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A B S T R A C T   

RUNX2 is a transcription factor crucial for bone formation. Mutant mice with varying levels of Runx2 expression 
display dosage-dependent skeletal abnormalities, underscoring the importance of Runx2 dosage control in 
skeletal formation. RUNX2 activity is regulated by several molecular mechanisms, including epigenetic modi
fication such as DNA methylation. In this study, we investigated whether targeted repressive epigenome editing 
including hypermethylation to the Runx2-DMR/CpG island shore could influence Runx2 expression using Cas9- 
based epigenome-editing tools. Through the transient introduction of CRISPRoff-v2.1 and gRNAs targeting 
Runx2-DMR into MC3T3-E1 cells, we successfully induced hypermethylation of the region and concurrently 
reduced Runx2 expression during osteoblast differentiation. Although the epigenome editing of Runx2-DMR did 
not impact the expression of RUNX2 downstream target genes, these results indicate a causal relationship be
tween the epigenetic status of the Runx2-DMR and Runx2 transcription. Additionally, we observed that hyper
methylation of the Runx2-DMR persisted for at least 24 days under growth conditions but decreased during 
osteogenic differentiation, highlighting an endogenous DNA demethylation activity targeting the Runx2-DMR 
during the differentiation process. In summary, our study underscore the usefulness of the epigenome editing 
technology to evaluate the function of endogenous genetic elements and revealed that the Runx2-DMR 
methylation is actively regulated during osteoblast differentiation, subsequently could influence Runx2 
expression.   

1. Introduction 

Runt-related transcription factor 2 (RUNX2) is a transcription factor 
essential for osteogenesis that regulates the expression of osteogenic 
genes such as Osterix, Osteocalcin, and Bone sialoprotein [1]. Runx2 
homozygous knockout (KO) mice lack most of the mineralized bone, and 
its heterozygous KO mice display skeletal abnormalities, including 
delayed closure of cranial suture and hypoplasia of clavicles [2,3]. 
Mutation in the human RUNX2 gene causes cleidocranial dysplasia 
(CCD), an autosomal dominant disorder in which skeletal abnormalities 
similar to those of Runx2 heterozygous KO mice are observed [4]. The 
haploinsufficiency nature of Runx2 indicates that this gene is not only 
essential for bone formation, but also that its dosage is closely associated 
with bone morphology. In line with this idea, transgenic mice over
expressing Runx2 also showed abnormal bone morphology, and the 
mutant mice with the Runx2 expression level at 70 % of that of wild type 

showed abnormal skeletal development [5,6]. As a quantitatively pre
cise Runx2 expression level is essential for normal bone formation, 
various mechanisms have been reported to regulate RUNX2 expression 
and activity [7]. 

DNA methylation around the Runx2 locus has been associated with 
Runx2 expression levels or osteoarthritis, in which Runx2 plays roles in 
pathology, implying that this epigenetic regulation could be involved in 
Runx2 expression as well as skeletal development [8,9]. Previously, a 
tissue-specific differentially DNA-methylated region (T-DMR) was 
identified in the Runx2 locus. This DMR is located between the tran
scription start sites of the two transcript variants, Runx2-I and Runx2-II, 
and the methylation rate inversely correlates with the Runx2 expression 
during osteoblast differentiation (Fig. 1A and B) [10]. This region 
caught our interest because it is at the boundary between the highly 
methylated intergenic region and the CpG island with low methylation 
rate proximal to the Runx2-I TSS, i.e., the CpG island shore of the 
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Runx2-I gene. Because CpG island shores have often been subject to 
differential DNA methylation in tissue/cell-type-dependent and/or sto
chastic manners [11,12] in association with the transcriptional activity 
of the gene in the vicinity (Fig. 1A) [13,14], DNA methylation in the 
T-DMR/CpG island shore of Runx2-I may have a functional role in the 
quantitative regulation of Runx2 expression. However, the causal rela
tionship between DNA methylation of specific loci and the expression of 
specific adjacent genes has been elusive due to the lack of methodology 
for the direct intervention in DNA methylation at targeted regions. 
Recently, epigenome editing based on CRISPR/Cas9 technology has 
emerged. By directly fusing or indirectly assembling epigenetic 

effectors, such as DNA methyltransferase or transcriptional repressor, to 
nuclease-inactive Cas9 (dCas9), the epigenetic mark in the vicinity of 
the target site of gRNA can be artificially altered [15,16]. Recent studies 
indicated that the simultaneous recruitment of de novo DNA methyl
transferase, such as DNMT3A/3L, and Krüppel-associated box (KRAB) 
domain induces heritable repressive epigenome editing at the target loci 
[17–19]. In this study, we aimed to elucidate whether targeted induction 
of a repressive epigenome editing to Runx2-DMR could affect the Runx2 
expression as well as the osteoblast differentiation, using the Cas9-based 
epigenome-editing technology CRISPRoff, a fusion protein of dCas9, 
DNMT3A/3L, and KRAB domain. 

Fig. 1. DNA methylation status of Runx2-DMR in MC3T3-E1 cell (A) Conceptual diagram representing the DNA methylation variations of T-DMRs in CpG island 
shores. The upper red line illustrates the DNA methylation levels of each region. Circles in the lower part represent CpG sites, with black and white indicating 
methylated and unmethylated CpG, respectively. (B) Methylation analysis of Runx2-DMR in untreated MC3T3-E1 cells. The upper panel schematically illustrates 
Runx2-DMR where Left/Middle/Right1/Right2 regions were depicted by black bars and CpG sites were indicated by orange circles. Numbers at the bottom of the line 
indicate the distance from the Runx2-I TSS. The lower panel presents the result of the bisulfite sequence. Numbers at the bottom indicate the ratio of methylated CpG 
in each region in a single experiment shown in this Figure. Similar result was reproduced in one more independent experiment of which the result is shown in Fig. S1 
(n = 2). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2. Materials and methods 

2.1. MC3T3-E1 cell cultures 

MC3T3-E1 cells (RIKEN Cell Bank, RCB1126) were cultured in 
α-MEM (Nacalai Tesque, Kyoto, Japan) supplemented with 10 % fetal 
bovine serum (FBS; CELLECT, MP Biomedicals inc., CA, USA) and 
Penicillin-Streptomycin-Glutamine mixed solution (PSG, Nacalai Tes
que), and incubated at 37 ◦C under 5 % CO2. For differentiation in
duction, MC3T3-E1 cells were seeded in multi-well culture plates and 
the medium was changed to differentiation medium (α-MEM, 10 % FBS, 
1 % PSG, and 10 mM β-glycerophosphate (FUJIFILM Wako, Osaka, 
Japan), 50 μg/ml ascorbic acid (FUJIFILM Wako), 50 ng/ml BMP-2 
(PEPROTECH, NJ, USA)) at confluence. Then, the medium was 
changed to a differentiation medium without BMP-2 after 3 days. 200 
μg/mL G418 bisulfate (Nacalai Tesque) was used for the selection. 

2.2. Alizarin red staining 

The cells were fixed with 500 μL of 10 % formalin solution for 15 min 
and stained with 500 μL of alizarin red S solution (0.04 M alizarin red S 
(SIGMA-ALDRICH, MO, USA), 0.001 % ammonium hydroxide (SIGMA- 
ALDRICH)) for 20 min. Stained alizarin red S was extracted by 10 % 
acetic acid solution and the absorbance at 405 nm was measured with 
Spectra max iD5, MOLECULAR DEVICES. The average of 3 wells (bio
logical replica) were shown. 

2.3. Fluorescence-Activated Cell Sorting (FACS) 

Cells were detached by Trypsin EDTA treatment, centrifuged, and 
suspended in PBS. The suspension was aliquoted into a 5 mL test tube 
with a cell strainer cap (Corning, NY, USA) and sorted using Cell Sorter 
SH800S (SONY, Tokyo, Japan). 

2.4. Reverse transcription-quantitative polymerase chain reaction (RT- 
qPCR) 

RT-qPCR was performed as previously described [20]. Briefly, total 
RNA was isolated using ISOGEN-LS (NIPONGENE, Tokyo, Japan), ac
cording to the manufacturer’s protocol. Total RNA was 
reverse-transcribed with oligo-d(T) primers and SuperScript II Reverse 
Transcriptase (Thermo Fisher Scientific, MA, USA). qPCR was performed 
using Power SYBR® Green Master Mix (Thermo Fisher Scientific). 
Primer sequences are shown in Table S1. 

2.5. Primer design for bisulfite PCR 

The genomic DNA sequence of interest was obtained from the UCSC 
Genome Browser and bisulfite PCR primer sets for amplifying regions 
below were designed using MethPrimer [21]. Target regions were set as, 
Left region: chr17:44,739,211–44,739,644, Middle region: chr17:44, 
738,770–44,739,169, Right1 region: chr17:44,738,375–44,738,695, 
Right2 region: chr17:44,738,124–44,738,397). Primer sequences are 
shown in Table S1. 

2.6. DNA methylation analysis 

Cells were detached by Trypsin EDTA treatment, centrifuged, and 
genomic DNA was extracted from the cell pellet using NucleoSpin® 
Tissue (Takara, Shiga, Japan) according to the manufacturer’s protocol. 
Bisulfite conversion and subsequent DNA methylation analysis were 
performed as previously described [12]. Briefly, genomic DNA (500 
ng–1000 ng) was subjected to bisulfite reactions using Epitect Bisulfite 
Kits (QIAGEN, Venlo, Netherland) according to the manufacturer’s 
protocol. Following bisulfite conversion, genomic DNA was amplified by 
PCR using GoTaq® Master Mixes (Promega, WI, USA). PCR products 

were cloned into the pGEM-T Easy vector (Promega). PCR products of 
colony PCR were sequenced. DNA sequencing and methylation data 
were visualized using QUMA software [22]. 

2.7. Plasmid construction and gRNA design 

EGFP and dsRED expression cassettes were inserted into the NotI site 
of CRISPRoff-v2.1 [18] (Addgene ID: #167981). EGFP expression 
cassette was inserted into the SnaBI site of the gRNA cloning vector +
adaptor [23,24]. gRNAs were designed using CRISPRdirect [25] and 
cloned as described [23]. gRNA positions along with Runx2-DMR are 
shown in Fig. S1 and gRNA sequences are shown in Table S1. All the 
plasmids constructed were sequenced. 

3. Results 

3.1. Methylation analysis of the Runx2-DMR in MC3T3-E1 cells 

To explore the effect of epigenome editing on the mouse Runx2-DMR 
(referred to in this manuscript as GRCm39/mm39 
chr17:45046900–45048900), we first established the conditions for 
methylation analysis of this region in MC3T3-E1 cells. Wakitani et al. 
focused on CpGs ranging from − 3371 to − 2039 bp relative to the TSS of 
Runx2-I and divided it into three regions: Left, Middle, and Right, which 
we further subdivided into Right1 and Right2 (Fig. 1B). The bisulfite 
sequencing analysis revealed that the methylation rates of the Left, 
Middle, Right1, and Right2 regions were 65.2 ± 3.6 %, 30.2 ± 3.1 %, 
3.1 ± 0 %, and 1.5 ± 1.5 % during the exponential growth phase of 
MC3T3-E1 cells (Fig. 1B, Fig. S1). A high DNA methylation rate in the 
upstream regions and a low methylation rate in downstream regions 
confirm the “CpG island shore” characteristics of this region. Moreover, 
the DNA methylation rate of this region in MC3T3-E1 cells was similar to 
that of previously reported in mouse bone tissues [10], supporting our 
aim to use this cell line to gain insight into the in vivo osteogenic 
process. 

3.2. Design of gRNAs for Runx2-DMR and epigenome editing using G418 
selection 

Next, we investigated whether the transient introduction of an epi
genome editing construct could modulate the methylation pattern of 
Runx2-DMR in MC3T3-E1 cells. We designed three gRNAs (gRNA-1, 2, 
and 3) targeting this region (Fig. 2A, Fig. S2 and see methods for design 
criteria) and introduced them to MC3T3-E1 cells either singly or in a 
pool, along with the CRISPRoff vector. A gRNA vector lacking the target 
recognition sequence (hereafter “empty”) served as the control. After the 
plasmid transfection and a 4-day G418 selection, the cells were allowed 
to grow until day 11 post-transfection, at which point methylation 
analysis was performed (Fig. 2B). The methylation rates in the “empty” 
control sample, were similar to those in non-transfected MC3T3-E1 cells 
(Fig. 2C, Fig. S3: Left region, 61.45 % ± 1.05 %; Middle region, 43.4 % 
± 4.5 %; Right1 region, 2.65 % ± 0.45 %; Right2 region, 4.65 % ± 0.35 
%). Conversely, the methylation rates in samples transfected with 
gRNA1, 2, and 3 showed substantial changes in the target regions 
(Fig. 2C, Fig. S3). The methylation rates of the R1 region in CRISPRoff/ 
gRNA1-expressed cells increased to 18.65 % ± 6.85 %, while those of 
the Left, Middle, and R2 regions remained at similar to or lower than the 
control sample (Fig. 2C, Fig. S3). Similarly, the DNA methylation rates of 
the R1 and R2 regions in CRISPRoff/gRNA2-expressed cells (12.8 % ±
3.3 % and 25.7 % ± 8.3 %, respectively) and CRISPRoff/gRNA3- 
expressed cells (15.8 % ± 8.3 % and 14.9 % ± 1.3 %, respectively) 
were higher compared to the “empty” control sample. In cells where 
gRNA1, gRNA2, and gRNA3 were co-transfected (hereafter “pooled” 
sample), the R1 and R2 regions exhibited higher methylation rates 
compared to the “empty” control, with rates of 12.55 % ± 3.95 % and 
33.7 % ± 9.7 %, respectively (Fig. 2C, Fig. S3). These results 
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demonstrated that the introduction of CRISPRoff and gRNAs into 
MC3T3-E1 cells could increase DNA methylation rates in the vicinity of 
the gRNA target sites within the Runx2-DMR. We observed that the 
CRISPRoff-induced DNA hypermethylation peaked approximately 
100–200 bp away from each of the gRNA target site and was limited to a 
region of 200–300 bp in length (Fig. S2). However, DNA hyper
methylation covered the entire R1/R2 regions in the “pooled” sample 
while retaining a methylation level similar to that in single gRNA- 
induced samples (Fig. 2C). Based on these findings, we opted to use 
the gRNA1/2/3 “pooled” setup for further experiments and focus pri
marily on the R1 and R2 regions to evaluate of methylation status of 
Runx2-DMR. 

3.3. Optimizing selection conditions 

While the results so far indicated that our epigenome editing setup 
was qualitatively effective, the extent of DNA methylation change was 
around 20 %–30 %, which might be insufficient to significantly alter the 
transcriptional level of Runx2. We observed that the increased methyl
ation level in CRISPRoff/gRNA-transfected cells reflected a few highly 
methylated alleles, yet a substantial number of alleles remained at the 
same methylation level as that of control cells (e.g. the 25.5 % 
methylation rate in the R1 region of CRISPRoff/gRNA1-transfected cells 
depended on 5 highly methylated alleles out of 20, Fig. 2C). Our pre
vious data has indicated that each cloned and sequenced fragment from 
bisulfite sequencing could be considered as representing one of the two 
alleles in a cell [12,26], leading us to consider that the unaffected alleles 
might result from non-transfected or editing-insufficient 

Fig. 2. Epigenome editing of Runx2-DMR using G418 selection (A) A schematic drawing illustrating the positions of gRNAs targeting Runx2-DMR, which are shown 
in black arrows at the bottom. The PAM sequences are on the arrowhead sides. (B) The time course of the DNA methylation analysis of the Runx2-DMR using G418 
selection. (C) The result of DNA methylation analysis. gRNAs introduced in each sample are shown on the top. The analyzed regions are denoted as L: Left, M: Middle, 
R1: Right1, R2: Right2. Numbers at the bottom indicate the ratio of methylated CpG in each region in a single experiment shown in this Figure. Similar result was 
reproduced in one more independent experiment of which the result is shown in Fig. S3 (n = 2). 
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low-copy-number-transfected cells that remained after the G418 selec
tion. To overcome this limitation, we employed Fluorescence-Activated 
Cell Sorting (FACS) to achieve more efficient epigenome editing. 
Because the fluorescence signal of TagBFP in the CRISPRoff vector was 
insufficient for sorting MC3T3-E1 cells, we co-transfected an EGFP 
expression vector, inserted an EGFP expression cassette into the 
CRISPRoff vector, or into the gRNA vectors and sorted GFP-positive cells 
by FACS (Fig. 3A). However, the methylation rates of R1 and R2 regions 
remained lower than 30 % in cells selected under these conditions 
(Fig. 3B, C, Fig. S4). Given these results, we introduced expression 
cassettes of EGFP and dsRED into the CRISPRoff vector and the gRNA 
cloning vector, respectively, and sorted for EGFP/dsRED double-positive 
cells. As a result, the DNA methylation rates in the Middle, Right1, and 
Rignt2 regions were 47.9 %, 58.2 %, and 66.3 %, respectively 
(Fig. 3B–D). Based on these results, we determined this double-positive 
sorting as the preferred selection method for further analyses. 

3.4. Effects of Runx2-DMR epigenome editing on gene expression and 
osteoblast differentiation 

Subsequently, we examined the impact of epigenome editing of the 
Runx2-DMR on Runx2 expression and its role in osteoblast differentia
tion. CRISPRoff and gRNA vectors were transfected into MC3T3-E1 cells 
on Day 1, FACS sorted on Day 3, and differentiation induction was 
initiated on Day 10. The DNA methylation rates of Runx2-DMR, as well 
as gene expression were evaluated before and after the 14 days of dif
ferentiation period (Fig. 4A). At differentiation Day 0 (= Day 10 after the 
transfection), the DNA methylation rates in the Right1 and Right2 re
gions significantly increased in the “pooled” sample (56.5 % ± 0.4 % 
and 38.75 % ± 2.35 %) compared to the control “empty” sample (5.15 % 
± 2.45 % and 9.45 % ± 0.25 %) as the previous experiments. However, 
at differentiation Day 14, the DNA methylation rates of the “pooled” 
sample were decreased to 24.25 % ± 2.65 % in R1 and 20.6 % ± 4.9 % 
in R2 region while those of the control “empty” sample remained at 
similar level to differentiation Day 0 (Fig. 4, Fig. S5A). To examine 

Fig. 3. Optimization of Runx2-DMR epigenome editing using FACS (A) The time course of the DNA methylation analysis of the Runx2-DMR using FACS sorting. (B, 
C) DNA methylation rates of the Right1 and Right2 regions of the cells selected through various conditions. Five conditions for selection are shown at the bottom. NC: 
no treatment. (D) The bisulfite sequence results of selection condition 5. M: Middle, R1: Right1, and R2: Right2 regions. The DNA methylation analyses were 
performed once for condition 1–4 (n = 1) for screening, and twice for condition 5 (n = 2) to confirm relatively high methylation state by this method. Essentially the 
same results were obtained in a reproductive experiment and the result is shown in Fig. S4. 
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whether these reductions in DNA methylation rates are due to a passive 
DNA demethylation over time, or an active DNA demethylation process 
associated with osteoblast differentiation, we analyzed the DNA 
methylation status of “empty” and “pooled” samples after the same 
period of cultivation without differentiation induction. As a result, the 
DNA methylation rates in “pooled” samples remained high even after the 
14 days of culture (52.4 % ± 6.1 % in the Middle region, 60.6 % ± 5.7 % 
in the Right1 region, and 43.05 % ± 1.85 % in the Right2 region, 
respectively) (Fig. 4C, Fig. S5B). These results clearly show that the DNA 
hypermethylation introduced by epigenome editing is stable, at least 
until 24 days post-transfection, and an endogenous DNA demethylation 
activity was imposed on the Runx2-DMR during the osteoblast differ
entiation (Fig. 4C). We found that upon osteoblast differentiation of 
MC3T3-E1 cells, mRNA level of DNA demethylation enzymes Tet1 was 
significantly increased while that of Tet3 was slightly decreased 
(Fig. S6). These changes of DNA demethylation enzyme expression could 
contribute to the DNA demethylation on the Runx2-DMR. 

Next, we conducted a gene expression analysis of Runx2 and its 
target genes, Alpl and Osx, in epigenome-edited cells. At Differentiation 
Day 0, no significant differences were observed in the mRNA levels of 
Runx2 and its target genes between the “empty” and “pooled” samples 
(Fig. 4D). On the other hand, after 14 days of differentiation induction, 
we observed a significantly lower expression of Runx2 in the “pooled” 
compared to the “empty”, either in general Runx2 mRNA or in the 
specific detection of Runx2-I (Fig. 4D). Nonetheless, no differences were 
observed in the expression of the Alpl and Osx between the “empty” and 
“pooled” (Fig. 4D). Finally, alizarin red S staining was performed after 
14 days of differentiation induction and qualitative and quantitative 
analyses of the staining revealed no significant differences in the stain
ing intensity between the “empty” and “pooled” samples (Fig. 4E and F). 
These results indicate that the induced epigenome editing of the Runx2- 
DMR successfully repressed the expression level of Runx2, despite the 
inhibitory effect being insufficient to suppress the downstream gene 
expression or the overall process of osteoblast differentiation. 

4. Discussion 

In this study, we demonstrated that the transient introduction of 
CRISPRoff and a pool of gRNAs could induce DNA hypermethylation to a 
T-DMR, consequently downregulating the gene expression of a nearby 
gene. Technically, the range and duration of DNA methylation achieved 
in our experiments were comparable to those reported in previous 
studies [16,18,27], but to our knowledge, this is one of the first reports 
of epigenome editing regulating DNA methylation of an endogenous 
T-DMR in association with its functional role [28,29]. 

Our results provide direct evidence that the epigenetic state of the 
Runx2-DMR has a causal relationship with Runx2 expression, adding a 
novel layer to the regulation of the osteogenic master transcription 
factor. We observed a progressive DNA demethylation activity on the 
Runx2-DMR during osteoblast differentiation in MC3T3-E1 cells, 
expanding on previous knowledge from a study reporting a declining 
trend in DNA methylation levels of a specific CpG (CpG-2505) within 
this DMR during the osteoblast differentiation of mesenchymal stem 
cells (MSCs) [10]. The detailed mechanism of how DNA demethylation 
occurs in Runx2-DMR upon osteoblast differentiation remains elusive. 

Sepulveda et al. reported that during BMP2-triggered osteoblast differ
entiation of C3H10T1/2 mesenchymal cells, Tet1/2 expression was 
increased and a Tet1-containing demethylation complex was recruited 
to the Sp7 promoter region, which resulted in DNA demethylation and 
increased Sp7 expression [30]. As we also observed an increase in Tet1 
expression upon BMP2-triggered osteoblast differentiation (Fig. S6), a 
similar mechanism could take place in Runx2-DMR. Runx2-DMR, like 
other CpG island shores, is located at the boundary between the highly 
methylated intergenic region and the lowly methylated region, 
including a CpG island proximal to the TSS. CpG island shores have been 
reported to show differential DNA methylation levels in association with 
the transcriptional activity of the gene in the vicinity; thus, increased 
expression of a nearby gene may regulate the methylation level of the 
CpG island shore. It will be interesting to explore the possible 
positive-feedback relationship between Runx2 expression and 
Runx2-DMR DNA methylation in future studies. Altogether, the regu
lation of DNA methylation of the Runx2-DMR could be one of the 
endogenous regulatory mechanisms controlling Runx2 expression dur
ing osteoblast differentiation. This aligns with the observations that the 
CpG island shores often exhibit tissue/cell-type-dependent DNA 
methylation regulation [13] as well as stochastic changes of DNA 
methylation levels [12], both of which result in transcriptional changes 
of the surrounding genes. Tissue/cell-type-dependent DNA methylation 
regulation is especially important for normal cellular differentiation and 
fetal development [31]. 

While we were able to modulate Runx2 expression through epi
genome editing, the expression of downstream RUNX2-target genes or 
osteogenic differentiation did not exhibit significant differences. This 
suggests that either the degree of epigenetic change was not sufficient, 
or the regulation exerted by DNA methylation at this T-DMR is fine- 
tuning in nature. Runx2 has two TSS, and the proximity of this DMR 
to one of them (Runx2-I) may also influence the limitation. Nonetheless, 
epigenetic regulation through T-DMR may play a more substantial role 
under conditions where cells/organisms are sensitive to changes in 
Runx2 expression levels, such as in the regulation of the wild-type allele 
in haploinsufficient individuals. Of note, phenotypic differences in 
excessive teeth between identical twin CCD patients have been reported 
[32], suggesting that epigenetic mechanisms may play a role in the 
severity of CCD, probably through the quantitative regulation of Runx2. 
Experiments, such as conducting similar epigenome editing on the 
osteogenic differentiation of mesenchymal stem cells (MSCs) in Runx2 
heterozygous mice, could provide valuable insights in future studies. 
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