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ARTICLE INFO ABSTRACT

Keywords: Objective: The clinical diagnosis of corticobasal syndrome (CBS) represents a challenge for physicians and re-
Corticobasal syndrome liable diagnostic imaging biomarkers would support the diagnostic work-up. We aimed to investigate the neural
Imaging biomarkers signatures of CBS using multimodal T1-weighted and resting-state functional magnetic resonance imaging
Magnetic resonance imaging (MRI)

Resting-state functional connectivity
Voxel-based morphometry
Support vector machine

Methods: Nineteen patients with CBS (age 67.0 * 6.0 years; mean * SD) and 19 matched controls
(66.5 = 6.0) were enrolled from the German Frontotemporal Lobar Degeneration Consortium. Changes in
functional connectivity and structure were respectively assessed with eigenvector centrality mapping com-
plemented by seed-based analysis and with voxel-based morphometry. In addition to mass-univariate statistics,
multivariate support vector machine (SVM) classification tested the potential of multimodal MRI to differentiate
patients and controls. External validity of SVM was assessed on independent CBS data from the 4RTNI database.
Results: A decrease in brain interconnectedness was observed in the right central operculum, middle temporal
gyrus and posterior insula, while widespread connectivity increases were found in the anterior cingulum, medial
superior-frontal gyrus and in the bilateral caudate nuclei. Severe and diffuse gray matter volume reduction,
especially in the bilateral insula, putamen and thalamus, characterized CBS. SVM classification revealed that
both connectivity (area under the curve 0.81) and structural abnormalities (0.80) distinguished CBS from
controls, while their combination led to statistically non-significant improvement in discrimination power,
questioning the additional value of functional connectivity over atrophy. SVM analyses based on structural MRI
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generalized moderately well to new data, which was decisively improved when guided by meta-analytically
derived disease-specific regions-of-interest.

Conclusions: Our data-driven results show impairment of functional connectivity and brain structure in CBS and
explore their potential as imaging biomarkers.

1. Introduction

Corticobasal syndrome (CBS) is an atypical parkinsonian syndrome
clinically defined on the basis of motor and non-motor features
(Armstrong et al., 2013; Chahine et al., 2014). Core CBS symptoms, as
described in the very first cases reported (Rebeiz et al., 1968), are
progressive and asymmetrical rigidity and apraxia. These are often as-
sociated with cortical manifestations — such as alien/anarchic limb and
cortical sensory impairment — and with basal ganglia impairment
leading to focal dystonia, tremor and bradykinesia (Armstrong et al.,
2013; Boeve et al., 2003). Additionally, recent studies have moved the
focus from the classical motor presentation of CBS to cognitive and
behavioral symptoms (Burrell et al., 2014). In particular, impairments
in multiple cognitive domains have been described, including executive
functions, memory, language, visuo-spatial abilities and social cogni-
tion (Burrell et al., 2014). Of note, the previously neglected cognitive
deficits can emerge with, or even precede, motor symptoms
(Mathew et al., 2011; Murray et al., 2007; Parmera et al., 2016). This
complex presentation makes the clinical diagnosis of CBS a challenge
for physicians. Indeed, different diagnostic criteria for CBS are used
across centers (Mathew et al., 2011). Post-mortem studies have shown
that not only corticobasal degeneration — a tauopathy —, but also several
other neuropathological substrates can cause the abovementioned CBS
clinical phenotype, thus making the whole picture even more puzzling
(Boeve, 2011). For example, Hoglinger et al. (2017) recently reported
CBS as one of the possible clinical manifestations in autopsy-confirmed
progressive supranuclear palsy (Hoglinger et al., 2017). Furthermore,
neuropathologically confirmed corticobasal degeneration is in turn
linked to different clinical presentations as reported in the diagnostic
criteria (Armstrong et al., 2013).

To increase diagnostic accuracy, recent research focused on
searching for novel CBS biomarkers. For example, structural T1-
weighted magnetic resonance imaging (MRI) has consistently revealed
gray matter decreases in patients with CBS compared to healthy con-
trols, encompassing the basal ganglia, thalamus, insula, superior par-
ietal cortex and frontal lobes, as summarized by Albrecht et al. (2017).
In addition, in vivo molecular imaging studies with positron emission
tomography have identified alterations in glucose metabolism in CBS
(Caminiti et al., 2017; Eckert et al., 2005), as well as evidence of ac-
cumulation of B-amyloid in motor cortex, basal ganglia and corticosp-
inal tract (Smith et al., 2017) beside expected tau protein accumulation
(Kikuchi et al., 2016).

Until now, very few data have been reported on functional con-
nectivity changes in CBS and a thorough, data-driven investigation is
still missing (Bharti et al., 2017; Filippi et al., 2019; Upadhyay et al.,
2017), despite it might provide valuable information (Seeley et al.,
2009). Indeed, CBS, as other neurodegenerative diseases, can be con-
ceptualized as a disconnection syndrome, where the study of functional
brain connectivity represents a promising link between clinical phe-
notypes and underlying neuropathology (Pievani et al., 2014;
Warren et al., 2013).

We believe that the identification of novel multimodal MRI-based
diagnostic imaging biomarkers will lead to a better understanding and
earlier and more accurate diagnosis of CBS. Therefore, we studied CBS
patients and healthy controls combining resting-state functional MRI
(rs-fMRI) and structural T1-weighted MRI (T1-MRI). To investigate
connectivity, we applied data-driven whole-brain analysis -
Eigenvector connectivity mapping (ECM) — and seed-based analysis.
Additionally, we implemented an established multivariate machine

learning technique, support vector machine (SVM) classification, to
differentiate patients from controls based only on multimodal neuroi-
maging data (Ballarini et al., 2019; Bisenius et al., 2017; Dukart et al.,
2011; Meyer et al., 2017; Mueller et al., 2017; Woo et al., 2017). We
hypothesized that CBS, compared to controls, is characterized by
widespread cortical atrophy and reductions in brain functional con-
nectivity that can accurately distinguish CBS patients from controls at
the single-subject level.

2. Materials and methods
2.1. Participants

Nineteen CBS patients (age 67.05 = 6.03 years, mean *+ SD; 12 fe-
male) and 19 healthy controls (age 66.47 + 5.99 years; 11 female) were
selected (Table 1). CBS is a rare disorder, the 19 patients were acquired
over a timespan of approximately 5 years in several centers across
Germany. Each patient was carefully matched with a control subject
acquired on the same MRI scanner model, matching also for age and
gender. All patients and seven controls were examined at different
centers in the context of the German Frontotemporal Lobar Degenera-
tion (FTLD) Consortium (http://www.ftld.de/). Six controls were re-
cruited at the Max-Planck Institute for Human Cognitive and Brain
Sciences in Leipzig, Germany, and other six at the Department of
Neurology, Charles University of Prague, Czech Republic. Further de-
tails on MRI acquisition parameters are displayed in Table e-1. As ex-
pected from the sample matching procedure, no significant differences
in age (t(36) = 0.303, p = 0.7639) or gender distributions ()(2 = 0.11,
p = 0.74) were found between CBS and controls.

Cerebrospinal fluid (CSF) measures for amyloid beta 1-42, total-tau
and phospho-tau were available for 14 out of 19 CBS patients. Mean
and dispersion values are reported in supplementary Table e-5. Of note,
only one patient showed a CSF pattern suggestive of Alzheimer's disease
(McKhann et al., 2011), i.e. one marker for amyloid pathology (low
amyloid-beta 1-42) and one for neuronal injury (elevated tau). Another
subject presented low amyloid-beta 1-42, but normal tau levels. We
decided to keep all patients in our study because (1) according to the
diagnostic criteria for CBD (Armstrong et al., 2013) there is no specific
pattern of these CSF markers related to the disease; (2) according to
Armstrong et al. (2013), excluding amyloid positive individual might
lead to miss about 13% of patients who really have the disease; (3) none
of the patients clinically presented features of Alzheimer's dementia.

All CBS patients were also part of a recent study from our group
based on structural MRI (Albrecht et al., 2019). The study was

Table 1
Demographic and clinical characteristics of CBS patients and controls.
CBS Controls
N 19 19
Age (years) 67.05 + 6.03 66.47 + 5.99
Gender (male/female) 7/12 8/11
Disease duration (years) 3.16 + 2.57 -
FTLD-CDR (0-24) 6.41 = 4.09 -
MMSE (30-0) 23.69 + 5.00 -

Note: Mean = SD are shown. Best and worst possible scores for MMSE and FTLD-
CDR are reported in brackets. Abbreviations: CBS corticobasal syndrome; FTLD-CDR
frontotemporal lobar degeneration-clinical dementia rating scale; MMSE mini-mental
state examination.
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authorized by the local ethics committees of the participating centers,
in line with the Declaration of Helsinki. Participants gave written in-
formed consent.

2.2. MRI protocols and preprocessing

Rs-fMRI (300 vol, TR = 2000 ms; TE = 30 ms) and structural T1-
weighted magnetization-prepared rapid gradient-echo (MPRAGE) MRI
were acquired on 3 T devices. Table e-1 reports additional information
on MRI scanner types that were matched between patients and controls
to reduce the variability due to the multicentric nature of the study.
Note that matching for individual acquisition parameters was not al-
ways possible for all pairs of patients and controls. MRI data were
processed using SPM12 (rev.12.6685), FSL (v. 5.0.9) (Jenkinson et al.,
2012) and Matlab™ 9.0 (R2016 a).

Rs-fMRI images underwent SPM preprocessing with the following
steps: realignment with rigid co-registration of functional volumes to
the first one, slice-time correction using as reference the middle slice,
and spatial normalization to the Montreal Neurological Institute (MNTI)
space performed via unified segmentation approach that includes bias
field correction and segmentation (Ashburner and Friston, 2005). Fur-
ther, images were smoothed with a Gaussian kernel (full-width-half-
maximum 8 mm) to increase signal-to-noise ratio. Nuisance regression
was performed including six motion parameters from the SPM rea-
lignment, as well as mean intensity signals extracted from the anato-
mical segmentation of white matter and cerebrospinal fluid based on
each subject's T1-MRI. Finally, high-pass filtering (1/80 Hz) was ap-
plied to remove linear baseline drifts and low-frequency noise. Fra-
mewise-displacement (FD) (Power et al., 2012) was computed to assess
head motion. For each participant, we computed mean FD, maximum
FD and maximum FD after disregarding the largest 5% of the FD. We
then compared each measure between patients and controls using two-
independent sample t-tests and we did not find significant differences
(Table e-2). To test the efficacy of the motion correction procedures, FD
was re-computed after nuisance regression. All FD measures drastically
improved in patients and controls (Figs. e-1 and e-2).

As for T1-MRI, a voxel-based morphometry (VBM) analysis
(Ashburner and Friston, 2000) was performed with the Computational
Anatomy Toolbox (CAT-12). Images were spatially normalized and
segmented into gray matter, white matter and cerebrospinal fluid.
Modulation for the amount of linear and non-linear deformation was
performed, followed by smoothing with a Gaussian kernel (full-width-
half-maximum 8 mm).

2.3. MRI statistical analysis

2.3.1. MRI group comparisons

ECM: ECM is a graph-theory method to investigate inter-
connectedness in complex networks. This concept is for example im-
plemented by Google in the PageRank algorithm (Brin and Page, 1998)
to rank websites in the search engine output. Lohmann et al. (2010)
applied this approach to study brain functional interconnectedness. In
brief, a brain region (node) is more important when it has many con-
nections with other prominent nodes that are in turn linked to other
heavily connected nodes. Accordingly, ECM is a good measure for the
identification of brain functional hubs. We performed whole-brain
voxel-wise analysis including a total of 30,110 voxels. The mask for the
ECM analysis was created combining the gray matter tissue probability
map from SPM (thresholded at 0.2 and smoothed with 8 mm to obtain
an inclusive mask) with the functional data from patients and controls
to exclude voxels containing missing values. The LIPSIA software was
used for computing ECM (Lohmann et al., 2010). Blood-oxygen-level
dependent (BOLD) time-courses between voxels can show both positive
and, to a minor extent, negative correlations. In our study, we dis-
regarded the negative correlations to satisfy the requirements of the
Perron-Frobenius theorem, which states that a unique largest
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eigenvalue can be obtained only for a symmetric and positive similarity
matrix (Perron, 1907). Indeed, methods to deal with negative correla-
tions are inconsistent and their interpretation is complex
(Goelman et al., 2014; Murphy et al., 2009). As a result of this analysis,
a 3 D map was obtained for each subject, containing voxel-wise EC
values.

CBS patients and controls were compared in a two-independent
sample t-test in SPM. The impact of nuisance covariates on the group
comparison (i.e. age, gender and scanner type) was tested via F-tests.
Since no significant influence was found, we chose the simplest model
excluding nuisance variables. A cluster-level correction for multiple
comparisons was applied to identify significant voxels at p < 0.05 fa-
mily-wise error (FWE) (cluster-forming threshold p < 0.005, k = 50).
In order to validate the robustness of the results, the t-tests were run
using a leave-one-pair out approach, i.e. running the statistical models
19 times while removing one pair of matched patient and control at a
time. Finding consistent results across this procedure provides a further
validation against possible confounds such as scanner/center variability
and head motion. Additionally, in order to overcome the potential
pitfalls of cluster-based thresholding (Eklund et al., 2016), we re-ana-
lyzed the comparison of patients and controls using the threshold free
cluster enhancement (TFCE) toolbox in SPM with 5000 permutations,
extent E = 0.6 and statistical significance threshold at p < 0.05 false
discovery rate (FDR).

Finally, an additional ECM analysis was performed using the so-
called neg approach, i.e. disregarding all positive correlations between
BOLD time-courses and computing ECM based on the absolute values of
negative correlations. Group comparisons between patients and con-
trols were run as described above also based on these additional ECM
maps.

Seed-based analysis: ECM reveals changes in general brain con-
nectivity (e.g. hubs), but do not highlight selective connectivity changes
between specific brain regions. To further explore selective connectivity
changes related to the ECM comparison, we performed seed-based
analysis with an in-house script running in Matlab. The seeds were
placed in the peaks of the significant clusters for the group comparisons
CBS>Controls and CBS< Controls based on ECM results. MNI co-
ordinates for the nine seeds are reported in Table 2. BOLD time-courses
at the selected coordinates correlated with the time-courses of all other
voxels in the brain. This procedure generated, for each subject, a map
with voxel-wise correlation coefficients with the seeds. We then tested
between-groups differences in a two-sample t-test in SPM (CBS vs.
Controls, p < 0.05 FWE at cluster level, voxel-wise cluster-forming
threshold p < 0.005, k = 50). Specifically, increases in connectivity in
the CBS groups were investigated from the CBS> Controls seeds and
decreases of connectivity from the CBS < Controls ones. To merge to-
gether results from different seeds, the output SPM beta-images, i.e.

Table 2
Results of the eigenvector centrality group comparison.
MNIx y z / Seeds T Extent PrwE-corr
CBS < Controls
Cluster I 54 —-19 -10 5.02 230 0.013
545 -1 4.28
42 -1317 4.12
CBS > Controls
Cluster I 6 38 41 4.44 439 0.0003
—1523 47 4.40
—-18 20 14 4.15
Cluster II 18 8 23 4.20 201 0.024
18 53 23 4.16
27 2311 4.01

Note: Significant clusters surviving the cluster-level FWE correction for multiple
comparisons in the ECM group comparison analysis are reported. The MNI co-
ordinates were also used as seeds in the seed-based connectivity analysis.
Abbreviations: CBS corticobasal syndrome; MNI Montreal Neurological Institute;
FWE family-wise error.
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effect size maps, were entered in a one-sample t-test to identify the
regions where connectivity changes are consistent across the seeds. This
procedure was run separately for increases and decreases in con-
nectivity.

T1-MRI: Gray matter volume images were compared between pa-
tients and controls in a two-independent samples t-test, controlling for
total intracranial volume, age, gender and scanner type as nuisance
covariates. Results were deemed significant using a voxel-wise
threshold p < 0.005 (k = 50) and cluster level correction for multiple
comparisons p < 0.05 FWE. As for resting-state data, the comparison
between CBS and controls was additionally performed using the TFCE
toolbox (5000 permutations, E = 0.6)

2.3.2. Influence of local gray matter volume on connectivity differences
Leveraging on multimodal MRI data, we performed an additional
analysis in order to disentangle the effect of atrophy on eigenvector
centrality differences between patients and controls. To this aim, we
used the toolbox Biological Parametric Mapping (BPM) from
(Casanova et al., 2007), running in SPM8 and Matlab 7.14. Briefly, the
comparison between ECM maps between patients and controls was
performed entering gray matter volume images for each subject as
covariate in the analysis. In order to bring images from both modalities
in the same resolution, voxels in ECM maps were up-scaled to 1.5 mm?®,
Results were deemed significant using a voxel-wise threshold p < 0.005
and cluster level correction for multiple comparisons p < 0.05 FWE.

2.3.3. Correlation analysis

For both ECM and VBM data, we analyzed whole-brain correlations
between EC values or gray matter volume and standardized measures
for disease severity, namely frontotemporal lobar degeneration-clinical
dementia rating scale (FTLD-CDR) and mini-mental-state examination
(MMSE). Data for MMSE and FTLD-CDR were missing, respectively, for
three and two patients. In brief, ECM values and gray matter volume
were separately correlated with clinical variables in the CBS group,
controlling for differences in age, gender, scanner type and, only for
VBM data, total intracranial volume. Significance level was set at
p < 0.05 FWE corrected at the cluster level, with cluster forming

Eigenvector centrality
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threshold p < 0.005 (k = 50). When no significant findings were de-
tected at the whole-brain level, correlation analyses were performed
correlating the clinical variables with EC or gray matter volume values
extracted from the peak MNI coordinates of the significant clusters in
the group comparisons (i.e. ECM or VBM group comparisons).
Correlations were assessed by two-tailed Spearman's rank correlation
coefficient (o = 0.05) using FDR correction to account for multiple
comparisons.

2.3.4. MRI-based support vector machine classification

In order to ascertain the disease state from MRI data at the in-
dividual level, multimodal SVM classification was performed with
PRoNTo v.2.1 (Schrouff et al., 2013). This approach is based on mul-
tivariate pattern analysis and it is inherently different from univariate
statistics. We investigated the predictive value for separating patients
and controls of rs-fMRI (ECM model) and T1-MRI (gray matter volume
maps — VBM model) separately and combined (Combined model). To
have the same number of features in structural and functional maps, as
required by the PRoNTo v.2.1 software, rs-fMRI data were upscaled to a
voxel resolution of 1.5 mm?>. Training was performed with a leave-one-
out cross-validation. The combination of the two modalities was
achieved with “simple Multiple-Kernel Learning” (sMKL) algorithm
(Rakotomamonjy et al., 2008). This technique computes a single kernel
for each modality and then finds their optimal combination, defining
their relative importance while maximizing the margin for the classi-
fication problem. The significance of the classification accuracy was
tested with a 10,000 permutation test. In order to compare if one model
would outperform the others, we compared the areas under the curves
(AUCQ) of their respective ROC curves using the non-parametric DeLong
test (DeLong et al., 1988).

To further test the robustness of the classifier with changes in the
cross-validation scheme, the models were re-run using 5-fold cross-va-
lidation on subject per group, instead of the leave-one-out approach.
The effect of nuisance covariates was further tested. All the three
models (ECM, VBM and Combined) were run controlling for either age
and gender, or scanner or both, thus creating a total of 9 additional
models. Both age and gender were coded using the one-hot encoding

eed-based analysis

Fig. 1. Temporoparietal and insular connectivity decreases in CBS compared to controls. On the left, decreases in eigenvector centrality in patients with corticobasal
syndrome compared to controls. On the right, results of the seed-based analysis showing selective connectivity decreases in patients compared to controls. MNI
coordinates for all the individual seeds from the CBS < Controls group comparison are reported on the left side (x,y,z from top to bottom). The upper row shows the
most consistent regions emerging from the combination of SPM beta-weights maps from different seeds. Results are shown at p<0.05 FWE corrected at cluster level.
Axial images are displayed in radiological convention: left brain on the right of image. Abbreviations: CBS corticobasal syndrome. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)



T. Ballarini, et al.

strategy to ensure that all values in the covariates are assigned the same
importance.

Finally, the external validity of the VBM model was tested on an
independent dataset of CBS patients from the 4-Repeat Tauopathy
Neuroimaging Initiative (4RTNI, http://4rtni-ftldni.ini.usc.edu). T1-
MPRAGE MRI data acquired in different centers at 3 T devices were
included for 39 patients (age: 66.2 * 6.2, mean + SD, 20 female)
diagnosed as probable CBS-CBD subtype (Armstrong et al., 2013). De-
tails on MRI acquisition parameters are described by Dutt et al. (2016).
In brief, T1-MRI data underwent voxel-based morphometry in CAT12 as
described for data from the FTLD consortium. The resulting gray matter
volume images were than iteratively used as test data for the SVM based
on T1-MRI only. For each new subject in the independent test set, we
obtained a function value from the SVM and the corresponding class
attribution (i.e. CBS patient or control). The analysis was performed
either using whole-brain images or restricting feature selection based
on meta-analytically derived disease-specific regions of interest (ROIs).
We hypothesize that using a priori informed ROIs from meta-analyses
might improve generalizability of the classification as already shown
for several other neurodegenerative diseases (Bisenius et al., 2017;
Dukart et al., 2011; Meyer et al., 2017; Mueller et al., 2017). ROIs were
created based on MNI coordinates from (Albrecht et al., 2017). For each
MNI coordinate, the corresponding and the contralateral regions of the

Eigenvector centrality
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AAL atlas were selected to account for potential differences in later-
alization between patients. The mask is graphically sown in Fig. 6 and a
list of the AAL regions is reported in supplementary Table e-6. External
validation was performed only for T1-MRI data for two reasons: 1) rs-
fMRI data from 4RTNI cohort present acquisition parameters very dif-
ferent from those applied in the study, which would lead to systematic
differences in the estimated connectivity measures. 2) in our FTLD
cohort, rs-fMRI did not significantly improve predictive power in the
classification, as shown by statistical comparison with the DeLong test
(see Results).

2.4. Data availability

Clinical and MRI data are available on reasonable request to the
corresponding author. To protect anonymity, no sensitive information
will be shared. MRI data will be available as preprocessed gray matter
volume images or eigenvector centrality/correlation maps without
personal meta-data. Data will be shared in agreement with the
European General Data Protection Regulation.

eed-based analysis

Fig. 2. Frontal and caudate connectivity increases in CBS compared to controls. On the left, frontal and caudate increases in eigenvector centrality in patients with
corticobasal syndrome compared to controls. On the right, results of the seed-based analysis showing selective connectivity increases in patients compared to
controls. MNI coordinates for all the individual seeds from the CBS > Controls group comparison are reported (x,y,z from top to bottom). The upper row shows the
most consistent regions emerging from the combination of SPM beta-weights maps from different seeds. Results are shown at p<0.05 FWE corrected at cluster level,
except the light blue clusters that did not survive the correction for multiple comparisons. Axial images are displayed in radiological convention: left brain on the
right of image. Abbreviations: CBS corticobasal syndrome; MNI Montreal Neurological Institute. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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3. Results
3.1. Group comparisons

ECM: As expected significant decreases in ECM were found in pa-
tients compared to controls in the right middle temporal gyrus, central
operculum, planum polare and posterior insula (Fig. 1, Table 2). A si-
milar effect was identified also in the left central operculum and
transverse temporal gyrus but did not survive the correction for mul-
tiple comparisons. Remarkably, contrary to expectation, CBS patients
compared to controls showed increased interconnectedness in frontal
brain regions, namely in the medial superior frontal gyrus, anterior
cingulate cortex, middle frontal gyri, and in the bilateral caudate nuclei
(Fig. 2, Table 2). The leave-one-pair-out approach confirmed the results
in all comparisons (19/19) (Fig. e-3). Additionally, re-analysis with the
TFCE approach revealed ECM changes in CBS patients compared to
controls very similar to those observed with cluster-based thresholding
(see for details supplementary Fig. e-4).

Group comparisons of ECM maps based on negative BOLD correla-
tions showed decreased ECM in CBS compared to controls in the bi-
lateral sensorimotor cortex and increases in the middle cingulate gyrus
(supplementary Fig. e-6).

Seed-based connectivity: For the seeds from the CBS < Controls ECM
analysis, the CBS group showed markedly reduced functional

CBS<Controls
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connectivity from all the three seeds. In particular, the connectivity
reduction involved the right insular and temporal cortex surrounding
the seeds, their contralateral homologues, as well as cuneus, precuneus,
middle cingulate cortex, and bilateral superior parietal cortex (Fig. 1).

Four of the six seeds from the CBS>Controls ECM comparison
showed significant increases in connectivity in the seed-based analysis.
The two other seeds showed similar results that did not survive the FWE
correction for multiple comparisons. Altogether, CBS patients compared
to controls showed increased connectivity within a fronto-caudate
network involving extensively the medial frontal and anterior cingulate
cortex and the bilateral caudate nuclei, as shown with one-sample t-test
on the SPM beta-images (Fig. 2).

VBM analysis: The analysis of T1-MRI data revealed pervasive lower
gray matter volume in CBS patients as compared to controls, in parti-
cular in the bilateral insulae, putamen, thalamus, in the entire cingulate
cortex and widespread in cortical regions (Fig. 3). Re-analysis with the
TFCE toolbox showed widespread gray matter volume loss in CBS
compared to controls with a topographical distribution closely resem-
bling the one described for the cluster-based method.

3.2. Influence of local gray matter volume on connectivity differences

The comparison of ECM maps between patients and controls, con-
trolling for local differences in gray matter volume, revealed a pattern

FTLD-CDR

I I
-0.05 0

GMV values

T T
0.05

0
GMV values

Fig. 3. Gray matter volume reductions in CBS compared to controls and correlation with disease severity. Top left quadrant: voxel-based morphometry results
showing in red significant areas of structural impairment in CBS patients compared to controls. In addition, the figure displays whole-brain correlations between gray
matter volume in the CBS group and standardized measures for disease severity, i.e. FTLD-CDR (red) or MMSE (yellow). The scatterplots display the correlation
between test measures and gray matter volume values in the peaks of the significant clusters. The more severe the disease, the less gray matter volume is. Images are
displayed in radiological convention: left brain on the right of the image. All results are shown at p<0.05 FWE corrected at cluster level. Abbreviations: CBS
corticobasal syndrome;FTLD-CDR frontotemporal lobar degeneration — clinical dementia rating scale; GMV gray matter volume; MMSE mini-mental state ex-
amination. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of alterations highly comparable to the results observed in the original
analysis for the CBS > Controls comparison. As for the decrease in EC in
CBS < Controls, we observed a trend towards significance (p = 0.076)
in the same cluster described in the original analysis that did not sur-
vive correction for multiple comparisons. A graphical representation is
presented in supplementary Fig. e-5.

3.3. Correlation analysis

As illustrated in Fig. 3, MMSE and FTLD-CDR showed, respectively,
positive and negative correlations in whole-brain VBM data, indicating
lower test performance with more severe structural impairment. For
MMSE, the correlation was localized in the bilateral exterior cere-
bellum, temporal poles, middle/superior temporal gyri, and supra-
marginal gyri. For FTLD-CDR the correlation analysis yielded a large
cluster ranging from the right temporal pole to the middle/superior
temporal and supramarginal gyri. Of note, results for MMSE and FTLD-
CDR were overlapping in two clusters, located in the right temporal
pole and in the superior temporal/supramarginal gyri (Fig. 3). No
whole-brain correlation between clinical measures and ECM maps
survived correction for multiple comparisons.

In addition, EC values in clusters from the ECM CBS > controls group
comparisons positively correlated with FTLD-CDR, but not with MMSE.
Note here that the FTLD-CDR is generally more sensitive for non-
Alzheimer's neurodegenerative diseases, whereas the MMSE was de-
veloped for Alzheimer's dementia. Namely, a significant positive cor-
relation was identified in the left caudate nucleus (rho = 0.641,
p = 0.027 — FDR corrected — at MNI —18,20,14, which indicates higher
caudate interconnectedness associated with a more severe clinical
presentation. Moreover, FTLD-CDR scores negatively correlated with
EC values in the cluster from the ECM CBS < Controls group comparison
(tho = —0.634, p = 0.027 - FDR corrected — at MNI 54,5, — 1), sug-
gesting a more severe clinical presentation with lower right temporal/
insular interconnectedness (Fig. 4).

3.4. Support vector machine classification

SVM analysis achieved good classification for both VBM and ECM
models (Fig. 5). Fifteen CBS patients (p = 0.006) and 15 controls
(p = 0.007) were correctly classified based only on structural data, thus
with an overall balanced accuracy (BA) of 78.95% (p = 0.002, area
under the curve, AUC = 0.80). ECM maps distinguished 14 CBS pa-
tients (p = 0.026) and 15 controls (p = 0.011), reaching an overall BA
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of 76.32% (p = 0.004, AUC = 0.81). Combining both modalities via
MKL, the overall performance of the classifier increased to 84.21%
(p = 0.0001, AUC = 0.87), correctly recognizing 16 patients
(p = 0.002) and 16 controls (p = 0.001). However, the nonparametric
comparison of AUCs using the DeLong test did not reveal statistically
significant differences between the three models. In particular, the
combined model did not outperform neither VBM alone (p = 0.24), nor
the ECM model (p = 0.34). Complete output of the DeLong test is
shown in supplementary Table e-5. Changes in the cross-validation had
the following effects on model performance: Moderate decreased per-
formance for the ECM model (AUC = 0.79, BA = 71.05%), increased
performance for the VBM model (AUC = 0.84, BA = 84.21%) and no
effect on the combined model (AUC = 0.88, BA = 84.21%). Hence, the
same pattern was detected: Lowest accuracy in ECM maps, better in
VBM maps, best accuracy in combined approach. The effects of cov-
ariates are descried in details in the supplementary Table e-3.

Finally, the presented VBM model showed moderate general-
izability to independent data, correctly classifying 67% of new CBS
whole-brain images. Notably, when using meta-analytically derived
disease-specific ROIs, generalizability was higher, with 79% of new CBS
patients correctly identified. Results of the external validation are
shown in Fig. 6.

4. Discussion

In the present study, we provide new insights into brain functional
and structural changes that characterize CBS. In sum, we show that CBS
is associated with functional connectivity alterations, including both
decreases in right temporo-parietal and insular regions and, re-
markably, increases in a frontal network encompassing medial frontal
and anterior cingulate cortex, and the bilateral caudate nuclei.
Moreover, we identified brain structural abnormalities in the insula,
putamen, thalamus and widespread cortical regions. Both T1-MRI and
rs-fMRI independently yielded a good discrimination power to distin-
guish CBS patients from controls, and slightly more when combined in a
single model (over 80% balanced accuracy). However, differences be-
tween the three models were not statistically significant, hence un-
dermining the additional benefit of including rs-fMRI data for diag-
nostic purposes. T1-MRI data alone generalized moderately well to
independent data from an external cohort. Of note, guiding feature
selection with meta-analytically defined disease-specific ROIs improved
generalizability. This finding is in agreement with other studies in-
vestigating several other neurodegenerative diseases and showing that
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Fig. 4. Correlations between eigenvector centrality changes in CBS and disease severity. Positive and negative Spearman's correlations between FTLD-CDR, as proxy
for disease severity, and eigenvector centrality in the significant clusters from the ECM CBS> controls comparison. The more severe the disease, the lower the
interconnectedness in the right temporal/insular cortex, and the higher the interconnectedness in left caudate nucleus, suggesting proportional connectivity changes
with disease severity and, potentially, brain compensation. MNI coordinates for the clusters are reported on the side of each scatterplot. Dotted lines represent 95%
confidence intervals. Abbreviations: CBS corticobasal syndrome; ECM eigenvector centrality mapping; FTLD-CDR frontotemporal lobar degeneration — clinical

dementia rating scale.
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Fig. 5. Results of support vector machine classification based on MRI imaging markers. Receiver operating characteristic (ROC) curves for differentiating patients
with corticobasal syndrome and healthy controls based on MRI data. The areas under the curve (AUC) for voxel-based morphometry, eigenvector centrality mapping
and their combination are, respectively, 0.80, 0.81 and 0.87. Abbreviations: ECM eigenvector centrality mapping; rs-fMRI resting state-functional magnetic re-
sonance imaging; SVM support vector machine; VBM voxel-based morphometry. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

ROIs defined in independent cohorts by systematic and quantitative
meta-analyses can improve classification accuracy for diagnosis and
differential diagnosis in imaging data (Bisenius et al., 2017;
Dukart et al.,, 2011; Meyer et al., 2017; Mueller et al., 2017). Con-
cerning rs-fMRI, our multicentric study included, to our knowledge, the
largest patient cohort so far. Moreover, the application of data-driven
ECM analysis gives an unbiased perspective on brain functional inter-
connectedness.

We analyzed whole-brain ECM changes in CBS to avoid any a priori
assumptions. ECM analysis revealed decreased interconnectedness in
right temporo-parietal and posterior insular cortex, as well as increases
in frontal cortex and caudate nuclei in CBS. Seed-based analysis showed
that decreases in ECM in CBS compared to controls were related to
diffuse functional connectivity decline with temporo-parietal associa-
tive cortices, middle cingulate cortex and precuneus. In addition, ECM
increases were associated with functional connectivity increases in a
fronto-caudate network. Consistent with our results, Bharti et al. (2017)
found both decreases and increases in resting-state functional con-
nectivity in CBS compared to controls, using independent component
analysis. Specifically, the CBS group showed increased within-network
connectivity in regions of the default mode network, in the cerebellum,

in the sensorimotor, executive control and insula networks. Between-
network connectivity was lower in CBS compared to controls between
the lateral visual and auditory networks and higher between salience
and executive control networks. A similar investigation from the same
research group (Upadhyay et al., 2017) applied seed-based analysis to
rs-fMRI data from CBS and found, in comparison to controls, decreases
and increases in functional connectivity, respectively when placing the
seeds in the thalamus or in the dentate nucleus.

Increases in functional connectivity are a common finding not only
in CBS, but also in other neurodegenerative and neuropsychiatric dis-
orders (Greicius, 2008). The correlation analysis revealed an associa-
tion between more severe disease presentation (i.e. higher FTLD-CDR
scores) and lower eigenvector centrality in the right temporal cortex, as
well as increased interconnectedness in left caudate nucleus. This
finding suggests a progressive connectivity alteration in CBS and, po-
tentially, a compensatory meaning of the connectivity increases. This
assumption might be further supported by the fact that increased con-
nectivity in CBS correlated with FTLD-CDR scores in contrast to
atrophy. Decreases in CBS’ brain connectivity instead coincided re-
gionally with atrophy regarding correlation with the FTLD-CDR as
measure of disease severity. However, additional explanations are that
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Fig. 6. External validation of SVM model based on T1-MRI. Histogram plots display the function value distributions derived from the SVM based on T1-MRI data.
Dashed lines represent function values for controls (blue) and patients (red) based on whole-brain SVM analysis. The continuous red line represents the distribution of
function values for the new independent cohort of 39 CBS patients. The use of meta-analytically derived regions of interests leads to improved generalization of the
SVM classifier to new data. Color bars show the proportion of correctly classified CBS patients from the new cohort for both whole brain and meta-analysis guided
models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

increases in connectivity might be a sign of pathological changes within
these networks or the consequence of distant pathological alterations
(so called diaschisis effect). Our findings are in agreement with other
studies in Alzheimer's disease and behavioral variant frontotemporal
dementia, where pathological alterations in one network (e.g. the de-
fault mode) might lead to aberrant reorganization of anti-correlated
networks (e.g. the anterior salience network) (Zhou et al., 2010).
Hillary et al. (2015), based on the revision of 126 functional con-
nectivity studies, proposed that hyperconnectivity is an essential and
frequent response to neurological diseases. Specifically, they propose
that increased connectivity has most likely a multifactorial origin, in-
cluding the role of the impaired brain regions in large-scale networks
and the accessibility of local and global connections (Hillary et al.,
2015).

As for T1-MRI data, our results are consistent with previous studies
showing severe and widespread cortical atrophy in CBS (Albrecht et al.,
2019), as recently quantitatively summarized in a meta-analysis
(Albrecht et al., 2017). Importantly, structural brain changes sig-
nificantly correlated with both MMSE and FTLD-CDR measures. As
expected, more severe gray matter volume reduction, i.e. atrophy, was
associated with worse disease severity. Results for the two measures
overlapped in two clusters located in the right temporal gyrus and in
the superior temporal/supramarginal gyri, indicating these brain re-
gions as hotspots of the disease, although one has to take into account
the heterogeneity of both MMSE and FTLD-CDR measures (assessing
cognitive, behavioral and functional symptoms).

The interrelationship between structural and functional brain
changes is a general question, when exploring functional networks in
neurodegeneration and here we addressed it using Biological
Parametric Mapping (Casanova et al., 2007). Of note, our results show
that local atrophy, although severe and widespread, does not have a
significant impact on the described eigenvector centrality alterations in
CBS.

By implementing a SVM approach to our data, we were able to show
the potential of brain structural and functional alterations in distin-
guishing CBS patients from controls at the single-subject level. Both

models alone performed moderately well, while their combination led
to a slight but statistically non-significant improvement in discrimina-
tion power. Moreover, despite resting-state networks are consistent
across subjects (Damoiseaux et al., 2006) and are known to be altered in
several diseases (Greicius, 2008), a recent meta-analysis showed a
modest test-retest reliability of functional connectivity measures
(Noble et al., 2019). Therefore, also considering the technical limita-
tions in smaller clinical settings, we suggest that T1-MRI might be a
better candidate for future clinical applications. Along this line, pre-
vious studies applied SVM for the automatic classification of neurode-
generative diseases using MRI structural data from different centers and
MRI devices showing reasonably robust performances (Kléppel et al.,
2008; Koikkalainen et al., 2016). Further supporting this view, we re-
port a fair generalizability of SVM results on a completely independent
dataset of CBS patients, especially when feature selection was a priori
informed by ROIs defined from meta-analyses of previous VBM studies
in CBS (Albrecht et al., 2017). However, the usefulness of structural
changes alone as specific CBS imaging markers might be hampered by
the fact that partially similar structural alterations have been found in
other neurodegenerative diseases, such as behavioral variant fronto-
temporal dementia and Alzheimer's disease (Albrecht et al., 2017).

Combining T1-MRI data with meta-analytically derived disease-
specific neural networks might generally improve diagnosis and dif-
ferential diagnosis as previously shown also for other several neuro-
degenerative diseases beside CBS (Bisenius et al., 2017; Dukart et al.,
2011; Meyer et al., 2017; Mueller et al., 2017). We believe that com-
bining T1-MRI data with additional biomarkers (e.g. from cerebrospinal
fluid) and clinical information would improve the differential diag-
nosis. Moreover, we propose that the training of similar machine
learning models in larger CBS patient cohorts would lead to better
classification accuracy and might eventually lead to the inclusion of
new supportive imaging markers in the CBS diagnostic criteria, as it has
already happened for other neurodegenerative diseases (Dubois et al.,
2010; Gorno-Tempini et al., 2011).
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4.1. Limitations

With this study we aimed at identifying diagnostic imaging bio-
markers for clinically defined CBS. Consequently, we did not distin-
guish between different underlying neuropathological profiles of CBS,
although known to potentially influence atrophy patterns
(Whitwell et al., 2010) and clinical presentation (Lee et al., 2011). Here
we reported CSF data for 14 out of 19 CBS patients, showing that only
in one case values compatible with Alzheimer’ disease were found.
However, at the moment being, no specific CSF biomarkers have been
included in the diagnostic criteria for CBS (Armstrong et al., 2013), thus
limiting the usefulness of this information. Additional studies with
larger patient cohorts and autopsy-proven cases will be crucial to fur-
ther disentangle this aspect. As abovementioned, differential diagnosis
based on MRI biomarkers is another topic in need for further in-
vestigation. This still represents a tough challenge in the clinical work-
up, for example when differentiating CBS from other parkinsonian or
FTLD syndromes, especially in early disease stages. The addition of
disease control groups will be needed to test specificity of our finding
for CBS. Finally, in this study we implemented ECM as measure of brain
functional network organization at rest. However, different methodo-
logical approaches might provide further insight into functional net-
work changes in CBS and potentially lead to a different performance as
diagnostic marker.

4.2. Conclusion

In conclusion, we described brain structural and novel data-driven
functional connectivity abnormalities associated with CBS. In addition
to the previously described structural brain changes, we contribute
evidence for intriguing characteristic functional connectivity altera-
tions in CBS. We further compared measures of connectivity and
atrophy as potential supportive MRI-based imaging markers for differ-
entiating CBS patients and controls. Overall, our results suggest that
structural MRI is a promising candidate imaging marker for CBS and
does not benefit from inclusion of additional rs-fMRI information.

Funding

This work was supported by the German Federal Ministry of
Education and Research (BMBF) by a grant given to the German FTLD
Consortium (grant number FKZ O1GI1007 A), by the Parkinson's
Disease Foundation (grant number PDF-IRG-1307), by the Michael Fox
Foundation (grant number 11362), by the German Research
Foundation (DFG, SCHR 774/5-1), by the Czech Science Foundation
(GACR 16-13323 S), and by the Charles University, Czech Republic
(project: Progres Q27/LF1). Additionally, data collection and sharing
for 4RTNI data was funded by the 4-Repeat Tauopathy Neuroimaging
Initiative (4RTNI) (National Institutes of Health Grant RO1 AG038791)
and through generous contributions from the Tau Research Consortium.
The study is coordinated through the University of California, San
Francisco, Memory and Aging Center. 4RTNI data are disseminated by
the Laboratory for Neuro Imaging at the University of Southern
California.

CRediT authorship contribution statement

Tommaso Ballarini: Conceptualization, Methodology, Formal
analysis, Writing - original draft, Visualization. Franziska Albrecht:
Writing - review & editing. Karsten Mueller: Conceptualization,
Methodology, Writing - review & editing. Robert Jech: Investigation,
Writing - review & editing. Janine Diehl-Schmid: Investigation,
Writing - review & editing. Klaus Fliessbach: Writing - review &
editing. Jan Kassubek: Writing - review & editing. Martin Lauer:
Writing - review & editing. Klaus Fassbender: Writing - review &
editing. Anja Schneider: Writing - review & editing. Matthis Synofzik:

10

NeuroImage: Clinical 25 (2020) 102112

Writing - review & editing. Jens Wiltfang: Writing - review & editing.
Markus Otto: Writing - review & editing, Supervision, Funding acqui-
sition. Matthias L Schroeter: Conceptualization, Investigation,
Methodology, Writing - review & editing, Supervision, Funding acqui-
sition.

Declaration of Competing Interest
The authors report no competing interests.
Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.nicl.2019.102112.

References

Albrecht, F., Bisenius, S., Schaack, R.M., Neumann, J., Schroeter, M.L., 2017.
Disentangling the neural correlates of corticobasal syndrome and corticobasal de-
generation with systematic and quantitative ALE meta-analyses. NPJ Parkinson's Dis.
3, 12.

Albrecht, F., Mueller, K., Ballarini, T., Lampe, L., Diehl-Schmid, J., Fassbender, K.,
Fliessbach, K., Jahn, H., Jech, R., Kassubek, J., 2019. Unraveling corticobasal syn-
drome and alien limb syndrome with structural brain imaging. Cortex 117, 33-40.

Armstrong, M.J., Litvan, 1., Lang, A.E., Bak, T.H., Bhatia, K.P., Borroni, B., Boxer, A.L.,
Dickson, D.W., Grossman, M., Hallett, M., 2013. Criteria for the diagnosis of corti-
cobasal degeneration. Neurology 80, 496-503.

Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry-the methods. Neuroimage
11, 805-821.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neuroimage 26, 839-851.

Ballarini, T., Mueller, K., Albrecht, F., Rzi¢ka, F., Bezdicek, O., Rtizi¢ka, E., Roth, J.,
Vymazal, J., Jech, R., Schroeter, M.L., 2019. Regional gray matter changes and age
predict individual treatment response in Parkinson's disease. Neurolmage Clin. 21,
101636.

Bharti, K., Bologna, M., Upadhyay, N., Piattella, M.C., Suppa, A., Petsas, N., Gianni, C.,
Tona, F., Berardelli, A., Pantano, P., 2017. abnormal resting-state functional con-
nectivity in progressive supranuclear palsy and corticobasal syndrome. Front. Neurol.
8, 248.

Bisenius, S., Mueller, K., Diehl-Schmid, J., Fassbender, K., Grimmer, T., Jessen, F.,
Kassubek, J., Kornhuber, J., Landwehrmeyer, B., Ludolph, A., 2017. Predicting pri-
mary progressive aphasias with support vector machine approaches in structural MRI
data. NeuroImage Clin. 14, 334-343.

Boeve, B.F., 2011. The multiple phenotypes of corticobasal syndrome and corticobasal
degeneration: implications for further study. J. Mol. Neurosci. 45, 350.

Boeve, B.F., Lang, A.E., Litvan, 1., 2003. Corticobasal degeneration and its relationship to
progressive supranuclear palsy and frontotemporal dementia. Ann. Neurol. 54.
Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual WEB search engine.

Comput. Netw. Isdn Syst. 30, 107-117.

Burrell, J.R., Hodges, J.R., Rowe, J.B., 2014. Cognition in corticobasal syndrome and
progressive Supranuclear palsy: a review. Mov. Disord. 29, 684-693.

Caminiti, S., Alongi, P., Majno, L., Volonte, M., Cerami, C., Gianolli, L., Comi, G., Perani,
D., 2017. Evaluation of an optimized [18 F] fluoro-deoxy-glucose positron emission
tomography voxel-wise method to early support differential diagnosis in atypical
Parkinsonian disorders. Eur. J. Neurol. 24, 687.

Casanova, R., Srikanth, R., Baer, A., Laurienti, P.J., Burdette, J.H., Hayasaka, S., Flowers,
L., Wood, F., Maldjian, J.A., 2007. Biological parametric mapping: a statistical
toolbox for multimodality brain image analysis. Neuroimage 34, 137-143.

Chahine, L.M., Rebeiz, T., Rebeiz, J.J., Grossman, M., Gross, R.G., 2014. Corticobasal
syndrome: five new things. Neurol. Clin. Pract. 4, 304-312.

Damoiseaux, J.S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M.,
Beckmann, C.F., 2006. Consistent resting-state networks across healthy subjects.
Proc. Natl. Acad. Sci. 103, 13848-13853.

DeLong, E., DeLong, D., Clarke-Pearson, D., 1988. Comparing the areas under two or
more correlated receiver operating characteristic curves. A nonparametric approach.
Biometrics 44, 837-845.

Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., DeKosky, S.T., Barberger-Gateau,
P., Delacourte, A., Frisoni, G., Fox, N.C., Galasko, D., 2010. Revising the definition of
Alzheimer's disease: a new lexicon. Lancet Neurol. 9, 1118-1127.

Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Méller, H.E., Villringer, A., Sabri, O.,
Schroeter, M.L., 2011. Combined evaluation of FDG-PET and MRI improves detection
and differentiation of dementia. PLoS ONE 6, e18111.

Dutt, S., Binney, R.J., Heuer, H.W., Luong, P., Attygalle, S., Bhatt, P., Marx, G.A., Elofson,
J., Tartaglia, M.C., Litvan, I., 2016. Progression of brain atrophy in PSP and CBS over
6 months and 1 year. Neurology 87 (19).

Eckert, T., Barnes, A., Dhawan, V., Frucht, S., Gordon, M.F., Feigin, A.S., Eidelberg, D.,
2005. FDG PET in the differential diagnosis of Parkinsonian disorders. Neuroimage
26, 912-921.

Eklund, A., Nichols, T.E., Knutsson, H., 2016. Cluster failure: why fMRI inferences for
spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. 113,
7900-7905.


https://doi.org/10.1016/j.nicl.2019.102112
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0001
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0001
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0001
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0001
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0002
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0002
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0002
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0003
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0003
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0003
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0004
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0004
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0005
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0006
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0006
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0006
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0006
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0007
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0007
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0007
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0007
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0008
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0008
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0008
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0008
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0009
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0009
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0010
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0010
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0011
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0011
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0012
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0012
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0013
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0013
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0013
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0013
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0014
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0014
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0014
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0015
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0015
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0016
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0016
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0016
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0017
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0017
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0017
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0018
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0018
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0018
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0019
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0019
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0019
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0020
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0020
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0020
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0021
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0021
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0021
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0022
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0022
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0022

T. Ballarini, et al.

Filippi, M., Sarasso, E., Agosta, F., 2019. Resting-state functional mri in parkinsonian
syndromes. 6, 104-117.

Goelman, G., Gordon, N., Bonne, O., 2014. Maximizing negative correlations in resting-
state functional connectivity MRI by time-lag. PLoS One 9, e111554.

emspl4, alGorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M.,
Cappa, S.e., Ogar, J., Rohrer, J., Black, S., Boeve, B.F., 2011. Classification of primary
progressive aphasia and its variants. Neurology 76, 1006-1014.

Greicius, M., 2008. Resting-state functional connectivity in neuropsychiatric disorders.
Curr. Opin. Neurol. 21, 424-430.

Hillary, F.G., Roman, C.A., Venkatesan, U., Rajtmajer, S.M., Bajo, R., Castellanos, N.D.J.
N., 2015. Hyperconnectivity is a fundamental response to neurological disruption.
29, 59.

Hoglinger, G.U., Respondek, G., Stamelou, M., Kurz, C., Josephs, K.A., Lang, A.E.,
Mollenhauer, B., Miiller, U., Nilsson, C., Whitwell, J.L., Arzberger, T., Englund, E.,
Gelpi, E., Giese, A., Irwin, D.J., Meissner, W.G., Pantelyat, A., Rajput, A., van
Swieten, J.C., Troakes, C., Antonini, A., Bhatia, K.P., Bordelon, Y., Compta, Y.,
Corvol, J.-.C., Colosimo, C., Dickson, D.W., Dodel, R., Ferguson, L., Grossman, M.,
Kassubek, J., Krismer, F., Levin, J., Lorenzl, S., Morris, H.R., Nestor, P., Oertel, W.H.,
Poewe, W., Rabinovici, G., Rowe, J.B., Schellenberg, G.D., Seppi, K., van Eimeren, T.,
Wenning, G.K., Boxer, A.L., Golbe, L.I, Litvan, I., Movement Disorder Society-en-
dorsed, P.S.P.S.G., 2017. Clinical diagnosis of progressive supranuclear palsy: the
movement disorder society criteria. Mov. Disord. 32, 853-864 Official journal of the
Movement Disorder Society.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl.
Neuroimage 62, 782-790.

Kikuchi, A., Okamura, N., Hasegawa, T., Harada, R., Watanuki, S., Funaki, Y., Hiraoka, K.,
Baba, T., Sugeno, N., Oshima, R., 2016. In vivo visualization of tau deposits in cor-
ticobasal syndrome by 18 F-THK5351 PET. Neurology 87, 2309-2316.

Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C.,
Jack Jr, C.R., Ashburner, J., Frackowiak, R.S., 2008. Automatic classification of MR
scans in Alzheimer's disease. Brain 131, 681-689.

Koikkalainen, J., Rhodius-Meester, H., Tolonen, A., Barkhof, F., Tijms, B., Lemstra, A.W.,
Tong, T., Guerrero, R., Schuh, A., Ledig, C., 2016. Differential diagnosis of neuro-
degenerative diseases using structural MRI data. NeuroImage Clin. 11, 435-449.

Lee, S.E., Rabinovici, G.D., Mayo, M.C., Wilson, S.M., Seeley, W.W., DeArmond, S.J.,
Huang, E.J., Trojanowski, J.Q., Growdon, M.E., Jang, J.Y., 2011. Clinicopathological
correlations in corticobasal degeneration. Ann. Neurol. 70, 327-340.

Lohmann, G., Margulies, D.S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D.,
Schloegl, H., Stumvoll, M., Villringer, A., Turner, R., 2010. Eigenvector centrality
mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS
One 5, e10232.

Mathew, R., Bak, T.H., Hodges, J.R., 2011. Diagnostic criteria for corticobasal syndrome:
a comparative study. J. Neurol. Neurosurg. Psychiatry jnnp-2011-300875.

McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jr, C.R., Jack, Kawas, C.H.,
Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., 2011. The diagnosis of de-
mentia due to Alzheimer's disease: recommendations from the national institute on
aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's
disease. Alzheimer's Dement. 7, 263-269.

Meyer, S., Mueller, K., Stuke, K., Bisenius, S., Diehl-Schmid, J., Jessen, F., Kassubek, J.,
Kornhuber, J., Ludolph, A.C., Prudlo, J., 2017. Predicting behavioral variant fron-
totemporal dementia with pattern classification in multi-center structural MRI data.
Neurolmage Clin. 14, 656-662.

Mueller, K., Jech, R., Bonnet, C., Tintéra, J., Hanuska, J., Moller, H.E., Fassbender, K.,

11

NeuroImage: Clinical 25 (2020) 102112

Ludolph, A., Kassubek, J., Otto, M., 2017. Disease-specific regions outperform whole-
brain approaches in identifying progressive supranuclear palsy: a multicentric MRI
study. Front. Neurosci. 11, 100.

Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A., 2009. The impact
of global signal regression on resting state correlations: are anti-correlated networks
introduced? Neuroimage 44, 893-905.

Murray, R., Neumann, M., Forman, M., Farmer, J., Massimo, L., Rice, A., Miller, B.,
Johnson, J., Clark, C., Hurtig, H., 2007. Cognitive and motor assessment in autopsy-
proven corticobasal degeneration. Neurology 68, 1274-1283.

Noble, S., Scheinost, D., Constable, R.T., 2019. A decade of test-retest reliability of
functional connectivity: a systematic review and meta-analysis. Neuroimage 203,
116157.

Parmera, J.B., Rodriguez, R.D., Neto, A., Studart, Nitrini, R, Brucki, S.M.D., 2016.
Corticobasal syndrome: a diagnostic conundrum. Dement. Neuropsychol. 10,
267-275.

Perron, O., 1907. On the theory of matrices. Math. Ann. 64, 248-263.

Pievani, M., Paternico, D., Benussi, L., Binetti, G., Orlandini, A., Cobelli, M., Magnaldi, S.,
Ghidoni, R., Frisoni, G.B., 2014. Pattern of structural and functional brain abnorm-
alities in asymptomatic granulin mutation carriers. Alzheimer's Dement. J.
Alzheimer's Assoc. 10, $354-S363 e351.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
systematic correlations in functional connectivity MRI networks arise from subject
motion. Neuroimage 59, 2142-2154.

Rakotomamonjy, A., Bach, F.R., Canu, S., Grandvalet, Y., 2008. SimpleMKL. J. Mach.
Learn. Res. 9, 2491-2521.

Rebeiz, J.J., Kolodny, E.H., Richardson, E.P., 1968. Corticodentatonigral degeneration
with neuronal achromasia. Arch. Neurol. 18, 20-33.

Schroulff, J., Rosa, M.J., Rondina, J.M., Marquand, A.F., Chu, C., Ashburner, J., Phillips,
C., Richiardi, J., Mourao-Miranda, J., 2013. PRoNTo: pattern recognition for neu-
roimaging toolbox. Neuroinformatics 11, 319-337.

Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D., 2009.
Neurodegenerative diseases target large-scale human brain networks. Neuron 62,
42-52.

Smith, R., Scholl, M., Widner, H., van Westen, D., Svenningsson, P., Hagerstrom, D.,
Ohlsson, T., Jogi, J., Nilsson, C., Hansson, O., 2017. In vivo retention of 18 F-AV-
1451 in corticobasal syndrome. Neurology 89, 845-853.

Upadhyay, N., Suppa, A., Piattella, M.C., Gianni, C., Bologna, M., Stasio, F., Di, Petsas, N.,
Tona, F., Fabbrini, G., Berardelli, A., 2017. Functional disconnection of thalamic and
cerebellar dentate nucleus networks in progressive supranuclear palsy and cortico-
basal syndrome. Parkinsonism Relat. Disord. 39, 52-57.

Warren, J.D., Rohrer, J.D., Schott, J.M., Fox, N.C., Hardy, J., Rossor, M.N., 2013.
Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends
Neurosci. 36, 561-569.

Whitwell, J.L., Jack, C., Boeve, B.F., Parisi, J.E., Ahlskog, J., Drubach, D., Senjem, M.,
Knopman, D.S., Petersen, R.C., Dickson, D.W., 2010. Imaging correlates of pathology
in corticobasal syndrome. Neurology 75, 1879-1887.

Woo, C.-.W., Chang, L.J., Lindquist, M.A., Wager, T.D., 2017. Building better biomarkers:
brain models in translational neuroimaging. Nat. Neurosci. 20, 365.

Zhou, J., Greicius, M.D., Gennatas, E.D., Growdon, M.E., Jang, J.Y., Rabinovici, G.D.,
Kramer, J.H., Weiner, M., Miller, B.L., Seeley, W.W., 2010. Divergent network con-
nectivity changes in behavioural variant frontotemporal dementia and Alzheimer's
disease. Brain 133, 1352-1367.


http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0023
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0023
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0024
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0024
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0024
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0025
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0025
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0026
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0027
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0027
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0028
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0028
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0028
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0029
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0029
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0029
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0030
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0030
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0030
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0031
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0031
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0031
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0032
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0032
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0032
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0032
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0033
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0033
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0034
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0034
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0034
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0034
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0034
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0035
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0035
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0035
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0035
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0036
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0036
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0036
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0036
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0037
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0037
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0037
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0038
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0038
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0038
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0039
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0039
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0039
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0040
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0040
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0040
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0041
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0042
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0042
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0042
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0042
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0043
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0043
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0043
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0044
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0044
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0045
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0045
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0046
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0046
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0046
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0047
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0047
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0047
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0048
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0048
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0048
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0049
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0049
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0049
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0049
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0050
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0050
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0050
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0051
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0051
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0051
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0052
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0052
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0053
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0053
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0053
http://refhub.elsevier.com/S2213-1582(19)30459-0/sbref0053

	Disentangling brain functional network remodeling in corticobasal syndrome – A multimodal MRI study
	Introduction
	Materials and methods
	Participants
	MRI protocols and preprocessing
	MRI statistical analysis
	MRI group comparisons
	Influence of local gray matter volume on connectivity differences
	Correlation analysis
	MRI-based support vector machine classification

	Data availability

	Results
	Group comparisons
	Influence of local gray matter volume on connectivity differences
	Correlation analysis
	Support vector machine classification

	Discussion
	Limitations
	Conclusion

	Funding
	CRediT authorship contribution statement
	mk:H1_21
	Supplementary materials
	References




