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Background: As an endocrine organ, the thyroid acts on the entire body by secreting a
series of hormones, and bone is one of the main target organs of the thyroid.

Summary: This review highlights the roles of thyroid hormones and thyroid diseases in
bone homeostasis.

Conclusion: Thyroid hormones play significant roles in the growth and development of
bone, and imbalance of thyroid hormones can impair bone homeostasis.
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1 INTRODUCTION

As one of the most important endocrine organs, the thyroid regulates physiological processes by
synthesizing and secreting calcitonin and thyroid hormones (THs). THs are essential for normal
growth, differentiation and the physiological functions of various tissues (1), and thyroid-
stimulating hormone (TSH) is secreted from the pituitary and regulates the synthesis and
secretion of THs (2). Bone constitutes the skeletal structure that supports the human body and
regulates calcium and phosphorus homeostasis (3). Normal bone remodeling involves a balance
between osteoblasts mediated bone formation and osteoclasts mediated bone resorption (4).
Currently, both thyroid diseases including hyperthyroidism and hypothyroidism, and bone
diseases including osteoporosis are prevalent especially in women (5). Further, studies showed
that hyperthyroidism causes osteoporosis and hypothyroidism impedes bone remodeling (6). This
review summarized current studies about endocrine roles of thyroid on bone homeostasis.
2 THE THYROID, THs AND TSH

The thyroid is an endocrine organ composed of thyroid follicular cells and interfollicular C cells. The
thyroid mainly synthesizes calcitonin and THs including triiodothyronine (T3) and thyroxine (T4),
which are regulated by the hypothalamus pituitary-thyroid axis (1). As functional units of the thyroid,
thyroid follicles are surrounded by a single layer of epithelial cells (7). Each follicle is densely packed
with blood vessels that play roles in the synthesis, preservation and secretion of T3/T4 into the
bloodstream (8). Approximately 80% of T3 is produced by T4 transformation in peripheral tissues,
whereas the remaining 20% is secreted directly from the thyroid (7). A lack of THs causes fatigue,
constipation and weight gain, whereas excess THs can lead to cardiovascular diseases or increase
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osteoporosis (7). As an integral part of the hypothalamus pituitary-
thyroid axis, TSH is closely related to THs. TSH promotes the
growth and differentiation of the thyroid, as well as the secretion of
THs. THs, in turn, regulate TSH through a negative feedback loop.
Accordingly, under pathological conditions, enhanced negative
feedback inhibits the pituitary function and results in decreased
TSH secretion in hyperthyroidism, while weakened negative
feedback inhibition results in increased TSH secretion in
hypothyroidism to compensate for the body’s needs (2).
3 BONE DEVELOPMENT AND
BONE HOMEOSTASIS

Bone is a rigid tissue that supports the human body. Bone cells,
including osteoprogenitor cells, chondrocytes, osteoblasts,
osteoclasts, and osteocytes, maintain bone homeostasis.
Osteoprogenitor cells are bone stem cells, and these cells can
differentiate into chondrocytes or osteoblasts under certain
conditions. Chondrocytes participate in osteogenesis and assist
joint movement. Osteoblasts conduct bone formation and
subsequently differentiate into osteocytes. Endochondral and
intramembranous ossification are two main ways of bone
formation (9). During endochondral ossification, mesenchymal
stem cells first differentiate into chondrocytes, and then
chondrocytes undergo hypertrophy and apoptosis, after which
cartilage lacunae forms. Thereafter, vascular vessels invade into
cartilaginous tissue and then leads to the absorption of cartilage
matrix mediated by osteoclasts and bone marrow lumen formation.
Meanwhile, osteoblasts enter and attach to the bone marrow lumen
to form bone tissue. While in intramembranous ossification,
mesenchymal stem cells directly differentiate into osteoblasts,
without the stage of chondrocytes (9, 10). Osteoclasts are
involved in bone resorption, and jointly regulate bone remodeling
with osteoblasts. As the most abundant bone cells, osteocytes are
embedded into bone matrix and form dendritic network to regulate
the balance between bone formation and resorption (11, 12).
Osteocytes and osteoblasts play major roles in regulating
osteoclasts by secreting receptor activator of nuclear factor kappa-
B ligand (RANKL) and osteoprotegerin (OPG) (13). RANKL can
bind with RANK on osteoclasts, which activates osteoclasts. The
activation of osteoclasts depends on the ratio of RANKL and OPG,
and slightly more OPG could bind with RANKL to prevent the
binding between RANKL and RANK, and hinder osteoclast
formation (14, 15). On the other hand, osteocytes specifically
secrete sclerostin to inhibit bone formation of osteoblasts (16).
4 EFFECTS OF THS ON BONE

4.1 TH Receptors (TRs) in Bone
TRs are widely distributed, andmainly in the nucleus and to a lesser
degree in the cytoplasm (17). TRs are composed of three subtypes:
TRa1, TRb1 and TRb2. TRa1 is mainly present in cardiac and
skeletal muscles, TRb1 mainly exists in the brain, kidney and liver,
and TRb2 is confined to the hypothalamus and pituitary, where the
Frontiers in Endocrinology | www.frontiersin.org 2
expression of thyrotropin releasing hormone (TRH) and TSH is
inhibited (18–20). Both TRa1 and TRb1 are expressed in bone, and
TRa1 is approximately 10 times more abundant than TRb1 (21).
TRa1 plays a leading role when THs are at baseline concentrations,
and TRb1 rapidly responds to acute TH variations (22).

Moreover, general TRs also include receptors on the cell
membrane, such as monocarboxylate transporter 8 (MCT8),
MCT10, L-type amino acid transporter 1 (LAT1) and LAT2.
The ability of MCT10 to transport T3 is better than that of
MCT8, whereas MCT8 can better transport T4 than MCT10
(23). In global Mct8-knockout mice, increased numbers of
osteoblasts and osteoclasts, accelerated bone turnover, and
delayed bone mineralization were observed. While the absence
of MCT8 in osteoclast progenitors (LysMCreMct8f/f) impaired
osteoclastogenesis and subsequently impaired bone resorption.
Interestingly, osteoprogenitor-specific MCT8-knockout mice
(OsxCreMct8f/f) showed increased trabecular bone mass,
indicating that MCT8 was a negative regulator of osteogenesis
(24, 25).
4.2 THs Regulate Chondrocytes via
hh-Parathyroid Hormone-Related Protein
(PTHrP) Negative Feedback Loop
THs regulate the process of chondrocyte proliferation and
differentiation which is mediated by a series of crucial growth
factors, including Indian hedgehog (Ihh), wingless/integrated
(Wnt), insulin-like growth factor 1 (IGF-1) and bone
morphogenetic protein (BMP) (26, 27) (Figure 1).

4.2.1 THs Regulate Chondrocytes via Ihh-
Parathyroid Hormone-Related Protein (PTHrP)
Negative Feedback Loop
During endochondral ossification, chondrocytes go through
three stages including proliferating chondrocytes, pre-
hypertrophic chondrocytes and hypertrophic chondrocytes.
Proliferating chondrocytes are around joints, and hypertrophic
chondrocytes are formed by constantly moving forward of
proliferating chondrocytes, the site of hypertrophic
chondrocytes determines the length of the bone (28). Ihh is an
intercellular signaling molecule in the Hh protein family (29) and
is expressed in pre-hypertrophic and hypertrophic chondrocytes.
The expression of Ihh in the tibial epiphyses could be increased
by TH treatment (30). Subsequently, Ihh induces the expression
of PTHrP, which promotes chondrocyte proliferation and
inhibits chondrocyte maturation through a negative feedback
loop. Therefore, TH regulates the length of long bone (31).
Consistently, severe dwarfism and obviously declined rate of
chondrocyte proliferation were observed in Ihh mutant mouse
model (32). Therefore, THs regulate the length of long bone by
controlling the location where the chondrocytes mature via Ihh-
PTHrP negative feedback loop.

4.2.2 THs Regulate Chondrocytes via Wnt
Signaling Pathway
Carboxypeptidase Z (CPZ) is activated by THs and contains a
cysteine-rich domain that binds to Wnt4; CPZ promotes the
April 2022 | Volume 13 | Article 873820
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removal of C-terminal amino acids from Wnt4 and then
enhances Wnt4 activity (33). The expression of Wnt4 favors
the accumulation of stabilized b-catenin, which promotes
chondrocyte differentiation, and the expression of Runx2,
which is beneficial for stimulating chondrocyte proliferation
mediated by Ihh (34). Therefore, THs promote chondrocyte
proliferation and differentiation via Wnt signaling pathway.

4.2.3 THs Regulate Chondrocytes via IGF-1
Signaling Pathway
In rat model, the expression of IGF-1 receptor (IGF-1R) and the
chondrocyte differentiation markers including collagen X and
alkaline phosphatase (ALP) activity in growth plate cells were
significantly upregulated under the T3 treatment, and
subsequent study further demonstrated that THs stimulate
chondrocyte differentiation by upregulating Wnt4 expression
and accumulation of b-catenin via IGF-1/PI3K/Akt signaling
pathway (35).

4.2.4 THs Regulate Chondrocytes via BMP/Smad
Signaling Pathway
In the upper portion of the embryonic chick sternum, the
expression of BMP4 in chondrocytes was increased following
T3 treatment. BMP belongs to the TGF-b superfamily, and the
Smad protein family mediates signal transduction of different
TGF-b family members. BMP promotes Smad 1/5/8
phosphorylation and then coactivates Smad 4 and induces the
Frontiers in Endocrinology | www.frontiersin.org 3
expression of chondrocyte differentiation markers, such
as collagen X (36). Further, BMP increases the expression
of Ihh and abrogates the partial inhibition of the maturation
effects of PTHrP to regulate chondrocyte proliferation and
maturation (37).

4.3 Effects of THs on Osteoblasts
4.3.1 The Function of Type 2 Deiodinase (DIO2)
in Osteoblasts
Deiodinases (DIOs) are present in target tissues and can amplify
or terminate TH signaling through DIO2 and DIO3 (38). DIO2
converts T4 to bioactive T3, and DIO3 converts both T3 and T4
to diiodothyronine (T2) and reverse T3 (rT3); the latter two are
dysfunctional proteins (39). DIO2 is found in mature primary
osteoblasts in bone, while DIO3 is present in chondrocytes,
osteoblasts and osteoclasts (40). Knockout DIO2 in osteoblasts
exhibited increased bone mineralization, low tough femurs
and fracture tendency, which was consistent with the
clinical manifestations of hypothyroidism in bone tissue (41,
42). Therefore, DIO2 is essential for proper osteoblast
function (Figure 2).

4.3.2 THs Regulate Osteoblasts via Wnt Signaling
THs inhibit the differentiation of osteoblasts by inhibiting Wnt/
b-catenin signaling pathway. T3 increased reporter gene activity
mediated by TRa1 and TRb1, whereas T3 inhibited b-catenin
pathway reporter gene activity in UMR106 cells that were
FIGURE 1 | TH-mediate regulation of chondrocyte proliferation and differentiation. THs promote the differentiation of chondrocyte via Wnt signaling pathway, BMP
signaling pathways, and IGF-1 signaling pathway. Furthermore, the expression of Ihh in pre-hypertrophic and hypertrophic chondrocytes induces the expression of
PTHrP, which promotes chondrocyte proliferation and inhibits chondrocyte maturation through a negative feedback loop, and the site of hypertrophic chondrocytes
determines the length of the bone, therefore, THs regulate the length of long bone by Ihh-PTHrP signaling pathway. Furthermore, BMP can increase the expression
of Ihh and abrogates the partial inhibition of the maturation effects of PTHrP to regulate chondrocyte proliferation and maturation, and the increased expression of
Runx2 in mature and differentiated chondrocytes is beneficial for stimulating chondrocyte proliferation mediated by Ihh.
April 2022 | Volume 13 | Article 873820
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co-transfected with TRa1 or TRb1. In the absence of TRs or T3,
b-catenin pathway reporter gene activity was not affected, and a
similar outcome was observed in osteoblastic MC3T3 cells.
Therefore, T3 inhibits the Wnt/b-catenin signaling pathway in
osteoblasts (43).

4.3.3 THs Regulate Osteoblasts via BMP Signaling
THs promote the differentiation of osteoblasts by BMP/Smad
signaling pathway. The expression of differentiation markers was
increased, and Smad1/5/8 phosphorylation was mediated by
BMP signaling when osteoblasts were treated with T3. This
finding suggested that THs could promote osteoblast
differentiation via the BMP/Smad signaling pathway (44).
C2C12 myoblasts were transfected with a BMP/Smad-specific
reporter construct and treated with Bmp2 or Wnt3a ligands, and
the results showed that not only Bmp2 but also Wnt3a enhanced
BMP/Smad activity. Furthermore, the overexpression of b-
catenin could activate Bmp2 overexpression. This finding
showed that the Wnt/b-catenin signaling pathway stimulated
the Bmp2/Smad signaling pathway in osteoblasts. Furthermore,
Bmp2/Smad signaling pathways could also regulate the Wnt/b-
catenin signaling pathway; these pathways interacted with each
other and regulated target gene expression by forming a
transcriptional complex (Smad bound with b-catenin) in
osteoblasts (45).

4.3.4 THs Regulate Osteoblasts via IGF-1 Signaling
THs promote the differentiation of osteoblasts by IGF-1
signaling pathway. IGF-1 mRNA levels were increased in
MC3T3-E1 cells after treatment with THs, and the increased
levels were positively correlated with TH concentrations.
Frontiers in Endocrinology | www.frontiersin.org 4
Furthermore, their metabolites, including T2 and rT3, could
also promote the increase in IGF-1 mRNA levels (46) (Figure 3).

4.3.5 THs Regulate the Expression of
Osteocalcin (Ocn)
Ocn is produced exclusively by osteoblasts, and increased bone
formation in both trabecular and cortical bone in Ocn knockout
(Ocn-/-) mice, indicating that the function of osteoblast
increased. Further, the increased osteoclast number in Ocn-/-

mice, indicating increased osteoclast function. Therefore, Ocn is
a negative regulator of bone formation and resorption (47).
Study showed that triiodothyronine (T3) promotes Ocn
synthesis in osteoblast−like cells in vitro (48).

4.4 The Role of THs in Osteoclasts
Osteoclasts are derived from hematopoietic progenitors and
promote bone resorption (49). Studies showed that T3
increased the RANKL/OPG ratio in the femur in wild-type
mice but not in b2-adrenergic receptor (AR)-/- mice, indicated
that T3 activated osteoclasts function through the b2-AR
pathway in bone (50). In addition, thyrotoxicosis impaired
bone mineral density (BMD) in WT mice, and the stimulative
effect to bone resorption was more stronger than bone formation
(51), however, BMD was not significantly decreased in response
to the supraphysiological dose of T3 in a2A/C-AR double
knockout mice, suggesting that a2-AR mediated T3-induced
bone resorption (52). On the other hand, the expression of c-Fos
protein increased in osteoclast progenitor cells after treatment
with THs, and inhibiting the expression of c-Fos protein by
antisense oligodeoxynucleotides (as-ODN) inhibited the ability
of THs to induce the formation of osteoclasts, therefore,
FIGURE 2 | Metabolism of THs in bone cells. A brief illustration of the negative feedback regulation of TH mediated by the hypothalamus pituitary-thyroid axis, and
DIO2 converts T4 to bioactive T3 in osteoblasts, and DIO3 converts both T3 and T4 to T2 and rT3 in osteoclasts, chondrocytes and osteoblasts.
April 2022 | Volume 13 | Article 873820
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THs promoted the differentiation of osteoclasts, which was at
least partly mediated by the upregulation of c-Fos protein in
osteoclast precursor cells (53). In conclusion, THs mainly
promote the developing of growing bone and stimulate
remodeling of mature bone (Table 1).
5 THYROID DYSFUNCTION
(HYPERTHYROIDISM AND
HYPOTHYROIDISM) ACTS ON BONE

Hyperthyroidism, which is a form of thyrotoxicosis, is
characterized by high TH serum levels and low TSH serum
Frontiers in Endocrinology | www.frontiersin.org 5
levels (54), while subclinical hyperthyroidism is a state of low
TSH serum levels with normal T3 and T4 serum levels (1).
Hypothyroidism and subclinical hypothyroidism are just the
opposite. Hypothyroidism is characterized by low TH serum
levels and high TSH serum levels (55), and subclinical
hypothyroidism is a state of high TSH serum levels with normal
T3 and T4 serum levels (56). Individuals with hyperthyroidism or
hypothyroidism could experience bone loss and low BMD (57) and
are at risk of osteoporosis and even fracture (58), but BMD back to
normal after returning to the euthyroidism state (59, 60) (Table 2).

5.1 Impact on Children
Hypothyroidism in children impairs both endochondral and
intramembranous ossification, which manifest as delayed bone
April 2022 | Volume 13 | Article 873820
TABLE 1 | Thyroid effect on the components of the bone tissue.

Thyroid effect on chondrocyte Thyroid effect on osteoblast Thyroid effect on osteoclast

In vivo Stimulate the expression of collagen X and ALP Stimulate the expression of osteocalcin and
bone formation

Stimulate the expression of tartrate-resistant
acid phosphatase (TRAP) and osteoclast
formation

In vitro Promote growth plate chondrocyte proliferation and
terminal differentiation

Stimulate osteoblast differentiation and inhibit
osteoblast proliferation

Stimulate osteoclast differentiation

Human data Promote endochondral bone formation Participate in bone mass maintenance Participate in bone mass maintenance
FIGURE 3 | TH-mediate regulation of osteoblast differentiation. THs promote the differentiation of osteoblasts by activating IGF-1 signaling pathway and BMP
signaling pathway, while THs inhibit the differentiation of osteoblasts by inhibiting Wnt/b-catenin signaling pathway. Furthermore, BMP signaling pathway and Wnt
signaling pathway interact with each other and promote differentiation of osteoblast by forming a transcriptional complex.
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development, short stature, delayed closure of fontanelles and
persistently patent skull sutures. According to updated
consensus guidelines, the incidence of primary congenital
hypothyroidism was approximately 1 in 2500, and LT4 was
recommended as a therapy (61). TH replacement therapy
could contribute to rapid growth, even if the final height may
not match that of normal children (62). Cessation of growth is
common in children with fearful hypothyroidism (63, 64).
However, bone health is not impaired in children despite
maintaining the state of subclinical hypothyroidism over
time (65).

On the other hand, children with thyrotoxicosis have
below-average height and craniosynostosis (66), and an
elevated free T4 serum concentration may associate with low
BMD (67) (Figure 4).

5.2 Impact on Adults
5.2.1 Clinical Thyroid Dysfunction
Hyperthyroidism can promote more bone resorption than bone
formation, resulting in osteoporosis (51). Thyroid surgery is
promising to decrease fracture risk in patients with
hyperthyroidism (58), and treatment with antithyroid drugs
can achieve a similar effect because the synthesis of THs is
Frontiers in Endocrinology | www.frontiersin.org 6
catalyzed by thyroid peroxidase, which can be inhibited by
antithyroid drugs (55).

Hyperthyroidism induces the expression of sclerostin,
subsequently leading to osteoporosis, but a dramatic decline
in serum sclerostin occurs after treatment with drugs.
Therefore, sclerostin may be a potential therapeutic target in
hyperthyroidism related osteoporosis (68). On the other hand,
excessive activation of BMP and Wnt pathway were observed in
hyperthyroidism, indicating that BMP or Wnt pathway may be
other therapeutic targets for hyperthyroidism-induced bone loss
(44, 69).

In patients with hypothyroidism, bone turnover was
impaired, and bone mass increased, which could cause a
transient decrease in BMD after the administration of synthetic
levothyroxine (LT4) (55). In addition to bone tissue, joints are
also affected in hypothyroidism, which is characterized by
arthralgias, arthritis and aseptic necrosis (70).

5.2.2 Subclinical Thyroid Dysfunction
Women with subclinical hyperthyroidism have reduced BMD in
the hip and femoral neck, especially those with TSH levels less
than 0.10 mIU/L, which can increase the risk of fracture (71, 72).
On the other hand, studies indicate that most subclinical
TABLE 2 | Thyroid dysfunction acts on bone.

Thyroid disease Pathogenesis Common clinical manifestation Effect on bone Treatment outcome

Hyperthyroidism in
child

Graves’ disease Hoarseness and difficulty concentrating 1.Premature bone formation
leading to short stature;
2.Craniosynostosis.

Ameliorate symptoms, and
increase BMD

Hyperthyroidism in
adult

1.Graves’ disease; 2.Toxic
multinodular goiter; 3.Toxic
adenoma.

Fatigue, anxiety, palpitation, weight loss,
heat intolerance, tachycardia, tremor, poor
concentration, goiter

Stimulate the differentiation of
osteoblasts and osteoclasts,
promote more bone resorption
than bone formation, low BMD
and osteoporosis even fractures

Ameliorate symptoms, and
increase BMD

Hyperthyroidism in
aging

1.Graves’ disease; 2.Toxic
multinodular goiter; 3.Use of
amiodarone or iodinated contrast
agents.

1.Neurocognitive changes; 2.Cardiovascular
disease such as atrial fibrillation; 3.Weight
loss.

Severe osteoporosis Ameliorate symptoms, and
increase BMD

Hypothyroidism in
child

1.Autoimmune disease; 2.Iodine
deficiency associated with goiter;
3.Congenital hypothyroidism:
thyroid agenesis and
dyshormonogenesis,
panhypopituitarism.

1.Nonspecific symptoms such as prolonged
jaundice, feeding difficulties, lethargy, hoarse
cry and hypotonia in newborn; 2.Higher risk
for obesity and metabolic syndrome and
cardiovascular disease in child.

1.Delayed skeletal development,
growth retardation, short stature;
2.Delayed closure of the
fontanelles, persistently patent
skull sutures.

Reach a height rapidly and
nonspecific symptoms are
relieved

Hypothyroidism in
adult

1.Autoimmune disease; 2.Invasive
or compressive lesions: Pituitary
macroadenomas; 3.Iatrogenic
factors and drug-induced
hypothyroidism.

Nonspecific symptoms such as fatigue,
weight gain, constipation, dry hair, dry skin

Reduced bone remodeling and
increased bone mass,
osteosclerosis and fracture risk

Levothyroxine replacement
therapy leads to transient
bone loss and increased
fracture risk, and BMD
returns to normal after a
time

Hypothyroidism in
aging

1.Autoimmune disease;
2.Iatrogenic factors and drug-
induced hypothyroidism.

Symptoms and signs are mild or even
absent, such as high cholesterol, diastolic
hypertension, constipation, heart failure,
fatigue, depression, forgetfulness

/ Improves clinical symptoms
associated with
hypothyroidism

TRa1/TRb
mutation-mediated
TH resistance

/ 1.Similar to hypothyroidism (TRa1 mutation);
2.Similar to hyperthyroidism (TRb mutation).

1.Reduced bone remodeling and
accumulated bone mass (TRa1
mutation); 2.Low BMD and
osteoporosis even fractures (TRb
mutation).

1.Similar to hypothyroidism
(TRa1 mutation); 2.Similar
to hyperthyroidism (TRb
mutation).

Bone metastases
of thyroid cancer

/ Bone destruction and bone hyperplasia Bone destruction and bone
hyperplasia

According to the results of
thyroid cancer treatment
April 2022 |
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hypothyroidism does not require treatment and could even
reduce the incidence of osteoporosis in postmenopausal
women (51, 56). Studies have shown that subclinical
hypothyroidism may lead to cardiovascular disease, and a
small proportion of patients with subclinical hypothyroidism
take LT4 to prevent cardiovascular disease (73). However, LT4
therapy enhances bone turnover and causes bone loss (74). In
this context, whether LT4 treatment is used depends on the
balance between the benefits and risks.

5.3 Impact on Aging
Hypothyroidism is the most common thyroid disease among the
elderly, with insidious onset and slow progression. Thyroid
hypofunction is conducive to prolonging life expectancy.
However, the elderly will be more prone to disability, cognitive
impairment, shortened life expectancy and other adverse events
if thyroid function reaches a certain low level without timely
treatment. But the link between hypothyroidism and bone in the
elderly is not well established (75). In addition, the incidence of
hyperthyroidism is also high, but the clinical manifestations are
not typical, such as neurocognitive changes, cardiovascular
diseases and unexplained weight loss. In addition,
hyperthyroidism aggravates bone loss in the elderly, leading to
more serious osteoporosis (76).

5.4 Bone Manifestations of Thyroid
Hormone Resistance (RTH)
RTH is defined as abroad tissue hyporesponsiveness to THs with
normal or raised TSH or TH serum concentrations, and RTH is
Frontiers in Endocrinology | www.frontiersin.org 7
usually caused by TRa1 or TRb1 mutations (77). TRb1 mutation
is more common than TRa1 mutation in RTH, and increased
TH serum concentrations associated with TRb1 mutation
increase TRa1 activity and cause hyperthyroidism (78).
TRb1+/- mice had almost normal phenotypes, while fearful
osteoporosis developed in TRb1-/- mice, bone mass was greatly
decreased (79, 80). On the other hand, patients with TRa1
mutations exhibit RTH and delayed bone development. The
severity of TRa1 mutations depends on the mutation location
and number. Manifestations in patients with missense mutations
are always not as severe as those in patients with frameshift and
nonsense mutations (21, 77).
6 THYROID CANCER AND BONE
METASTASIS (BM)

Thyroid cancer is the most common endocrine gland cancer and
includes papillary thyroid cancer (PTC), follicular thyroid cancer
(FTC), medullary thyroid cancer (MTC), and anaplastic thyroid
cancer (ATC). PTC and FTC are differentiated thyroid cancers
(DTCs), which account for 85% to 90% of all thyroid cancers.
Most have a good prognosis, but the occurrence of distant
metastases, including BM leads to decreased survival in a
minority of cases, and the 10-year survival rate for most
patients with BM is less than 50% (81). MTC is a
neuroendocrine tumor that secretes calcitonin and originates
from interfollicular C cells. ATC has an extremely low survival
rate, particularly when accompanied by BM (82). DTCs have
FIGURE 4 | Hyperthyroidism and hypothyroidism on bone. In adult, hyperthyroidism promotes more bone resorption than bone formation, resulting in bone loss,
and hypothyroidism impedes bone remodeling, resulting in old bone accumulation, however, bone loss also appears in hypothyroidism after the administration of
LT4. In child, hypothyroidism impairs both endochondral and intramembranous ossification, which manifest as delayed closure of fontanelles, persistently patent skull
sutures, and short stature, and hyperthyroidism results in craniosynostosis and below-average height.
April 2022 | Volume 13 | Article 873820
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fewer distant metastases, and their BM are fewer than that of
ATC and MTC. BM consist of osteolytic metastases, osteoblastic
metastases, and mixed metastases. Osteolytic BM account for the
majority of BM, and spine is the most common site of BM
(83, 84).

6.1 Osteolytic Metastases in
Thyroid Cancer
The RANKL serum concentration was higher in thyroid cancer
patients with BM than in those without metastasis or with lung
metastasis alone, and the outcomes that metformin inhibited
ATC tumor growth in BM by inhibiting osteoblastic RANKL
production and osteoclast differentiation indicated BM of
thyroid cancer were at least partly mediated by increasing the
level of RANKL in osteoblasts followed by activating osteoclast
differentiation and causing bone resorption (84).

6.2 Osteogenic Behavior and Other Forms
of Calcification in Thyroid Cancer
Calcification consists of osteogenesis, psammoma bodies and
stromal calcification, the latter two often occur in PTC andMTC.
BMP1 was expressed at much higher levels in PTC with
psammoma bodies or stromal calcification (85). However, it
was found that expression of BMP9 was not significantly elevated
in bone formation of BM while the increased ALK1 (receptor
protein kinase of BMP) could give a reasonable explanation to
osteogenesis behavior (86). In contrast to other thyroid cancers,
MTC can secrete calcitonin, the receptor of which is only
expressed in osteoclasts. Treatment with calcitonin increased
the expression ofWnt10b and ALP in osteoclasts and osteoblasts,
respectively. Furthermore, pretreatment with the Wnt secretion
inhibitor C59 further increased the expression of Wnt10b in
osteoclasts and reduced the expression of ALP in osteoblasts.
Therefore, MTC secretes calcitonin and induces bone formation
by increasing the expression and secretion of Wnt10b in
osteoclasts (87).

6.3 Therapy and Its Influence on Bone
In DTC patients with BM, treatment aims to control pain and local
tumor development by radioiodine therapy, pharmacologic
therapy or surgical treatments (88). Radioiodine therapy alone
or combined with other treatments can dramatically increase
overall survival (89). Suppressive LT4 therapy is a method to
inhibit the concentration of TSH by negative feedback of
exogenously increased THs to reduce the tumor recurrence rate.
Most patients with DTC need lifelong medication, which may
affect bone metabolism. However, suppressive LT4 therapy (TSH
≤0.4 mIU/L) not only fails to lower tumor recurrence but also
causes bone toxicity and osteoporosis in patients without a high
recurrence risk of DTC (90). Regardless, bone resorption markers
return to normal with LT4 withdrawal (91). In addition, less than
2.6 mg/kg LT4 may not influence bone metabolism in DTC
patients with normal estrogen (92), as estrogen plays important
roles in protecting against bone loss by promoting OPG expression
and enhancing osteoblast activity (93). Therefore, proper LT4
therapy has a marginal effect on bone degradation (94, 95).
Thyroid related diseases are classified in Table 2.
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TSH receptors are distributed in not only the thyroid but also
osteoclasts and osteoblasts, and TSH affects bone homeostasis
independent of THs (96). TSH shows inhibitory effects on bone
resorption and active effects on osteogenesis (97, 98).

Research showed that as the concentration of rhTSH
increased, the formation of osteoclasts was inhibited (99), and
the mechanism by which TSH inhibits osteoclastogenesis was
increasing the expression of OPG and decreasing the expression
of RANKL on osteoblasts (100). Furthermore, TSH suppressed
the expression of tumor necrosis factor a (TNFa) which inhibits
osteoclastogenesis and the quantity of osteoclasts (101, 102). On
the other hand, adding TSH to osteogenic medium promoted the
expression of osteogenic markers and significantly increased the
level of Wnt5a in embryonic stem cells (ESCs) (103).

Hyperthyroidism is characterized by excessive THs and low
TSH (104), which is consistent with the discovery that patients
with hyperthyroidism have reduced BMD due to a lack of
protection from TSH (105). However, TSH-bv, which is a
TSH-b subunit originating from macrophages in mice, was
increased to compensate for the limited bone protection caused
by reduced TSH (96, 100), and this finding was consistent with a
study showing that the osteogenic markers in adult femurs were
inhibited by anti-TSH-b (106).
8 CONCLUSION AND PERSPECTIVE

Homeostasis of thyroid are indispensable in the normal growth
and development of bone, and the regulatory effect and
mechanism of the thyroid on each type of bone cell as well as
bone diseases were reviewed in detail.

In addition, more attentions should also be paid on the roles of
bone marrow in various thyroid diseases. Because of the active
hemopoietic ability of bone marrow, studies of immune cells from
bone marrow and the thyroid are gradually being carried out.
Bone marrow consists of hematopoietic stem cells, which are the
ancestors of immune cells such as lymphocytes, granulocytes, and
mononuclear macrophages. Immune cell imbalance is closely
related to autoimmune thyroid disorders. In thyroiditis, the
immune balance is disrupted, and the thyroid gland is gradually
infiltrated with lymphocytes, including B cells and cytotoxic T
cells. Eventually, normal thyroid cells are attacked and die, and
gland lobes undergo fibrosis and atrophy, which subsequently
leads to hypothyroidism and thyroid cancer (107). In Graves’
disease, elevated thyroid-stimulating immunoglobulins (also
called thyrotropin receptor antibodies) produced by B cells
stimulate TH production and result in hyperthyroidism. Specific
autoantibodies for cancer antigens, tumor-related macrophages
and neutrophils in patients with thyroid cancer could promote
invasion and metastases of tumor cells and disrupt immune
monitoring (108, 109) (Figure 5). Currently, autoimmune
thyroid disorders have been defined as independent risk factors
for thyroid cancer, even the opinion that the origin of the cancer is
connected with a wide and severe immune stimulus has been put
forward (110).
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While bone marrow stem cells (BMSCs), which are another
group of cells that can be isolated from bone marrow, have also
attracted much attention in the field of tissue repair and
regenerative medicine. BMSCs can differentiate into various
kinds of cells. However, little research focus on the potential
role of BMSCs to differentiate into thyroid follicular cells in vitro.
Interestingly, the ATDC-5 cell line, a type of chondrogenic cell
line, can express thyroglobulin (Tg), which is a thyroid-specific
protein that is regulated by the transcription factor TTF-1 (111).
Thus, further research is worth to determine the potential for
bone-derived stem cells to differentiate into thyroid cells.
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