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Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality,
a careful experimental and analytical design is required. However even in well-controlled experiments
variability caused by either operator or instrument can introduce artifacts that need to be corrected or
removed from the data. Here we present a data processing pipeline which ensures the minimization of
experimental artifacts and batch effects, while improving data quality. Data preprocessing and quality
controls are carried out using an R pipeline and packages like CATALYST for bead-normalization and
debarcoding, flowAI and flowCut for signal anomaly cleaning, AOF for files quality control, flowClean
and flowDensity for gating, CytoNorm for batch normalization and FlowSOM and UMAP for data explo-
ration. As proper experimental design is key in obtaining good quality events, we also include the sample
processing protocol used to generate the data. Both, analysis and experimental pipelines are easy to
scale-up, thus the workflow presented here is particularly suitable for large-scale, multicenter, multi-
batch and retrospective studies.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mass cytometry (cytometry by time-of-flight, CyTOF, MC) is a
single cell proteomics technology that allows the measure of up
to 50 markers per cell. Currently it is extensively used in funda-
mental biology studies [1], but due to researchers’ effort in tech-
nology and protocol optimizations it is gaining interest for the
analysis of clinical samples [2,3]. The CyTOF success is due mainly
to its multiparametric capacity, the ease of panel design owing to
minimal spill-over issues and the facility to stain multiple samples
in one single tube using barcoding approaches [4].

On the other hand, the maximal acquisition capacity of CyTOF
devices is limited to 1000 cells/s [5], while a rate of 400 cells/s is
recommended to avoid cell aggregation and doublet formation
[6,7]. Because of this, it becomes problematic to acquire multiple
samples per day, particularly if several tubes of complex tissues
(like blood or liquid biopsies) are acquired to detect rare cell pop-
ulations. A solution to this is to split the samples in multiple
batches and acquire them on different days. Nevertheless, this
approach requires an optimized experimental workflow that limits
technical variation, including a single antibody cocktail and the
inclusion of a reference sample in every batch. In addition, the
analysis pipeline should contain tools for normalizing the data
and removing experimental and day-to-day detector variation [8].

Although the samples are fixed after staining, they are usually
acquired in water in the case of the narrow bore (NB) sample injec-
tor. Thus, due to the prolonged water exposure and long acquisi-
tion times, samples are degraded and lose their tags. To limit the
exposure time, samples can be split and acquired in multiple ali-
quots [9] (as also presented in this manuscript), but still some dif-
ferences in signal intensity can occur due to variations in detector
yield. Furthermore, clogging in the capillary introduction system in
cytometry devices alters the flowrate and signal quality over time
[10]. In order to obtain high quality data, fcs files should be
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Table 1
Protocol for high quality data preparation.

Before starting the protocol Staining and acquisition protocol

1. Calculate the number of samples that will be analyzed and the number of batches that will be
acquired on CyTOF. Comment: Estimate the number of samples required to prove or reject
the hypothesis.

2. Prepare all the reagent needed for the whole protocol using a limited number of lots. Aliquot
those reagent requiring freezing. Comment: As the reagent expiration date might be a
problem, check batch-to batch equivalence.

3. Design the antibody panel, conjugate antibodies if necessary, check cellular epitopes
resistance to fixation if necessary, titrate each probe using the same experimental conditions
[31]. Comment: Titrate the antibody using a fixed number of cells, this way it will be easily
scalable to experiments involving barcoding.

4. Prepare a single big batch of antibody cocktails, stimulation agents and reference sample,
aliquot and freeze at �80 �C, as described [6,19]. Comment: at least one extra aliquot should
always be prepared. In the case of multicenter studies we recommend preparing all reagents
in one central laboratory and ship them on dry ice to the rest of the centers.

5. To limit experimental variability use barcoding when multiple samples are run in one batch.
Comments: Different barcoded approaches can be used [4,32–35]. Titrate barcoding reagent
according to the number of cells used for staining.

6. Design each acquisition batch ensuring even distribution of biological groups. Comments: If
multiple patient groups or culturing conditions are studied, each batch should contain a
representation of each group, including healthy controls.

1. Thaw selected blood samples assigned to the staining batch as
described [6]

a. Count cells
b. Aliquot equal number of cells for each sample, in this protocol

1.5*106 cells/sample
2. Barcode samples, in this protocol with palladium based barcoding
a. Wash with Barcoding Perm buffer (BPB)
b. Stain with barcoding reagent resuspended in 500 ll of BPB,

20 min RT
c. Wash with CSB
d. Pool all the samples in a single tube
3. Stain surface antigens with previously thawed surface antibody

cocktail
a. Resuspend cells at 5*107 cells/ml with surface cocktail
b. Incubate for 30 min 4 �C
4. Stain intracellular antigens with previously thawed functional

antibody cocktail
a. Wash with Perm-S buffer
b. Resuspend cells at 5*107 cells/ml with the intracellular cocktail
c. Incubate for 30 min 4 �C
5. Stain DNA with Iridium solution
a. Wash with CSB
b. Incubate 20 min RT with 5 lM Ir in Fix and Perm buffer
6. Store in 2% PFA O/N
a. Wash with CSB
b. Resuspend in freshly prepared 2% PFA at 6*106 cells/ml
7. Acquire on CyTOF2/Helios instrument in aliquots (if cells are

acquired in water,or if reduction of data size is of interest)
a. Take an aliquot of 250 ll
b. Wash with CSB
c. Wash with acquisition solution (AS)
d. Resuspend at 8*105/ml in AS
e. Acquire in CyTOF2/Helios. Adjust the flow rate to the AS and the

type of cells
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screened and cleaned from any abnormalities. Hence, extensive
data preprocessing should be included in the analysis pipeline.

Due to the pros and cons described above, mass cytometry
experiments require a special and careful experimental design
and an extensive analysis pipeline that allows automatic prepro-
cessing of the data and performs proper quality control, especially
when hundreds of files need to be analyzed. Although much effort
was put to develop automated gating strategies including cluster-
ing and dimensional reduction algorithms [11–16] or quantitative
analysis [17,18], less was developed in the field of data cleaning
and preparation.

Here we present a semi-automated, R-based, CyTOF analysis
pipeline that performs data preprocessing and quality control. It
spots and removes potential artifacts introduced during sample
preparation and acquisition, like clogs, changes in signal intensities
upon acquisition and batch effects, thus improving data quality.
This analysis pipeline gathers known tools used in both flow
cytometry (FC) and MC and adapts them to large and multibatch
MC studies, providing also solutions for data visualization. For data
preprocessing, steps like bead-based normalization, debarcoding,
file aggregation, and automated gating using Gaussian parameters,
DNA and live/dead staining for intact and live cell selection are
included. Furthermore, we implement additional quality control
steps to remove bad quality events or to identify and correct batch
effects using a reference sample. We provide full access to the data
set used in this work, so the users can reproduce the data process-
ing and analysis steps. Good data quality starts with a proper sam-
ple processing minimizing experimental bias and eliminating bad
quality events. Therefore, we also provide the protocol of the
experimental setting used to generate the data analyzed in this
work and show how to scale it up and some important tips.
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This workflow contains all the necessary steps to obtain high
quality events in an semi-automated way. Importantly to note, it
requires knowledge of basic R language programming. It is espe-
cially suited for researchers performing multicenter or retrospec-
tive studies involving collection of hundreds of biological
samples, but is equally suitable for small-scale studies.
2. Material and methods

2.1. Study participants and whole blood processing

Two human healthy donors were enrolled under a protocol
approved by the Ethical Committee of Centro Granada (CEI-
Granada) according to the Helsinki declaration of 1975, as revised
in 2013. All donors signed an informed consent according to the
ethical protocol of the Andalusian Biobank and the PRECISESADS
project. The Granada node of the Andalusian Health System Bio-
bank collected whole blood samples. Samples were processed fol-
lowing the protocol described in [6]. Briefly, 10 ml of blood from
two healthy donors was collected using EDTA-K3 vacutainer tubes,
and 1.5 ml blood was diluted 1:1 with RPMI (Gibco) and stimulated
with four different Toll-like receptor agonists: R848 (resiquimod,
RSQ, 1.25 lg/ml, Invivogen), R837 (imiquimod, IMQ, 2.5 lg/ml,
Invivogen), lipopolysaccharide (LPS, 0.05 lg/ml, Invivogen),
ODN2006 (CpG, 2 lM, Invivogen) and medium alone (UNS). The
stimulations were performed for 6 h in the presence of Protein
Transport Inhibitor Cocktail 1X (Thermo Fisher Scientific) to pre-
vent intracellular cytokine exocytosis. After stimulation, live/dead
staining was performed using cisplatin (CisPt, 5 lM), for 5 min at
RT. Blood cells were fixed with 4.2 ml of Proteomic Stabilizer
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(Smart Tube Inc) and 3 aliquots of 2.4 ml of each stimulation were
frozen and kept at �80 �C until staining. Cell staining and acquisi-
tion were carried out as detailed in Supplementary Methods and
Table 1.

The reference sample consisted in 2 ml of whole blood of donor
2 stimulated with RSQ and processed as described above. Four ali-
quots of 2.4 ml were frozen. The RSQ agonist was chosen as refer-
ence stimulation since it induced the expression of all the studied
cytokines across multiple cell populations of interest in previous
analysis (laboratory data).

2.2. Data analysis

The fcs files were pre-processed using an in-house R script pipe-
line built through the assembly of several algorithms. The R script,
functions and packages necessary for its installation can be found

in github CyTOF_analysis_piepline (https://github.com/pry-

bakowska/CyTOF_analysis_Pipeline1), and the example fcs files

are deposed on flowrepository [20] with the accession id FR-FCM-

Z3YR. Additionally, metadata (meta_data.csv) and FlowJo gating
workspace (gating_strategy.wsp) can be found in the Attachments
section in flowrepository experiment, and can be downloaded to
reproduce the results.

.fcs files were first normalized using the bead_normalized()

function, which uses normCytof() function from the CATALYST
package [21]. Firstly, a baseline file was generated by the aggrega-
tion of 25,000 cells per file using the in-house function base-

line_file(). This file was further used to compute baseline
beads values to which all the files were normalized. The following
settings for normCytof() were used: dvs beads, that were set to
be removed post-normalization, norm_to was set to the baseline
flow frame generated above, transformation was set to FALSE
and plot to TRUE. Plots for marker visualization across all normal-
ized files were generated using the plot_marker_quantiles()
function, which takes advantage of ggplot2 package [22].

Flow rate examination and signal cleaning were done using
clean_flow_rate() and clean_signal() functions, respec-
tively. For flowrate cleaning we used functions from flowAI [10]
package with the TIMESTEP adaptation to 1 bin per 10 s and alpha

set to 0.01. For signal cleaning the flowcut package (https://github.-

com/jmeskas/flowCut) was used with 1000 segments MaxPercCut
set to 0.5. The parameters UseOnlyWorstChannels, AlwaysClean
and AllowFlaggedRerun were set to TRUE.

The outlier detection was done using the wrapper function
file_quality_check(). This function calls the FlowSOM clus-
tering [14], which serves as an input for the Average Overlap Fre-
quency (AOF) algorithm [23]. The FlowSOM was built using a
10x10 grid and 10 metaclusters. We calculated AOF scores per ali-
quot and batch using greedyCytometryAof() function, with the

default parameters from the cytutils package (https://github.com/

ismms-himc/cytutils), and Scaled and Quality AOF using the for-
mula presented in [24]. Next, we estimated the mean of Quality
AOF scores taking into consideration the scores calculated for all
the fcs files. We considered as outliers those files with Quality
AOF scores > mean + 3 SD. Heatmaps were generated using the
pheatmap package.

Forfiledebarcodingweappliedthedebarcode_files() function,
which uses CATALYST debarcoding functions (assignPrelim(),
estCutoffs(), and plotYields()), although we introduced the
possibility to include minimal separation thresholds.

File aggregation was done using an in-house function called
aggregate_files() and gating for Gaussian parameters and

event length were performed using CyTOFClean package (https://

github.com/JimboMahoney/cytofclean). Additionally, intact and
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viable cells were gated using gate_intact_cells() and
gate_live_cells() functions, which use flowDensity package
with deGate() function [25]. The parameters depend on the
markers gated and are discussed below.

CytoNorm package [26] was used to normalize files using a ref-
erence sample, and data were normalized without FlowSOM clus-
tering using 5 and 95 percentile and limit parameter set to 0 and 8.

The batch effects were visualized using plot_batch() func-
tion, which performs UMAP dimensional reduction [12], from uwot
package and ggplot2. Prior to dimensional reduction, files were
aggregated using 1000 cells per file to reduce data size and speed
up the analysis time. The umap() function was applied with
default settings. Additionally plot_marker_quantiles() func-
tion was used to visualize the differences before and after normal-
ization. Cell population frequencies and MSI of phenotyping and
functional markers were extracted using FlowSOM algorithm [14]
and used to track batch effects, as well. Briefly, 50,000 cells per file
were randomly selected, aggregated and arcsine transformed.
FlowSOM was built using default parameters for grid and 35 meta-
clusters. Phenotyping channels (see Supplementary Table 2) were
used to build the model. Next, cell frequencies and MSI for pheno-
typing and functional markers were extracted for clusters and
metaclusters. Zero-imputation was used for MSI values of clusters
without cells as shown before [27]. Only the MSI values with
CV > 0.2 per marker and cluster/metacluster were used. The data
were further analyzed with UMAP and visualized with ggplot2
package.

UMAP was also used for data exploration with 5000 cells aggre-
gated per file. To map cell labels on UMAP, the aggregated file was
manually gated using FlowJo software (10.0.7). FlowJo workspace
was next read in R using CytoML [28], flowWorkspace [29] and
OpenCyto [30] packages.

The figures can be reproduced using the data uploaded to
FlowRepository and the code is deposited in github, however we
noticed some differences when running the script either on Linux
or Windows operating systems. This was due to the differences
in the floating numbers generated after the 14th decimal. The R ses-
sion information with package versions is attached to this manu-
script as a supplementary pdf file named Rybakowska_et_al_
RSession_Information.pdf.
3. Results and discussion

3.1. Analysis workflow

The analysis pipeline presented herein includes all the major
steps necessary to process and clean collected MC data. However,
it should be noted that although the presented tools significantly
improve data quality, they cannot fully fix the improper design
of the experiments, according to the rule garbage-in, garbage-out.
We emphasize the importance of well-designed experiments and
therefore we also present the experimental workflow (Supple-
mentary Fig. 1) and protocol (Table 1), used to generate the fcs
files for this manuscript. A deeper description of the sample pro-
cessing protocol can be found in the supplementary methods
section.

The example data set used in this work contains whole blood
samples collected from two individuals (p1 and p2). EDTA-K3
blood from each donor was stimulated with 4 different stimuli
(RSQ, IMQ, LPS, CpG) or left unstimulated, as described in methods
section. In total 10 samples (5 per donor) were aliquoted in tripli-
cates, fixed and frozen to generate 3 staining batches. Every batch
included 10 stimulated samples plus one aliquot of the reference
sample, and was barcoded, resulting in 11 samples per staining
and acquisition (Supplementary Fig. 1). After pooling the barcoded
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samples, they were stained with a cocktail of antibodies recogniz-
ing surface markers, permeabilized and stained with an cocktail of
antibodies recognizing intracellular cytokines (see Supplementary
Table 2). The samples were acquired the following day, as
described above. Therefore, in total 3 acquisition batches were ana-
lyzed (day 1 to day 3). This experimental workflow can be scaled
up for multibarcoded, multibatch and multicenter studies
(Supplementary Fig. 2). Each barcoded experiment was acquired
in aliquots, and 11–12 fcs files were generated each day using an
NB sample injector.

For data curation we built an R-based pipeline. Although R stu-
dio and basic programming skills are required, we will point out
which steps can be performed with standalone or user-friendly
programs. The data analysis workflow can be seen in Fig. 1. The
pipeline starts with the aliquots collected for each acquisition
batch. In total, this example data set contains 35 aliquots obtained
in 3 acquisition batches (12 aliquots for day1, 12 aliquots for day2,
11 aliquots for day3). These aliquots are not aggregated until step 5
(Fig. 1), as one-by-one file processing is more beneficial in the con-
text of algorithms and computer capacity. However, if data are
acquired in one big aliquot using a wide bore injector (WB), or in
the case of FC or spectral cytometry (SC) experiments, and the
computer resources are limited, the data can be split upfront into
aliquots to generate a set of smaller files. The function to do this
is provided and is called split_big_flowFrames. Alternatively
they can be analyzed as a single big fcs file.

As a first step, a bead-based normalization is performed, fol-
lowed by flow rate and signal cleaning. Next, the bad quality ali-
quots are detected and removed from the data set. Cleaned files
are then debarcoded, resulting in generation of 11 (#
barcodes) � 35 files, and at this point files from the same barcode
and experimental day are aggregated. The gating of the fcs files is
performed to remove doublets and dead cells and afterwards batch
effect detection and normalization using the reference sample is
performed. The data are further explored using dimensional reduc-
tion methods. To build this pipeline we gather already published
algorithms and put them in the sequential order, that we believe
is optimal for CyTOF data curation. We have also modified some
steps to adjust these tools for CyTOF data or to improve their per-
formance. These modifications will be highlighted along the work-
flow and some of them will be illustrated in the figures. We also
provide wrapper functions for an easier use of the code. The work-
flow steps are prepared for CyTOF data, however as it is built in
blocks, some of them can be skipped or adapted to FC or SC data.
This will be also highlighted along the manuscript.

3.2. Bead-based normalization

The first step of data preprocessing is the bead-based normal-
ization, performed for all collected aliquots. This step uses the sig-
nal of the EQ four element calibration beads acquired together with
the sample [36] and the CATALYST package [21].

In the CATALYST package the function normCytof allows for the
selection of the parameter norm_to, that requires an fcs file as an
input. This file will be used as a baseline, hence the rest of the files
will be normalized according to its values. The selection of baseline
file is important for proper data normalization and can be difficult
when hundreds of files need to be normalized to the same intensi-
ties. Therefore, in this pipeline we propose to aggregate all the col-
lected fcs files in order to obtain the mean bead intensities across
experimental aliquots and batches, as shown in Fig. 2A. To avoid
the generation of a big object, we used baseline_file function
that first aggregated 25,000 randomly selected events per aliquot
to obtain at least 200 beads per fcs file (the number of aggregated
cells is user-defined). Next, using this aggregated file we created a
baseline file for which bead mean intensities were calculated and
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used for aliquot normalization. In this way all the files were nor-
malized to the global mean of the aggregated file, Fig. 2A.

As an outcome, normalized files with suffix beadNorm.fcs were
generated in a new subfolder called BeadNorm. The diagnostic plots
for one aliquot were plotted in Fig. 2B,C. Beads were gated as neg-
ative for Ir and highly positive for the bead channels 140Ce, 151Eu,
153Eu, 165Ho, 175Lu (Fig. 2B). These events were further used for
the estimation of the bead-derived normalization factor that will
be applied to the channels selected by the users. The bead gate area
can be adjusted by changing parameter trim, however for our sam-
ples the default parameter was good enough, as it properly gated
all the necessary events. As shown in Fig. 2C, normalized bead
intensities became higher and more stable along the acquisition
time.

Another important and novel step that we introduced is the ver-
ification of the behavior of the cell markers after bead-based nor-
malization. This possibility is provided using the
plot_marker_quantiles() function, giving a good insight of
the homogeneity of the aliquots and the batch effects present in
the data. Thus, to have an insight into normalization quality and
its artifacts we recommend to plot all the markers that were cho-
sen to be normalized and verify their expression before and after
normalization as shown in Fig. 2D for CD45RA. For this marker a
slight signal decrease with the time of acquisition was observed,
which was corrected by bead-based normalization. No significant
differences were observed between different acquisition days for
this particular marker. This part of the code does not include a
user-friendly interface, although data could be also normalized

using the premessa package (https://github.com/ParkerICI/pre-

messa/). It should be noted that this option is not automatic, and
hence the user will need to define bead gates manually.

In FC, the data are not usually acquired with spike-in beads, and
thus this step is not useful for FC users. However, the advantage of
using Rainbow 8-peak beads (acquired just before samples acqui-
sition) was recently published [37] in the context of day-to-day
instrument variation correction for PRECISESADS [38] project.
Therefore, this step could be introduced here and is beneficial for
FC data quality. Alternatively the package flowBeads could be also
used [39,40].
3.3. Flow rate and signal cleaning

Sample acquisition using CyTOF instruments can suffer from
clogs or sudden changes in the flow rate, which affect the quality
of the data. Therefore, it is important to detect and clean these
abnormalities. To do this we used two algorithms: flowAI [10] to
spot flow rate irregularities and flowCut [41] to track signal insta-
bility. Since these two packages were initially created to clean FC
data, this step can be also applied to fluorescence data with their
default parameters.

The functions from these packages were adapted to the nature
of the MC data and were written to wrapper functions clean_-

flow_rate() and clean_signal() for flowAI and flowCut
respectively, although the user can still modify the original
parameters.

The time resolution is different for FC/SC and MC data, thus we
modified the TIMESTEP parameter of flowAI to 1 bin per 10 s. As the
acquired files contained high number of events per file (around
700,000) we also increased the Segment parameter (the number
of events per bin) from 500 to 1,000 in flowCut setting. In this
way we could spot bigger changes in the mean but still analyze
sufficient number of segments to obtain a good statistic. The set-
tings of these parameters are sensitive to the file size (number of
events collected), and should be adjusted according to the user
needs. If less cells were acquired per file, less events per segment
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Fig. 1. Computational pipeline. Each barcoded batch was acquired in aliquots resulting in multiple .fcs files obtained from each acquisition batch. Therefore, in this figure fcs
files are called ‘‘Aliquot.fcs”. We represent aliquots as 1. . .N for clarity. The colored rectangles indicate the aliquots together with their origin and are numbered with barcodes
(B) from B1-B11 (as shown in Supplementary Figure 1). The blue shade comes from p1 sample, orange shades from p2 and yellow rectangle represents the reference sample.
The purple border of each rectangle denotes Day 1. Each aliquot file is processed individually until the aggregation step. Steps 1 – 8 represent the blocks used in the R pipeline.
First, bead normalization (Step 1), followed by flow rate and signal cleaning (Step 2) are performed. Next, the aliquot outliers are detected by calculation of the Quality AOF
score, and files with high score are discarded from further analysis (Step 3). Files are then debarcoded (Step 4) and aggregated (Step 5). Gating of Gaussian parameters and
intact, live cells is performed (Step 6), and files are normalized using the reference samples collected in each batch (Step 7). In the data exploration (Step 8) cell populations
are visualized using UMAP dimensionality reduction.
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Fig. 2. Bead-based normalization. (A) Randomly selected cells from each aliquot and each acquisition day are aggregated to generate baseline files. Files are then normalized
to the mean intensities of baseline file. (B) Dot plots generated using CATALYST package for one representative aliquot with arcsine transformed DNA channel (191Ir) versus all
bead channels. The beads in the blue region are used for normalization. (C) Smoothed bead intensities in their positive channels along the time of acquisition for one
representative aliquot. ‘‘Before” (left) and ‘‘After” (right) normalization data are plotted. (D) All aliquots are plotted for each acquisition day for CD45RA-155RA. The lines
represent percentiles, circles represent median values, while thicker lines represent 25 and 75 percentiles. The thinner lines represent the 1 and 99 percentiles. Grey lines
represent the percentiles before normalization, and colored lines after normalization.
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should be analyzed. The same is applied for the removal of small or
big changes in the mean signal, the bigger the segment the bigger
mean changes can be removed. Thus, this parameter is data-
specific and should be carefully adjusted in the case of barcoded
or big fcs files. We also increased the MaxPercCut (the maximum
percentage of cells to be removed) from 0.3 to 0.5 in order to
ensure that most of the bad quality events were be removed. This
parameter setting depends on the quality of the data but also on
the number of events that users can tolerate to lose, and therefore
it should be adjusted carefully. We set the parameter
UseOnlyWorstChannel, and AllowFlaggedRerun to TRUE. This is
because in the multiparametric MC data bad quality events in
some channels can be missed when taking into consideration the
statistic across all the channels (as it is the case in flowCut). To
be stricter in the cleaning, we enabled this parameter. As it can
occur that some other channel will have signals severely affected
and will not get cleaned when a predefined channel is selected,
we allow the algorithm to re-run the cleaning after the first bad
quality events are removed. The setting of these parameters will
depend on the data quality and the number of markers used. We
also forced the algorithm to always clean the data, by setting
AlwaysClean parameter to TRUE, as we did not observe any exces-
Fig. 3. Signal and flow rate cleaning. (A) Flow rate of one representative aliquot using
further analysis by the flowAI algorithm. (B) Signal cleaning for the same aliquot using
CD16-209Bi and CD66ace-149Sm, detected as the worst channel. For CD16 plots, the arro
the mean change before and after cleaning and the maximum mean change for this al
median, several percentiles, skewness, and variation of the flow signal, parameters used b
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sive cleaning in high-quality files; instead some small signal dis-
turbances were efficiently cleaned. We did not observe any
benefits in changing other parameters, and therefore the rest of
them were set as default. These tools were firstly created for FC
studies, thus same reasoning about the parameter setting can also
be applied to high-dimensional fluorescent cytometry data. If FC or
SC data are run the data_type parameter should be changed to ‘‘FC”.
This will automatically switch algorithms parameters to the origi-
nal FC-optimal setting.

This step generated a new folder called Cleaned, containing
clean files with suffix cleaned.fcs. Additionally, two subfolders were
created called FlowRateCleaning and SignalCleaning having one plot
per file for both flow rate and signal cleaning, as shown in Fig. 3.
These plots are convenient to check the quality of the signal across
the markers and flow rate, and also the level of the cleaning
achieved. Therefore, we recommend verifying if all the low-
quality events are removed from the data, and to re-adjust the
parameters when required. Example plots for flow rate and signal
cleaning in one sample aliquot are shown in Fig. 3A and 3B. It can
be observed that the anomalies occurred just at the beginning of
the acquisition, when probably the flowrate was still unstable,
and also at the end of the acquisition when more fluctuation typi-
flowAI. The green circles indicate the outliers that were detected and removed from
flowCut. The first two dot plots show the arcsine transformed intensity for cleaned
ws indicate the indices removed from the analysis, and the numbers above the plots
iquot. On the right panel, histogram representing the summed measures of mean,
y the flowCut algorithm. The vertical line represents the threshold for event removal.
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cally occurs. This can be a sign of some cell clogging, sample degra-
dation or the tube getting empty. As can be seen in Fig. 3B, overall a
good quality signal was observed even in the worst channel
(CD66ace). The indices removed at the end of the signal correspond
with the flow rate abnormalities, confirming some problems at the
end of the aliquot acquisition.

flowAI can be run in a user-friendly mode, and therefore no pro-
gramming skills are required. On the other hand, flowCut can only
be used through R language. Alternatively, flowAI can be used as a
signal cleaning tool, however in our experience it is too stringent
for MC data because it removes too many acceptable events (data
not shown).

It can be argued that some events can be removed from the data
due to their original properties. However, cells acquired either in
MC or in FC/SC are homogenously distributed in the sample and
thus across the ‘‘Time” parameter during acquisition. As those
algorithms divide data into bins, and each bin represent the mix-
ture of all cells, it is highly unlikely that some specific type of cells
will be removed from the file.

3.4. Aliquot outlier detection

As mentioned before, in order to obtain a sufficient number of
high-quality events during long acquisitions, barcoded data are
acquired in aliquots. For this reason, sudden changes in detector
sensitivity or problems with instruments like unexpected shut-
down can happen, requiring additional tuning. Thus, it is advisable
to verify the quality and channel intensities of the different ali-
quots acquired in each acquisition batch. To do this, we took
advantage of AOF algorithm [23] that detects potential staining
problems [24].

It is recommended to use AOF algorithm on gated or clustered
events as input. In order to allow for automated quality check,
we used FlowSOM [14] algorithm (Supplementary Fig. 3A) to clus-
ter the cells. Upon clustering (using the phenotyping markers
shown in Supplementary Table 2), the AOF scores were calculated
for each marker as shown in Supplementary Fig. 3B and scaled to
obtain Scaled AOF scores as illustrated in Fig. 4A and described in
[24]. These scores were summed for each aliquot, and the Quality
AOF score was obtained for each fcs file as shown in Fig. 4B. To
detect outlier aliquots the mean for all the Quality AOF scores
was calculated per all files. The files with Quality AOF
score > mean + 3SD were considered as outliers and removed from
further analysis.

If the data were acquired as single big barcoded samples we rec-
ommend to divide these files into segments and calculate the AOF
and Quality score for each segment in order to spot signal decrease
issues. If the user decides not to split the data, we advise to care-
fully inspect the files with high quality scores and markers with
high AOF score across time. It can happen that upon the long acqui-
sition only a portion of the data is affected, thus some good quality
part of the data can be used for further analysis, as shown before
[24].

In this setting we use AOF to detect abnormalities in the ali-
quots. All the aliquot files have exactly the same cell distribution,
and thus removing one outlier aliquot from the data does not
remove any specific cell subpopulation. However, this algorithm
can also be used to spot staining discrepancies (missing antibodies,
lower staining index) across samples from different individuals or
acquisition batches [23], and in this case the results should be care-
fully checked to make sure that the observed low quality scores are
due to technical problems and not to sample-specific or cell-
specific phenotypes. We also focused on phenotyping markers
and not functional, cytokine markers, as the performance of this
algorithm is optimal when using bimodal markers. By doing so
we assumed that if some phenotyping markers are affected and
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sample was scored high, most of the markers will have poor reso-
lution and will be difficult to analyze. For FlowSOM we used a
small number of metaclusters (N = 10) in order to detect and val-
idate the marker expression in the main leucocyte populations
across homogenous aliquots. We reasoned that the less metaclus-
ters, the less aliquot-specific clustering will occur, and thus all the
cells will be assigned to the same metacluster and the AOF calcu-
lation will be performed exactly for the same group of cells. Flow-
SOM parameters can be adjusted according to the sample diversity
and user needs. To verify the quality of clustering, it can be useful
to plot the FlowSOM tree, as shown in Supplementary Fig. 3A. The
threshold can also be adjusted by the users, if necessary. We chose
FlowSOM as a clustering method as it is the fastest and most accu-
rate algorithm [42], however users are free to choose their own
clustering algorithm to partition the data using the greedyCytom-

etryAOF() function from cytutils package and next to calculate
scores with functions scaled_aof_scores() and file_out-

lier_detecion() from our pipeline.
This pipeline block is only available as R code. FC/SC data can

also be analyzed, however, the arcsine transformation should be
changed to a cofactor of 150 in the function fsom_aof and
aof_scoring.

3.5. File debarcoding

The samples included in this data set were barcoded with 11
different palladium-based barcodes. Therefore, in order to recover
the individual sample information, we performed a data debarcod-
ing step, using debarcoding functions from CATALYST package with
the automated separation threshold identification setting. The gen-
erated files were stored in a new subfolder called Debarcoded with
the suffix debarcoded.fcs. Additionally, we introduced a minimal
separation cutoff of 0.18, which ensured a safe separation thresh-
old for files with unclear barcode distribution. File names with
detected threshold values lower than 0.18 can be stored in an
RDS file called files_with_lower_debarcoding_threshold.RDS if the
parameter less_than_th is set to TRUE. The minimal separation
threshold can be modified if necessary.

To verify the quality of debarcoding two plots were generated
for every debarcoded sample using CATALYST package, as shown
in Fig. 5. The visualization of the separation between events posi-
tive or negative for the different Pd isotopes (see Fig. 5A) is key
to assess the correct sample assignation during debarcoding. The
second plot allows the monitoring of the yield and cell count
obtained with the chosen minimal separation cutoff (Fig. 5B). We
recommend reviewing all the plots generated upon debarcoding
especially if the file names are stored in the .RDS file due to the
assignation of separation threshold below to the minimum
established.

In this protocol we used a 6-choose-3 scheme, resulting in max-
imum of 20 barcodes, and for the purpose of this work presenta-
tion we used 11 barcodes. However other approaches could also
be taken, like 7-choose-3 (35 barcodes), CD45-based cadmium bar-
coding scheme recently offered by Fluidigm, or the combination of
commercial barcoding with monocisplatin isotopes (60 or even
more barcodes) [32]. The parameter bc_key that defines the bar-
coding scheme would need to be re-designed by the users and
adjusted to new isotopes. It should be noted that Zunder-based
algorithm used in CATALYST package will correctly deconvolute
the data if positive and negative populations are present, thus bar-
coding with serial dilution of amine reactive fluorescence dyes
commonly used in FC multiplexing will not work in this case. For
the FC/SC users we recommend to deconvolute the data by manual
gating or using flowClust algorithm as previously described [43].

In our experience when using the barcoded approach presented
here some barcode intensity problems can be noticed when dead



Fig. 4. Outlier aliquot detection. (A) Heatmap representation of Scaled AOF scores for each surface marker across all the aliquots collected on day 2. (B) Outlier aliquot
detection. On the x-axis the file names marked as an outlier (aliquot 11 from day 2) and on the y-axis Quality AOF scores. The green dotted line represents the threshold for
outlier definition. Dots represent scores for each aliquot, red dot is a file above the threshold.

P. Rybakowska, S. Van Gassen, K. Quintelier et al. Computational and Structural Biotechnology Journal 19 (2021) 3160–3175
cells and debris were present in excess (data not shown), a fact also
observed before [33]. As reported [44], small polymer-palladium
conjugates have high affinity to dead cells. Furthermore, a high
amount of debris capture barcoding reagents and reduce the
amount of complexes able to stain the cells of interest [4]. It is
noteworthy that labeling with this barcoding reagent is sensitive
to the number of cells, thus titration with the exact cell number
is required. Accordingly, if a large amount of debris is present in
the sample a reduction of the total amount of cells is recom-
mended [4], alternatively if a lot of cells are available samples
3168
can be cleaned by a dead cell removal kit before barcoding. Addi-
tionally, the use of saponin-based reagents requires sample fixa-
tion, which could be problematic when live cells are studied or
using fixation-sensitive markers. Alternatively, palladium barcod-
ing using surface markers can also be considered [33–35]. In case
of low separation between barcoded samples, manual gating could
also be performed, alternatively clustering with cluster number
equal to barcode number could also be tested [24].

A user-friendly application for debarcoding is provided by Flu-
idigm as a part of CyTOF software. However, it should be noted that



Fig. 5. Debarcoding quality plots. (A) All cell events assigned to barcode B5 (100011) are shown, with each cell event represented as a dot. The intensities for each palladium
isotype are displayed with different colors. (B) Distribution of the events by separation distance (grey histogram) and the cell yield (red line) are displayed as a function of the
separation threshold. The vertical, blue dotted line represents the cutoff for the separation threshold. The data for one representative aliquot is shown.
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this software estimates the separation threshold for all the files
after aggregation, in contrast to the method proposed in this
workflow. This global threshold is not always correct for all the
samples and can lead to precious event loss. Additionally, it is only
dedicated to palladium, as barcoding channels cannot be manually

defined. Instead the premessa package (https://github.com/Parker-

ICI/premessa/) could be used, allowing the definition of barcodes in
a user-friendly interface.

3.6. File aggregation

We performed file aggregation of the debarcoded aliquot files
using an in-house function called aggregate_files(). To do
this, the names of the files containing metadata (barcoding identity
and staining batch) need to be provided as shown in the Supple-
mentary Table 1. The resulting aggregated files were stored in a
folder called Aggregated and they contained the sample-specific
names provided in the metadata. If files were barcoded and
acquired as one big aliquot (for example while using the WB injec-
tor or in FC or SC) and the computer power resources are limited
we recommend to split them into smaller fcs files, preprocess,
and then aggregate after the debarcoding step, as shown in this
workflow. If the data do not require aggregation this part of the
code can be skipped.

3.7. Cell gating

The aggregated files contained a mixture of events including
dead cells, debris and doublets, which should be removed from fur-
ther analysis. To do this we took advantage of CyTOFClean package

(https://github.com/JimboMahoney/cytofclean) and flowDensity
[25].

CyTOFClean is a user friendly R package that excludes doublets
using event length and 4 Gaussian parameters: Center, Offset,
Residual and Width (see Fig. 6A), as described in [45]. Using the
flowDensity package, the gating of intact cells is also provided with
gate_intact_cells() function, and is based on the expression
of DNA1 and DNA2 marker. Additionally the live/dead cells gating
was applied by calling the gate_live_cells() function. Both
gating strategies are shown in Fig. 6B. In this example CisPt and
195Pt channel were used to detect dead cells, but users can change
these parameters accordingly to the live/dead marker chosen. This
part of the code does not have graphical user interface (GUI) imple-
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mentation, however the fcs files can be analyzed using standard
softwares as FlowJo, and the resulting files could be exported to
R. Alternatively, the packages flowWorkspace, CytoML and openCyto
can be used to import the gating settings into R [29]. As an output
CC_gated.fcs files and control plots were generated for each file in
the Gated folder.

It is important to note that CyTOFClean is a closed GUI app and
therefore no parameter can be adjusted without changing the
application code. Inversely, all the parameters can be adjusted
for flowDensity-based gating. The parameters that we modified
for the analysis of this example dataset were upper and use.upper
that define which lower or upper inflection points of the density
curve are analyzed and also alpha and tinypeak.removal, that spec-
ify the significance of the change in the slope being detected and
the inclusion/removal of tiny peaks in the density distribution
respectively. The change in alpha parameter will affect the tight-
ness of the gate, and thus can be useful if a less strict gate for
the Ir channels is necessary.

In this workflow we introduced the common gating strategy
used for nucleated cells stained with Ir. However, the gating strat-
egy could change depending on the type of cells acquired and the
antibody panel configuration. This statement especially applies to
the parameter ‘‘Event length” and ‘‘Ir” channels. The event length
of each cell depends on the amount of metal that the cell is loaded
with, thus the non-nucleated cells with only one probe have lower
event length than nucleated cells bound to a high number of
probes. CyTOFClean package uses a density function to apply the
cutoff for both event length and Gaussian parameters, thus it will
gate on the cells where the majority of events are located as rec-
ommended for these gates [46] and rather undergate than over-
gate. Therefore it is suitable for NB and WB injectors despite
their known differences in the event length [47]. Additionally, it
introduces the thresholds 10 and 50 to exclude events below and
upon these values respectively. Most of the cells are typically
located in between these values, unless some contamination or
lowmetal content cells are present. Therefore the users should ver-
ify the event length of the cells of interest before the gating. In the
case of non-nucleated cell analysis, the gating strategy for intact
and live/dead cells should be changed and re-designed to fit the
users’ needs. The gating presented here is especially useful for
human leukocytes stained with Ir, however it could also be applied
to other type of cells like mouse splenocytes.

The gating using ‘‘Event length” and Gaussian parameters will
remove the doublets caused by fusion of ion clouds. However,

https://github.com/ParkerICI/premessa/
https://github.com/ParkerICI/premessa/
https://github.com/JimboMahoney/cytofclean


Fig. 6. Cell gating. (A) Doublet exclusion with CleanCyTOF package. Event length and Gaussian parameters are represented against ‘‘Time” parameter. Events that fall outside
of the red gates are discarded form further analysis. (B) Gating for single intact cells and live/dead cells using DNA and CisPt parameters and flowDensity package. The black
events are removed from further analysis. One representative file is shown.
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the true cell aggregates will still remain in the fcs files. Barcoding
with more than 2 probes per sample improves the quality of the
data and helps to remove cellular aggregates when cells are com-
ing from different barcoded samples. Unfortunately, aggregates
within the same sample will not be cleaned, neither will be debris.
Thus, to deal with this we used ‘‘Intact cell” gate to remove Irlow

events (debris) and Irhi events (aggregates). Cells late in the S, G2

and M phases of the cycle can fall in the region of Irhi cells, due
to their higher DNA content [48] and thus this algorithm can result
in undesired cycling single cell removal. To avoid it we use a less
strict gate at the upper part of Ir intensity. The use of markers
specific to cell cycle in the antibody cocktail and automated clus-
tering could also be helpful [48]. When using a less strict gate, care
needs to be taken when analyzing the data, as some cell aggregates
can still persist in the data and could be spotted upon gating or
clustering, together with marker expression analysis. This gating
is specific for MC data, and thus FC/SC users would need to apply
their own gating strategy at this point. A good example of how
to do it using R is published [49]. As mentioned before, manual gat-
ing can be alternatively done using programs like FlowJo or FCS
Express and then the population of interest can be imported into
R. However, this can be time–consuming, especially when hun-
dreds of files are processed. It is also known that manual analysis
can be biased [50], and hence it is faster and more robust to use
automated approaches. Nevertheless, we recommend to always
revise the quality of the gating and optimize the parameters if nec-
essary and possible.

3.8. Batch normalization using reference samples

Although bead-based normalization helps to normalize differ-
ent acquisition batches, it uses the information of a limited set of
channels. The correction factor is calculated using 5 bead channels
and then extrapolated to the rest of the markers, hence there is a
risk that some markers and cell-specific changes are not precisely
corrected. Even more, normalization using beads does not consider
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the experimental variation introduced during sample staining or
manipulation (batch effects). Therefore, normalization with a ref-
erence sample that is present during sample staining and spans
the whole spectrum of the channels used, is advisable. Because
of this, as a last step in the preprocessing and quality control pipe-
line, we performed batch normalization using the CytoNorm pack-
age [26].

In contrast to CytoNorm default setting, instead of using quan-
tile normalization (parameter quantileValues = 101) we computed
5% and 95% percentiles across the reference samples for each mar-
ker and obtained the marker-specific goal distributions using the
function QuantileNorm.train(). This was because quantiles
normalization introduced artifacts (data not shown), as previously
reported [51]. In our experience this setting was good enough for
the correction needed, although in some particular cases the distri-
bution of the signal will not be modelled adequately if only two
quantiles are used. In this case the users can change quantileValues
parameter accordingly. Additionally, the normalization was per-
formed on unclustered data, as clustering can be biased by the
variation potentially introduced in the raw data. If a big batch
effect is observed upfront in the markers used for clustering,
improper cluster assignation can also introduce artifacts. We set
the parameter limit to 0–8, as recommended by the authors, to
avoid the introduction of extreme values, like negative values that
are normally absent in MC data. We normalized our data to the
‘‘mean” marker quantiles of reference sample, using goal parame-
ter. However, this can be changed by the users and data can be nor-
malized to one of the batch values or to specific quantile values.
The goal distributions obtained in the first step were then used
for marker-specific batch normalization using the function
QuantileNorm.normalize(). The scheme of the normalization
process can be seen in Fig. 1, step 7 and Fig. 7A.

As outputs, fcs files with the new prefix Norm were generated
together with several diagnostic plots. These files were stored in
the new subfolder CytofNormed. An example of generated plots
are shown in Fig. 7 for the marker CD4 for the three days of acqui-



Fig. 7. Normalization based on reference samples. (A) Distribution of the CD4 marker in the reference sample on each staining day. Left panel, the 5% and 95% percentiles
are represented by the blue vertical lines and the computed means for 3 experimental days are represented below in dark blue lines (goal distribution). Right panel, the linear
function that transforms the result is represented with a red line and the grey line represents the identity function. If the red line is below the grey one, the values in the batch
are decreased, and vice versa. (B) CD4 expression in the individual samples acquired in the three staining days are represented as in Figure 3C, 99% and 75% percentile lines
can be seen. The rest of the quantiles have 0 values and thus are located at point 0 on the y-axis.
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sition. A shift in the 95% peak position can be seen especially on
day 1. The mean for each intensity peak was estimated using data
from the 3 days. This mean is called a goal distribution and was
used to obtain normalized data distribution as shown Fig. 7A. Fur-
thermore, we provide a plot showing the expression of CD4 across
samples by day of acquisition (Fig. 7B). A downshift of the 95% per-
centile colored line can be seen for day 1 when compared to the
95% grey line (normalized). In contrast, a slight upshift can be
noticed for day 2 and 3, giving comparable median intensities after
normalization when looking for all 3 days. These correspond with
the shifts seen for the density peaks. In the same way the plots for
IL-6 are shown in Supplementary Fig. 4A, as an example for a func-
tional marker normalization.

Batch effects are commonly monitored using dimensionality
reduction methods, which allow the visualization of the cell distri-
bution in each file in a single plot. In our pipeline we also provide
the possibility to run UMAP dimensional reduction [12] as shown
in Supplementary Fig. 4B. It can be appreciated that the cells from
day1 were unevenly distributed before normalization, however the
homogeneity of the cell distribution was improved after normal-
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ization and cells become uniformly mixed between acquisition
days. The same can be observed when cell frequencies for clusters
or metaclusters were extracted using FlowSOM, followed by
dimensional reduction analysis (see Supplementary Fig. 4C and
4D). It can be noticed that the batch effect is stronger at the cluster
than at the metacluster levels, thus if researchers want to perform
sample comparison in more detail, special care needs to be taken
for batch effect adjustment. In general, no strong batch effect
was observed in UMAP or cell frequency analysis where only phe-
notyping markers were used. To take a deeper look into functional
markers and features, we extracted median marker intensities
(MSI) per cluster and metacluster and visualized sample distribu-
tion by dimensional reduction, Fig. 8A (all the markers), B (func-
tional markers) and Supplementary Fig. 4E. In Fig. 8A it can be
appreciated that the day 1 samples were differentiated from the
rest, including even the reference sample, but upon normalization
they got intermixed with the corresponding donor samples. The
references also got into closer proximity. In this experiment, the
blood was treated with 5 different conditions, hence sample group-
ing in accordance to the stimulation and not only to donor is



Fig. 8. Batch effect visualization using MSI values of phenotyping and funcional markers. Data were clustered using FlowSOM and MSI for all phenotyping and functional
markers were extracted across all metaclusters. Next, dimensional reduction using UMAP was performed to verify sample distribution and data were represented using
scatter dot plot where x and y-axis represents 1st and 2nd dimension of UMAP. (A) MSI for all the markers, (B, C) MSI for functional markers colored either by the day of
acquisition or by the stimulation, respectively. Samples are colored by staining batch (A) and (B) or by stimulation (C). Donors and reference sample are represented with
shapes.
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expected. In panel B, grouping according to the donor and to the
stimulation was observed after the normalization, but not before.
These results showed that MSI is more sensitive to the experimen-
tal variation as expected, and it can be tracked and corrected when
reference samples are included.

These results underscore that batch effect correction is a neces-
sary step when multiple batches are acquired, even in well con-
trolled experiments, and especially when fine phenotyping and
MSI values are of interest. In this example we used a reference sam-
ple that was always barcoded and stained along with the samples,
but spike-in cells could also be used [52]. However, it should be
noted that spike-in cells should be processed using the same exper-
imental protocol and should be stained with one specific channel or
antibody to allow for their identification, thus the sacrifice of one
channel shouldbe taken into consideration. If this solution is consid-
ered, additional gating stepswould need to be performed to identify
and split the reference file. The reference sample is not commonly
used in FC or SC, however this normalization could be also applied
to fluorescence data and should improve the quality of the data in
high-scale and longitudinal studies. The transformation cofactor
should be changed in the transformList parameter and the limit
should be set to default settings or adjusted to FC/SC data.

The CytoNorm function can be used as a plugin in FlowJo, as well
as UMAP. Alternatively tSNE [53] can also be used for data explo-
ration and detection of batch effects using platforms like Cytosplore
[54]. The values for quantiles can be adjusted if necessary and Flow-
SOMclustering could also be introducedwhenno strongbatch effect
on phenotyping markers is observed. The extraction of cell popula-
tion frequencies and MSI is a good way to track the differences
between acquisition batches. In this example we used FlowSOM
clustering, but any other tool or manual gating can be used.

3.9. Data exploration

Finally, we explored the cleaned and normalized data using a
dimensional reduction method. In this example we choose UMAP
3172
due to its good performance and ability to handle a large number
of events in a relatively short time [55]. To speed up the analysis
we aggregated 5000 cells per fcs file and performed a dimensional
reduction using the phenotyping markers as input (see Supple-
mentary Table 2). In total 165,000 cells were used for the analysis.
This allowed us to track marker expression across the studied indi-
viduals as shown in Supplementary Fig. 5A and to map them to the
manually-gated populations as shown in Supplementary Fig. 5B.
The manual gating strategy used can be found in Supplementary
Fig. 6. Due to this approach we could explore the differences in
sample frequencies (Fig. 9A) and MSI of cytokine markers (B, C).
In panel A the density of the different populations can be visual-
ized, showing differences in the frequency of several subsets
between p1 and p2. Additionally, differences in cytokine expres-
sion could be detected. For instance, after RSQ stimulation MIP1b
was more expressed in p2, and the expression was brilliant in
monocytes and pDC and moderate in CD16+CD66ace+ granulocytes
(Fig. 9A). TNFa was expressed in pDC and some subsets of the
monocyte compartment, and the intensity of TNFa was higher in
pDC than in monocytes for p1, while this ratio was inversed in
p2 (Fig. 9B).

This basic data exploration can already give an insight into the
internal diversity of the samples and give a first idea of the individ-
ual differences, although further analysis should be performed to
verify the hypothesis generated before the experiments and upon
data exploration. Data analysis and interpretation is dependent
on the biological question raised, as was already discussed in dif-
ferent publications [17,54].
4. Preconditions, limitations and conclusions

Here we report an R-based data curation workflow that cleans
collected data and corrects the experimental variation introduced
during the sample preparation, staining and acquisition. This pipe-
line is semi-automated and optimized for large studies involving



Fig. 9. Data exploration by dimensional reduction using UMAP. One thousand cells per file were aggregated. The UMAP was built with default parameters using
phenotyping markers and scale set to TRUE. Samples stimulated with RSQ are visualized for 2 donors on day 1. (A) Equal number of cells are visualized by density plot for
donors p1 and p2. (B, C) Dot plot showing 0-1 normalized, arcsine transformed expression of the cytokines MIP1b (B) and TNFa (C) for p1 and p2.
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human blood surface phenotyping together with functional mark-
ers. To our knowledge this is the first data preprocessing pipeline
that gathers and optimizes all the tools necessary for the process-
ing of MC data. It is especially useful for multibatch studies and can
be also applied to multicenter settings. Since our experimental set-
ting uses fixed and frozen whole blood samples, this pipeline is
useful for retrospective multicenter studies, as discussed in [6].
The example data set and the code are provided, thus each step
can be reproduced. Although the data set provided here is limited
in size, it is big enough to show the advantage and usefulness of
each tool.

The analysis is performed in R environment without a user-
friendly interface (except for part of the gating), thus basic pro-
gramming skills are necessary and knowledge of R environment
is mandatory. Although the workflow is presented as a script, we
gathered all the tools into easy-to-use functions with detailed
descriptions, thus we believe that inexperienced R users will be
able to follow the steps and analyze their own data.

The function parameters are optimized for cellular studies,
especially whole blood immune phenotyping studies by MC, but
different samples, such as bone marrow aspirates, PBMC or
mouse/human splenocytes can also be analyzed. This might
require parameter adjustment that can be performed by the users.
As in our gating strategy we are using the Ir parameter to detect
genomic DNA, only nucleated cells are analyzed. For the batch cor-
rection it is mandatory to use the same reference sample stained
and acquired on each acquisition batch together with the samples.
Otherwise the normalization proposed in this manuscript cannot
be achieved, and precious information contained in MSI should
not be analyzed. This pipeline is specifically dedicated to MC data,
however, some steps can also be used for FC and SC experiments
with the adjustment suggested along this manuscript. Some tools
can be sensitive to the size of the fcs files processed, therefore
we recommend to acquire data in aliquots, especially when the
acquisition is performed in low ionic environments like water, or
split them just before the preprocessing. This pipeline gives some
insight about data exploration, but does not fully cover deep data
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analysis. The final interpretation of the data will depend on the
question raised in every individual project.
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