this study we highlight the involvement of obesity metabolically in
affecting SARS-CoV-2 infection and the consequent health complications, mainly
cardiovascular disease. We measured one hundred and forty-four (144) metabolites
using ultra high-performance liquid chromatography-quadrupole time of flight mass
spectrometry (UHPLC-QTOF-MS) to identify metabolic changes in response to SARS-
CoV-2 infection, in lean and obese COVID-19 positive (n=82) and COVID-19 negative
(n=24) patients. The identified metabolites are found to be mainly correlating with glucose,
energy and steroid metabolisms. Further data analysis indicated twelve (12) significantly
yet differentially abundant metabolites associated with viral infection and health
complications, in COVID-19 obese patients. Two of the detected metabolites, n6-
acetyl-l-lysine and p-cresol, are detected only among the COVID-19 cohort, exhibiting
significantly higher levels in COVID-19 obese patients when compared to COVID-19 lean
patients. These metabolites have important roles in viral entry and could explain the
increased susceptibility of obese patients. On the same note, a set of six metabolites
associated with antiviral and anti-inflammatory functions displayed significantly lower
abundance in COVID-19 obese patients. In conclusion, this report highlights the
plasma metabolome of COVID-19 obese patients as a metabolic feature and signature
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to help improve clinical outcomes. We propose n6-acetyl-l-lysine and p-cresol as potential
metabolic markers which warrant further investigations to better understand their
involvement in different metabolic pathways in COVID-19.
Keywords: SARS-CoV-2, COVID-19, obesity, metabolomics, ultra-high-performance liquid chromatography-
mass spectrometry
INTRODUCTION

Infection by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the virus behind the COVID-19 pandemic,
remains a major health concern and global pandemic; despite
vaccine roll-out (1–4). Presentations of COVID-19 have ranged
from asymptomatic to severe, and sometimes life-threatening.
COVID-19 patients may encounter different clinical symptoms
(5), including acute respiratory distress syndrome (ARDS), organ
malfunctions, or even death in severe cases (6). Obesity, a
worldwide health burden contributing to different
comorbidities (7–9), has been shown to be a major risk factor
for COVID-19 complications and high mortality rate (10–13).
Moreover, it has been evidenced that antiviral medication are less
effective in obese individuals (14). In spite of the extensive
research highlighting obesity as a major risk factor for
COVID-19, there remains a need to better understand the
mechanisms behind this association. Elucidation of the
pathophysiological and molecular mechanisms through which
obesity increases the complications related to COVID-19 have
the potential to contribute towards improving clinical outcomes
in these patients.

Obesity, defined by increased body mass index (BMI) and fat,
is a systemic disorder that plays a key role in COVID-19 severity
and poor outcome (14–17). Obesity is associated with
dysregulated lipid synthesis and clearance, imposing its adverse
effects on the immune system, and inducing what is known as
chronic meta-inflammation (14–16). Knowing that SARS-CoV-2
manipulates angiotensin converting enzyme 2 (ACE2) receptors
for its entry into the host cell, it is evidenced that obese subjects
tend to express elevated levels of ACE2, suggesting that ACE2
upregulated expression is due to the dysregulated lipid
metabolism pathways (18).Additionally, Al-Benna et al.
provided evidence about an increased expression of ACE2 in
adipose tissue. Such increase of ACE2 was considered a risk
factor for COVID-19 lethality in obese patients (13). Classified as
a metabolic syndrome (19), many studies have identified obesity
related metabolic signatures as a risk factor of other diseases,
including diabetes and cardiovascular disease (20, 21). Of note,
viral infections have also shown to induce significant molecular
alterations in the host metabolome. Such changes involve various
lipid and immune metabolic profiles, including energy
mediators. Importantly, it is well established that lipid
synthesis and signaling are hijacked by viruses in order to
produce lipids for their viral envelopes which allow viral entry,
replication, and its release (22). On this basis, using
metabolomics as an emerging bioanalytical approach will serve
as a useful tool in providing insights into the metabolic changes
org 2
that occur in COVID-19, and will enable the identification of
potential biochemical determinants of obesity involvement in the
pathophysiology of COVID-19 (23, 24).

Metabolic profiling of SARS-CoV-2 infection has been
previously investigated by several research groups (25–28). A
small number of recent studies have highlighted the disruption of
different pathways as metabolic features of COVID-19 patients
compared to healthy (non-COVID-19) patients (25–28).
Dysregulated pathways included lipid metabolism, tryptophan
metabolism, nitrogen and fat metabolism, in addition to
enhanced oxidative stress and inflammatory biomarkers (26–
28). In parallel, it has been shown that SARS-CoV-2 infection
and obesity tend to share common pathways associated with
glucose and lipid metabolism dysregulation, as determined by in
vitro and in silico approaches. Dysregulated pathways that
involved inflammation and immune response, in addition to
disrupted cell and tissue homeostasis were identified (18).
Despite the identified dysregulated pathways and metabolites
in COVID-19, a profound understanding underlying the
metabolic regulation of obesity as a major risk to COVID-19
severity remains to be elucidated. Therefore, understanding the
metabolomic changes of COVID-19 patients in the context of
obesity may provide clues to pathophysiological processes, and
better clinical management.

In this study we generated a patient-metabolic profile
associated with the body mass index (BMI) via untargeted
Ultra High-Performance Liquid Chromatography-Quadrupole
Time of Flight Mass Spectrometry (UHPLC-QTOF-MS). The
detected metabolites tend to be potential biomarkers that may
correlate with COVID-19 severity and clinical complications.
We highlight the significantly yet differentially altered levels of 12
metabolites out of a total of 144 identified metabolites, in both
lean and obese COVID-19 patients. We also evaluated their
possible contribution to COVID-19 manifestations in obese
patients with a special emphasis on n6-acetyl-l-lysine and
p-cresol.
MATERIALS AND METHODS

1- Participants
A cohort of 82 COVID-19 patients was recruited from the
COVID-19 Biobank, through collaboration with University of
Sharjah; 2020. Patients were originally recruited from Rashid
Hospital, Dubai, UAE. Samples were obtained prior to vaccine
development. The studied population was categorized as
asymptomatic, mild, moderate and severe. Symptoms included
May 2022 | Volume 13 | Article 827603
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fever, cough, nausea, vomiting, dyspnea, diarrhea, and confusion.
These patients were further stratified according to their body
mass index (BMI); obese (n=28), overweight (n=19) and lean
(n=35) COVID-19 patients. Patients with BMI ≥ 30 kg/m2,
BMI = 25-29.9 kg/m2, and BMI < 25 kg/m2 are classified as
obese, overweight, and lean (non-obese), respectively.
Additionally, a cohort of 24 non-COVID-19 patients (controls)
were recruited from the Biobank. Control patients were also
stratified according to BMI; obese (n=15), overweight (n=4) and
lean (n=5) non-COVID-19 patients. Table 1 describes the
patients’ characteristics enrolled in this study. A further
classification was employed highlighting the notion of COVID-
19 patients with increased BMI tend to share more of moderate
and severe symptoms, as represented in the severe and moderate
categories; Table 2.

Selected participants gave written informed consent before
recruitment. The study was approved by the ethics committee
(DSREC-04/2020_19) of the Dubai Scientific Research Ethics
(Dubai Health Authority; DHA) in the United Arab Emirates.

2- Sample Collection and Preparation
Fasting blood samples were collected from subjects for clinical
profiling. The same blood samples were used later for plasma
extraction and further analysis. Briefly, 8 ml of peripheral venous
blood were collected in Ethylenediamine Tetra Acetic Acid
(EDTA)-blood collection tubes and were processed within
24 hours. For plasma collection, blood was diluted with (1x)
Phosphate Buffered Saline (Cat. #: RNBH9883, Sigma-Aldrich,
USA) containing 2% human fetal bovine serum (FBS; Cat. #:
F9665, Sigma-Aldrich, USA), in a 1:1 ratio, mixed thoroughly,
and layered onto a HISTOPAQUE®-1077gradient media (Cat. #:
RNBK2836, Sigma-Aldrich, USA). To separate plasma from other
blood components, centrifugation was performed at 400
Frontiers in Immunology | www.frontiersin.org 3
× g for 30 minutes; room temperature. Plasma was then
collected and stored at − 80°C until further use.

3- Untargeted UHPLC-QTOF-MS Analysis
and Metabolite Identification
Samples were analyzed using Ultra High-Performance Liquid
Chromatography [UHPLC; (UHPLC; ELUTE autosample, from
Bruker (Bremen-Germany)] coupled to Trapped Ion Mobility
(timsTOF) Mass spectrometer [Bruker Daltonics GmbH & Co.
KG, (Bremen, Germany)]. Briefly, 150 µl of each sample was
aliquoted and suspended in 450 µl of methanol. After vortex for 1
minute, the samples were incubated at -20°C for 2 hours. Samples
were then centrifuged at 14,000 rpm for 15 minutes. The
supernatant was transferred into new Eppendorf tubes for
vacuum freeze-drying speed vacuum evaporation at 35 – 40°C.
A quality control (QC) samples were prepared by pooling the
same volume of each sample to evaluate the reproducibility of the
analysis. Extract samples were reconstituted by 250 ul of 0.1%
formic acid in Deionized Water-LC-MS CHROMASOLV
(Honeywell) and loaded onto the Autosampler (ELUTE
UHPLC). Metabolites were analyzed in auto MS/MS positive
scan mode within the range of 20-1300 m/z utilizing
electrospray ionization using Bruker Compass HyStar 5.0 SR1
Patch1 (5.0.37.1), Compass 3.1 for otofSeries, otofControl Version
6.0. Metabolites were potentially identified according to the
endogenous MS database by accurate masses. At the same time,
the metabolites that matched with the spectra in the fragment
database were confirmed at the tandem mass spectrometry level.

For analysis purposes, we have managed to combine the
detected metabolite intensity from overweight and obese
subjects since there was a significant linear correlation between
the development of COVID-19 severe complications and
hospitalization in subjects with BMI ≥ 23 kg/m2 (29–32).

4- Enrichment Analysis
To gain insight into the metabolomic mechanisms, pathway
analysis and metabolite set enrichment analysis (MESA) were
implemented using MetaboAnalyst-5.0, a web-based
metabolomics data analysis software (33). Over Representation
Analysis (ORA) was performed using the hypergeometric test to
evaluate whether a metabolite set is represented more than
expected by chance within the given compound list. The
concentrations of statistically significant metabolites that have
p <0.05 in t-test were used for quantitative pathway
enrichment analysis.
TABLE 1 | Summary of subjects characteristics enrolled in the study.

Subjects Characteristics

Non-COVID-19 COVID-19

Subjects (N) 24 82
Age (years) 48.2 ± 13.6 47 ± 15.86
Gender, M/F 12/12 64/18
BMI 30.31 ± 3.7 26.1 ± 5.05
BMI, Body Mass Index; M, Male; F, Female; N, Number of Subjects; ± indicates
Standard Deviation.
TABLE 2 | Severity and BMI categories of COVID-19 patients.

COVID-19 patients

Severity N, (%) Obese N, (%) (BMI≥ 30 kg/m2) Overweight N, (%) (BMI = 25-29kg/m2) Lean N, (%) (BMI< 25 kg/m2)

Mild 26, (31%) 8, (31%) 8, (31%) 10 (38%)
Moderate 11, (13%) 5, (46%) 2, (18%) 4, (36%)
Severe 17, (20%) 7, (42%) 5, (29%) 5, (29%)
Asymptomatic 28, (34%) 8, (29%) 4, (14%) 16, (57%)
Total N, (%) 82, (100%) 28, (34%) 19, (23%) 35, (43%)
May 202
BMI, Body Mass Index; N, Number of Subjects.
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5- Statistical Analysis
Microsoft Excel and GraphPad Prism software were used to
perform statistical analysis. Results are expressed as individual
data or as median ± standard deviation. Data series were
compared by calculating the relative variability of data with
respect to the mean via Coefficient of variation (CV). A
CV>20 was not included in further analysis. Prior to analysis,
data were tested for normality using SharpiroWilk’s and
D’Agostino and Pearson omnibus normality tests. Data were
analyzed using either Mann-whitney t-test or ordinary one-way
ANOVA. Statistical significance was determined by Mann-
Whitney t-test followed by Tukey Post -Hoc or Welch’s
correction tests. Differences among groups was assessed by
one-way analysis of variance (ANOVA with Tukey’s post hoc
test or Dunn’s multiple comparison test and Kruskal-Walis test),
with 95% probability level; p <0.05 was considered significant.
RESULTS

Profound Metabolomics Alterations
Associated With COVID-19 Lean and
Overweight-Obese Patients
This study aimed to investigate the plasma metabolome profiling
of COVID-19 patients using UHPLC–MS/MS, to reveal the
significantly altered metabolites among non-COVID-19 and
COVID-19 in lean and overweight-obese patients. Our
profiling detected 144 metabolites in COVID-19 patients and
147 metabolites in non-COVID-19 patients; listed in
Supplementary Table 1 (Table S1). To gain insight into the
metabolic mechanisms by which the 144 metabolites are
involved, data extracted from the MetaboAnalyst indicated that
these metabolites had a major impact in different pathways
(Figure 1), when comparing COVID-19 patients to non-
COVID-19 patients. The top or highly identified pathways
were mainly associated with glucose, energy and steroid
metabolisms. These include homocysteine degradation, methyl
histidine metabolism, and catecholamine biosynthesis, in
addition to other enriched pathways such as urea cycle and
glutathione and arginine and proline metabolisms (Figure 1).

Next, we analyzed the levels of the detected metabolites among
COVID-19 lean and overweight and obese subjects compared to
non-COVID-19 lean, overweight and obese subjects. Our results
showed that among the detected 144 metabolites in COVID-19
patients, the levels of 3 metabolites having antioxidant and anti-
inflammatory properties (m-coumaric, Phosphatidylcholine (PC
(16:0/16:0)), and benzocaine) were significantly upregulated in
COVID-19 lean and COVID-19 overweight-obese patients when
compared to non-COVID-19 counterparts (Figure 2). The
phenolic compound m-coumaric acid showed significantly
upregulated levels in COVID-19 overweight-obese (p < 0.01; p <
0.0001 respectively) as compared to non-COVID-19 subjects. Also,
it displayed significantly higher levels in COVID-19 obese patients
(p < 0.001) as compared to COVID-19 lean patients (Figure 2A).
Additionally, our data also revealed another phenolic compound,
cinnamic acid, having significantlyhigher levels (p<0.0001) inboth
Frontiers in Immunology | www.frontiersin.org 4
non-COVID-19 and COVID-19 overweight-obese patients when
compared to their lean counterparts. On the other hand, cinnamic
acid displayed significantly lower levels (p < 0.01) in COVID-19
obese individuals than in non-COVID-19 obese individuals
(Figure 2B). Our data also showed significantly higher levels of
the Phosphatidylcholine glycerophospholipid [PC (16:0/16:0)] in
COVID-19 overweight-obese patients as compared to COVID-19
lean and non-COVID-19 overweight-obese (p < 0.05; Figure 2C).
Although benzocaine was identified by our humanmetabolite data
base (HMDB), it’s not a cell metabolite and rather classified as local
anesthetic. Benzocaine showedsignificantlyhigher levels (p<0.001)
in COVID-19 overweight-obese patients as compared to non-
COVID-19 lean and overweight-obese subjects (Figure 2D).
Overall, these data indicate that both SARS-CoV-2 infection and
obesity tend to significantly affect the host metabolome.

Metabolic Signatures Associated With
Viral Infection and Disease Complications
in COVID-19 Overweight-Obese Compared
to COVID-19 Lean Patients: N6-Acetyl-L-
Lysine and p-Cresol as Key Mediators
Our analysis identified a set of metabolites that were significantly
altered in COVID-19 overweight-obese patients when compared
to COVID-19 lean patients. Data showed significantly
upregulated levels of n6-acetyl-l-lysine (p < 0.01; Figure 3A), a
metabolite that belongs to a class of organic compounds known
as l-alpha-amino acids (34), and is known for its role in chronic
inflammation and viral function induction (34, 35). In addition
to n6-acetyl-l-lysine, data showed significantly upregulated levels
of the protein-bound uremic retention solute p-cresol (p < 0.05)
in COVID-19 overweight-obese patients when compared
to COVID-19 lean patients (Figure 3B). P-cresol is known to
associate with increased admissions of hospitalizations due to
infections (36). Moreover, its high levels is usually correlated
with chronic inflammation and cardiovascular diseases (37).
Interestingly, n6-acetyl-l-lysine and p-cresol metabolites are
not among the detected metabolites in non-COVID-19
patients; they were only detected in COVID-19 patients. On
the other hand, data showed significantly lower levels of
mevalonic acid, phenol, 3,4- dihydroxymandelic acid, gallic
acid, homo-l-arginine (p < 0.05; Figures 4A–F) in COVID-19
overweight-obese compared to COVID-19 lean patients.
Interestingly, these metabolites tend to share anti-
inflammatory and anti-oxidant properties (38).

Profound Metabolomics Alterations
Associated With COVID-19 Symptomatic
Manifestation in COVID-19 Lean and
COVID-19 Overweight-Obese Patients
We assessed the involvement of the 12 significantly altered
metabolites in the symptomatic phenotype presented by
COVID-19 patients. Interestingly, n6-acetyl-l-lysine showed to
be also significantly involved in the symptoms of COVID-19
patients. Our analysis showed a significantly upregulated level of
n6-acetyl-l-lysine (p < 0.0001) in symptomatic COVID-19
overweight-obese patients compared to symptomatic COVID-19
May 2022 | Volume 13 | Article 827603
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lean patients. (Figure 3C). This potentially signifies the
involvement of n6-acetyl-l-lysine in obesity-induced symptoms
in COVID-19 patients. No significant involvement was detected
regarding the rest of the metabolites.
DISCUSSION

The findings from this study unravel the effect of obesity on the
metabolome profiling of COVID-19 patients. We have identified
a total of 144 metabolites in COVID-19 patients from which 12
metabolites displayed significantly altered levels between lean
and overweight-obese COVID-19 patients. We also highlight
that n6-acetyl-l-lysine and p-cresol are metabolic signatures of
COVID-19 and were significantly displaying higher levels in
overweight-obese COVID-19 patients compared to lean
COVID-19 patients. Despite that these COVID-19 patients
present different or no other metabolic complications, yet our
findings suggest that n6-acetyl-l-lysine and p-cresol are rather
influenced by COVID-19. The detected metabolic signature of
Frontiers in Immunology | www.frontiersin.org 5
these patients may shed light on the involvement of obesity in the
progression and severity of COVID-19 disease.

In this study we showed plasma metabolic profiling from lean
and overweight-obese COVID-19 patients. Upregulated levels of
n6-acetyl-l-lysine and p-cresol were evidenced in overweight-
obese COVID-19 patients. Lysine acetylation is a novel post-
translational pathway that is mainly induced by obesity, and has
been shown to regulate enzyme activities involved in fatty acid and
glucose metabolisms (39). This mechanism involves the transfer of
an acetyl group from acetyl Coenzyme A (acetyl-CoA), key
mediator of protein acetylation and a regulator of metabolism,
targeting lysine amino group (40, 41). Interestingly, acetylation of
several proteins has been evidenced at virus interacting domains
and has been shown to affect viral replication, thus indicating a
crucial role in viral infection. It was observed in Influenza virus
and Zaire Ebolavirus that the nucleocapsids (N) were acetylated,
suggesting that these modifications contribute to the molecular
events involved in viral replication. Similarly, SARS-CoV and
SARS-CoV-2 N proteins are shown to be strongly acetylated by
human histone acetyltransferases, forming acetyl-lysine residues.
FIGURE 1 | Summary of Metabolomic Set Enrichment Analysis Plot. Metabolomic Set Enrichment Analysis (MSEA) showing the most altered functional metabolic
pathways in COVID-19 patients. The graph was obtained using the online tool MSEA by plotting on the y-axis the -log of p values from pathway enrichment analysis.
May 2022 | Volume 13 | Article 827603
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These acetylated lysine residues are mainly localized at the N-
terminal and C-terminal functional interacting sites of RNA and
the membrane (M)-protein (35), which was shown to play a role in
viral infectivity and antigenicity (42). Although the bi-directional
virus-host and chromatin regulation are not yet fully understood,
histone modifications have been proven to affect viral chromatin
which possibly influence epigenetic factors that mediate viral
survival and function, allowing it to escape the immune system
(43). Generally, the acetylation of these proteins is crucial for viral
pathogenesis (35). Additionally, findings from in vitro work with
human lung adenocarcinoma epithelial cells (Calu-3 cells) also
indicates that uremic toxin p-cresol contributes to the induction of
cytokine storm in response to SARS-CoV. Culturing Calu-3 cells
with p-cresol induced responses that exhibited enhanced
expression and secretion of the proinflammatory tumor necrosis
factor (TNF-a), Interleukins (IL-6 and IL-1b), and interferon
gamma (IFNg) cytokines (36). This suggests that our identified
metabolic signatures, N6-acetyl L-Lysine and p-Cresol, are
potentially involved in inducing cytokine storm. These
inflammatory cytokines are suggested to be markers of acute
systemic inflammatory syndrome that can be measured in
COVID-19 patients with increased severity (44, 45). p-Cresol
has been evidenced to inhibit macrophage function and
leukocyte migration involved in cytokine-stimulated cells
(46). Moreover, p-cresol has shown to significantly upregulate
ACE2 and TMPRSS2, the receptors for SARS-CoV-2, which
Frontiers in Immunology | www.frontiersin.org 6
reflects more viral entry into the host cell (36). Overall, this
suggests that n6-acetyl-l-lysine and p-cresol are two key
metabolites that may play crucial roles in the COVID-19
pathogenesis, where obesity could be a triggering factor. In
addition to the upregulated levels of n6-acetyl-l-lysine and p-
cresol, our data also displayed significantly lower levels of phenol,
gallic acid, 3,4-dihydroxymandelic acid, mevalonic acid and
homo-l-arginine in overweight-obese COVID-19 patients, which
tend to have antiviral properties (47–50). Interestingly, among
these metabolites is the mevalonic acid, which indicates the
participation of the mevalonate pathway in our study. It is
known that cholesterol synthesis is part of the acetyl-CoA-
mevalonate pathway, keeping in mind that the adipose tissue
is a major site for cholesterol storage. Disruption or inhibition of
this pathway is mainly correlated with glucose and lipid metabolic
disorders, in addition to hepatomegaly (51, 52). Intriguingly, the
lipid metabolism plays a crucial role in the viral life cycle as a host
machinery for viral replication, impairing the host immune
response. SARS-CoV-2 has been evidenced to hijack the
mevalonate pathway, leading to activation of the inflammasome
via cytokine release. This indicates that this pathway is involved in
the pathogenesis of COVID-19; as determined by in silico assays
(22, 53). Overall, we highlight the involvement of obesity in
COVID-19 disease via enhancing viral propagation due to the
altered levels of the host metabolome which may warrant
further investigation.
A B

DC

FIGURE 2 | Alteration in plasma metabolite levels of COVID-19 lean and obese patients compared to non-COVID-19 lean and obese patients. Plasma levels of
different metabolites (A) m-Coumaric acid (B) Cinnamic acid (C) Phosphatidylcholine [PC (16:0/16:0)] and (D) Benzocaine, were significantly different in COVID-19
lean and overweight-obese patients when compared to controls (non-COVID-19). Analysis was performed using one-way ANOVA with Dunn’s multiple comparison
and Kruskal-Walis tests; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. The y axis in the dot plots indicates arbitrary units of median intensity.
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A B

D E F

C

FIGURE 4 | Downregulation of plasma metabolites as markers of COVID-19 health complications in obese patients. Plasma levels of (A) Mevalonic acid, (B) 3,4-
Dihydroxymandelic acid, (C) Gallic acid, (D) Homo-L-Arginine, (E) Phenol, and (F) Tricosanoic acid displayed significantly lower levels in COVID-19 overweight-obese
patients compared to COVID-19 lean patients. Analysis was performed using Mann Whitney t-test with or without Welch’s correction test; *P < 0.05.
A B

C

FIGURE 3 | Upregulated levels of plasma metabolites as markers of viral function and adverse complications in COVID-19 obese patients. Plasma levels of (A)
N6-Acetyl-L-Lysine were significantly upregulated when comparing COVID-19 obese and overweight patients to COVID-19 lean patients. Similarly, significant
increase in plasma levels of (B) p-Cresol in COVID-19 overweight-obese patients. Analysis was performed using Mann Whitney t-test with or without Welch’s
correction test. (C) Plasma metabolite levels of N6-acetyl-l-lysine displayed altered levels that correlated with the occurrence of symptoms in COVID-19
overweight-obese patients. Analysis was performed using one-way ANOVA followed by Dunn’s multiple comparison and Kruskal-Wallis testpost hoc; *P < 0.05;
**P < 0.01; ****P < 0.0001.
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Besides their possible effect on viral load, the significantly
altered levels of the detected metabolites might be also
mediating the health complications observed in COVID-19
overweight-obese patients, which then leads to poor prognosis.
The increased plasma levels of n6-acetyl-l-lysine and p-cresol
metabolites are mainly attributed to heart and kidney failure
(34), complications that have been observed in COVID-19
patients (54). Protein acetylation are shown to regulate multiple
signaling pathways of inflammation as well as metabolic enzymes
involved in glycolysis, tricarboxylic acid and urea cycles and fatty
acid and glycogen metabolism (55), linking them to metabolic
dysfunction and diseases. Interestingly, lysine acetylation has been
linked to the regulation of cardiac energy metabolism and insulin
signalling. In the case of obesity, the elevated levels of free fatty
acids uptake and b oxidation, provides an abundance of the acetyl-
CoA, leading to mitochondrial dysfunction; a unique feature of
obesity and/or diabetes (39). Of note, chronically increased fatty
acid uptake and b- oxidation accompanied with insulin resistance
enhances protein lysine acetylation, which in turn induces
mitochondrial protein hyperacetylation, leading to cardiac
malfunction or disease (56, 57). Similarly, p-cresol, a protein-
bound uremic retention solute mainly produced in the human
intestine due to bacterial fermentation (58), is a novel
cardiovascular risk factor that contributes to atherosclerosis and
thrombosis in uremic patients. This is partially due to the
production of reactive oxygen species (ROS) and inflammation,
in addition to endothelial and vascular dysfunction associated with
Frontiers in Immunology | www.frontiersin.org 8
atherosclerosis-related enzymes (37, 59). In parallel, our data
revealed the significant decrease in homo-l-arginine, mevalonic
acid, phenol, 3,4- dihydroxymandelic acid, and gallic acid plasma
levels in overweight-obese COVID-19 patients. These metabolites,
whether at the plasma level or as a pretreatment, are known to
exhibit anti-inflammatory and antioxidant properties (38, 39).
Among these, homo-L-arginine, a naturally occurring, non-
proteinogenic, cationic amino acid catalyzed by the liver via
glycine amidinotransferase (AGAT); an enzyme from the
creatine biosynthesis pathway (60) is known to exert protective
roles on the endothelial function and energy metabolic processes
in different organs. However, its low levels have been attributed to
diabetes, kidney diseases, and to cardiovascular diseases with high
mortality rates (60–62). In addition, homo-l-arginine have shown
to have protective functions against progression of pulmonary
fibrosis. This makes it an interesting metabolite to monitor for
progression to pulmonary fibrosis. Generally, arginine and its
derivatives are part of the urea cycle metabolic pathway, by which
its dysfunction is known to correlate with lung disease (63). This
could also explain our MSEA analysis, which displayed the urea
cycle to be one of the top enriched pathways observed in our study.
Interestingly, our analysis displayed homocysteine degradation
pathway to be the most enriched pathway, highlighting its
involvement as a potential predictor of cardiovascular risk in
COVID-19 patients (64). Overall, our data explains how these
metabolites are involved complications seen in overweight-obese
COVID-19 patients.
FIGURE 5 | Summary of the proposed involvement of N6-Acetyl-L-Lysine and p-Cresol as key metabolites of COVID-19 pathogenesis observed in COVID-19
overweight-obese patients. (1) SARS-CoV-2 access the airway of an overweight-obese patient by binding to the host cell. (2) The virus utilizes ACE2 receptor for
its entry and the serine protease TMPRSS2 for S protein priming, contributing to rapid spread of the virus in infected patients. (3) Inside the host cell, SARs-
CoV-2 influence epigenetic factors that manipulates viral survival and replication, leading to metabolic dysregulation. (4) The increase of N6-Acetyl-L-Lysine, as a
key metabolite of COVID-19 pathogenesis in overweight-obese patients, induces molecular alterations in SARS-CoV-2 Nucleoplasmid and RNA at functional
interacting sites. This in turn creates a positive feedback loop through the induction of viral replication and infectivity. In another mechanism, (5) and (6) SARS-
CoV-2 invasion of epithelial cells, leads to the (7) degradation of proteins and thus accumulating as a by-product toxin. Of these, is the uremic toxin (8) P-Cresol,
another key metabolite involved in the pathogenesis of COVID-19 disease, displayed increased intensity in overweight-obese COVID-19 patients. Elevated p-
Cresol (9) is shown to inhibit macrophage activity and leukocyte cell adhesion, which leads to decrease of immune response, as seen in COVID-19 patients. (10)
In another mechanism, p-Cresol increases the expression of ACE2 receptor and TMPRSS2, thus enhancing viral entry and load. (11) The increase of N6-Acetyl-
L-Lysine and p-Cresol resulted in the induction of inflammation, cytokine storm and reactive oxygen species (ROS) production. This subsequently led to the
development of (12) severe health complications which involves pulmonary fibrosis, cardiovascular diseases and kidney failure, and possibly admission to
intensive care unit (ICU).
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Our assessment also displayed plasma metabolite profiling
from overweight-obese and lean COVID-19 patients of
differentially altered levels of m-coumaric, cinnamic,
phosphatidylcholine [PC (16:0/16:0)] and benzocaine when
compared to non-COVID-19 lean and overweight-obese
patients. The phenolic compounds, m-coumaric acid and
cinnamic acid exhibit anti-inflammatory and antioxidant
properties, in addition to their immunomodulatory functions
(65–67). These compounds were shown to serve as a therapy for
obesity-related health complications. As natural compounds,
these hydroxycinnamic derivatives were shown to protect
against obesity associated health complications by targeting the
proinflammatory tumor necrosis factor (TNF-a) and nuclear
factor kB (NF-kB) pathways via reducing their expression (68).
Despite their protective properties, our data revealed higher
plasma levels of these compounds in overweight-obese
COVID-19 patients as compared to lean- COVID-19 patients.
It is clear that SARS-CoV-2 like many other viruses imposes its
molecular alterations in the host metabolome (22) and a possible
functional compensation might be taking place. Additionally,
our data displayed higher levels of the glycerophospholipid PC
(16:0/16:0) and benzocaine in overweight-obese COVID-19
patients. These metabolites are shown to participate in
cardiovascular and neurodegenerative diseases by inducing
inflammation (69, 70), and in cancer by enhancing the severity
of malignancy (71). In a case study, benzocaine was shown to
induce methemoglobinemia after its administration as
premedication for transesophageal echocardiography (72).

In summary, our investigation, to our knowledge, is the first
study to characterize the plasma metabolome of COVID-19
overweight-obese patients. Such metabolic signature
could possibly be used as a clinical indicator of health
complications observed in obese COVID-19 patients. We
propose the correlation of two metabolites, n6-acetyl-l-lysine
and p-cresol, in having crucial roles in COVID-19 poor
prognosis of obese individuals, as demonstrated in Figure 5.
Despite the limited access to non-vaccinated COVID-19 patient
samples, in the present study we provide a proof-of-principle
evidence for the feasibility of understanding obesity induced
metabolic dysregulation in the pathogenesis of COVID-19,
without vaccination being a co-founding factor. Future
investigations are required to gain more mechanistic insights
with regards to the actual involvement of such metabolites in
pathways driving the occurrence of complications in obese
COVID-19 individuals. Also, future directions should be
addressing the metabolome of vaccinated COVID-19 patients,
considering the involvement of obesity as a risk factor to adverse
complications in COVID-19 disease.
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