
Citation: Khan, P.; Roux, J.; Blumer,

S.; Knudsen, L.; Jonigk, D.; Kuehnel,

M.P.; Tamm, M.; Hostettler, K.E.

Alveolar Basal Cells Differentiate

towards Secretory Epithelial- and

Aberrant Basaloid-like Cells In Vitro.

Cells 2022, 11, 1820. https://doi.org/

10.3390/cells11111820

Academic Editor: C Arnold Spek

Received: 25 March 2022

Accepted: 25 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Alveolar Basal Cells Differentiate towards Secretory Epithelial-
and Aberrant Basaloid-like Cells In Vitro
Petra Khan 1,†, Julien Roux 1,2,† , Sabrina Blumer 1, Lars Knudsen 3,4 , Danny Jonigk 4,5 , Mark P. Kuehnel 4,5,
Michael Tamm 1 and Katrin E. Hostettler 1,*

1 Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of
Basel, 4031 Basel, Switzerland; petra.khan@unibas.ch (P.K.); julien.roux@unibas.ch (J.R.);
sabrina.blumer@unibas.ch (S.B.); michael.tamm@usb.ch (M.T.)

2 Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
3 Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;

knudsen.lars@mh-hannover.de
4 Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for

Lung Research (DZL), 30625 Hannover, Germany; jonigk.danny@mh-hannover.de (D.J.);
kuehnel.mark@mh-hannover.de (M.P.K.)

5 Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
* Correspondence: katrin.hostettler@usb.ch
† These authors contributed equally to this work.

Abstract: In idiopathic pulmonary fibrosis (IPF), keratin (KRT)17+/KRT5+ basal and KRT17+/KRT5−
aberrant basaloid cells are atypically present within the alveolar space. We previously described
the fibrosis-enriched outgrowth of alveolar basal cells from peripheral fibrotic lung tissue. Using
single cell RNA sequencing (scRNA-seq), we here characterize the transcriptome of these cultured
alveolar basal cells under different culture conditions. Methods: Fibrotic peripheral lung tissue pieces
were placed in DMEM growth medium. Outgrown cells were analysed by scRNA-seq, TaqMan-PCR
or immunofluorescence (IF) either directly or after medium change to an epithelial cell specific
medium (Cnt-PR-A). Results: A fraction of alveolar basal cells cultured in DMEM growth medium
showed close transcriptomic similarities to IPF basal cells. However, although they expressed KRT5,
the transcriptome of the majority of cells matched best to the transcriptome of recently described
KRT17+/KRT5− aberrant basaloid cells, co-expressing the canonical basal cell marker KRT17 and
mesenchymal cell marker (VIM, FN1). A smaller fraction of cells matched best to secretory epithelial
cells. Two differentiation gradients from basal to aberrant basaloid-like cells and basal to secretory
epithelial-like cells were apparent. Interestingly, these differentiation paths seemed reversed when
the cell culture medium was changed to Cnt-PR-A. Conclusions: Our results suggest that cultured
alveolar basal cells have the capacity to differentiate towards secretory epithelial-like cells and
to aberrant basaloid-like cells. However, due to the persistent expression of KRT5, a complete
differentiation towards aberrant basaloid cells did not seem to be achieved in our culture conditions.
Importantly, differentiation seemed reversible by changing the cells microenvironment. Determining
specific factors influencing these differentiation paths may help to define novel drug targets for
IPF therapy.

Keywords: IPF; aberrant basaloid cells; basal cells; alveolar epithelial cells; differentiation; trans-
differentiation; single cell RNA sequencing

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a rare, chronic, and irreversible interstitial lung
disease (ILD) with progressive destruction of the lung parenchyma, resulting in loss of lung
function [1]. Evidence suggests that repeated injuries to the alveolar epithelial cells play
an important role in the development and progression of IPF [2]. In the healthy lung, the

Cells 2022, 11, 1820. https://doi.org/10.3390/cells11111820 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11111820
https://doi.org/10.3390/cells11111820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-4192-5099
https://orcid.org/0000-0002-7926-3879
https://orcid.org/0000-0002-5251-2281
https://doi.org/10.3390/cells11111820
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11111820?type=check_update&version=1


Cells 2022, 11, 1820 2 of 16

alveoli are lined with alveolar epithelial cells type 1 and 2 (AT1 and 2). AT2 cells maintain
the alveolar epithelium by their ability to self-renew and they serve as progenitors for AT1
cells [3]. The conducting airway is lined with basal cells and different secretory and ciliated
epithelial cells. Basal cells, expressing specific markers such as keratin (KRT)5, KRT17,
KRT14, TP63 or integrin subunit beta (ITGB) 4, have the ability to differentiate into all
other types of airway epithelial cells, and therefore serve as progenitors to regenerate the
tracheobronchial epithelium after injury [4]. During normal lung homeostasis there is no
overlap of epithelial cell types of the alveolar and the conducting regions.

However, in severely injured regions of the peripheral IPF lung, a maladaptive repair
program, involving a loss of AT2 cells accompanied with the accumulation of basal cells
within the alveolar compartment, is apparent [5–9]. Similarly, severe lung injury in mice
through H1N1 influenza infection or bleomycin resulted in an accumulation of basal-like
cells in the alveolar region [10,11]. The function and origin of these atypical alveolar basal
cells remains largely unknown. In mice, it was suggested that these cells contribute to
alveolar epithelium regeneration by trans-differentiation into AT2 cells [12,13]. On the
contrary, in IPF patients the presence of basal cells in bronchoalveolar lavage (BAL) fluid or
in the alveolar region of lung tissue [8,14,15] was associated with increased mortality [8]
and pathological bronchiolization and honeycomb formation [8,16].

In mice, alveolar basal cells originate from specific intrapulmonary p63+ progenitor
cells that, upon injury, migrate into the alveolar space where they differentiate into basal
cells [10,11,17]. In the human lung, where basal cells are present throughout the airways,
distal airway basal cells may migrate into injured alveolar regions. Alternatively, alveolar
basal cells may originate from resident AT2 cells [18]. Indeed, it was recently shown that
AT2 cells have the ability to trans-differentiate into basal cells via SFTPC+/KRT17+ and
SFTPC−/KRT17+/KRT5− alveolar-basal-intermediate (ABI1 and ABI2 respectively) cells
in vitro. This process may also occur in the peripheral lung of IPF patients [5].

Besides alveolar basal cells, a rare aberrant basaloid cell population has recently been
described in the lung of IPF patients. It is characterized by expression of the canonical
basal cell marker KRT17, but not KRT5, along with mesenchymal cell markers, senescence
markers, and IPF-associated molecules [6,7]. Interestingly, these aberrant basaloid cells
show transcriptomic similarities to the above-mentioned ABI1 and ABI2 cells [5], and KRT8+
alveolar differentiation intermediate cells (ADI) [19]. This suggests that they may represent
a transitional/intermediate cell type arising during AT2 to basal cell trans-differentiation
and during AT2 to AT1 differentiation.

We previously reported the fibrosis-enriched outgrowth of a distinct cell population
from the alveolar parenchyma of ILD patients in vitro [20], showing expression of the
canonical basal cell markers KRT5 and KRT17 [9]. In this study, using scRNA-seq we
investigated the transcriptomic landscape of our cultured alveolar basal cells under different
culture conditions, and compared them to the previously characterized transcriptomes of
basal, aberrant basaloid or transitional cells.

2. Materials and Methods
2.1. Cell Culture

Alveolar basal cells were cultured from peripheral fibrotic lung tissue in DMEM
growth medium (DMEM supplemented with 10% FCS, 25 mM HEPES, 1× (v/v) sodium
pyruvate, 1× (v/v) MEM vitamin-mix, and 1× (v/v) antibiotic-antimycotic) as previously
described [9]. Briefly, peripheral fibrotic lung tissue was cut into small pieces and placed
into 12-well culture dishes (one piece/well) containing DMEM growth medium. After
5 days the tissue pieces were removed, and cells harvested for downstream analysis. Cells
derived from individual tissue pieces of the same patient were pooled in order to get
sufficient cell numbers. In some experiments, DMEM growth medium was changed after
five days to the commercially available, fully defined low calcium epithelial cell specific
growth medium Cnt-prime airway (PR-A) and the cells grown in Cnt-PR-A for another five
days prior to downstream analysis. IPF was diagnosed based on ATS/ERS guidelines [1,21].
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The local ethical committee of the University Hospital, Basel, Switzerland (EKBB05/06)
and of the Hannover Medical School, Germany (2699–2015) approved the culture of human
primary lung cells. All materials used in this study are listed in Supplement Table S1.

2.2. Single Cell RNA Sequencing

Single-cell suspensions were generated from cells grown from cultured peripheral
lung tissue biopsies from three IPF patients (IPF patient 1–3) in DMEM growth medium for
5 days, controlled for viability, and loaded on separate wells of a 10× Genomics Chromium
Single Cell Controller in two batches (IPF patient 1 on 8 April 2019, and patients 2 and 3 on
27 May 2019) for an expected recovery of 10,000 cells.

A last single-cell suspension from cells originating from IPF patient 2 and transferred
to a Cnt-PR-A growth medium after 5 days of culture in DMEM growth medium was
loaded on a single well of the 10× Genomics Chromium Single Cell Controller on 27 May
2019, for an expected recovery of 10,000 cells.

Single cell capture and cDNA and library preparation were performed at the Genomics
Facility Basel of the ETH Zurich, Basel with a Single Cell 3′ v3 Reagent Kit (10× Genomics)
according to the manufacturer’s instructions. Sequencing was performed on one flow-cell
of the Illumina NexSeq 500 platform (with 56nt-long R2 reads).

Read quality was assessed with the FastQC tool (version 0.11.5, Simon Andrews, Cam-
bridge, UK). Sequencing files were processed with Kallisto (version 0.46.0) and BUStools
(version 0.39.2) to perform sample and cell demultiplexing, and pseudo-alignment of reads
to human transcripts (Ensembl release 96) and their intronic regions (extended by 50nt on
each side). The commands “bustools correct”, “bustools capture” and “bustools count”
were used to generate gene-level spliced and unspliced UMI counts table [22,23]. For the
main analysis, the spliced UMI counts table was used.

Processing of the UMI counts matrix was performed using the Bioconductor pack-
ages DropletUtils (version 1.14.2) [24,25], scran (version 1.22.1) [26,27] and scater (version
1.22.0) [28], following mostly the steps illustrated in the OSCA book (http://bioconductor.
org/books/release/OSCA/; last accessed on 20 May 2022) [27,29].

Based on the observed distributions, cells with 0% or more than 25% of UMI counts
attributed to the mitochondrial genes [30], with less than 631 UMI counts, or with less than
502 detected genes were excluded. The presence of doublet cells was investigated with the
scDblFinder package (version 1.8.0), and suspicious cells were filtered out (score > 0.95).

After quality filtering, the resulting DMEM growth medium dataset consisted of
8625 cells, including 7196 derived from patient 1, 887 cells from patient 2, and 542 cells
from patient 3.

Cell cycle phase was inferred using the markers provided in Seurat (version 4.1.0) and
the CellCycleScoring function. A proliferative signature was taken from Travaglini et al. [31].
This is calculated as the average expression of 11 genes (PBK, BIRC5, MKI67, UBE2C,
TOP2A, TK1, AURKB, CDKN3, CENPF, CDK1, ZWINT) trimmed to the highest and lowest
0.1% scores for better plotting dynamics. A cutoff of 0.2 was used to call cells proliferating
or not.

Systematic differences between samples were removed using the fastMNN func-
tion (d = 50, k = 20) of the batchelor package (version 1.10.0) [32], run on the combined
hypervariable genes across samples (954 genes in total). Two-dimensional t-distributed
stochastic neighbor embedding (tSNE) used for visualization of cells was calculated using
the 500 most variable genes and the batch-corrected matrix of low-dimensional coordinates
for each cell (perplexity of 30). Clustering of cells was performed on the batch-corrected
dataset with hierarchical clustering on the Euclidean distances between cells (with Ward’s
criterion to minimize the total variance within each cluster; package cluster version 2.1.0).
The number of clusters used for following analyses was identified by applying a dynamic
tree cut (package dynamicTreeCut, version 1.63-1; deepSplit = 0). The scran function find-
Markers was used to find markers up-regulated in any of the clusters. The top 10 markers
for each clusters were extracted and pooled to form a list of 89 unique genes. The package

http://bioconductor.org/books/release/OSCA/
http://bioconductor.org/books/release/OSCA/
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SingleR (version 1.8.1) was used for unbiased cell-type annotation of the cells [33] using as
reference the public scRNA-seq datasets described above. Only high-quality assignments
(pruned scores) from SingleR were used. For co-expression plots of KRT5 or KRT17 with
other cell-type specific markers, we used a cutoff of 0.5 on the normalized log-counts to
account for potential background noise when determining the present/absent status.

Differentiation states across cells were inferred using the R package CytoTRACE (ver-
sion 0.33.1, available at https://cytotrace.stanford.edu/ last accessed on 20 May 2022) [34].
RNA velocity calculations were performed based on the spliced and unspliced UMI count
tables produced by Kallisto and BUStools for the cells of patient 1 only (to avoid misleading
distortions induced by the batch integration methods). The package velociraptor (version
1.4.0) was used as a wrapper to the scvelo package (version 0.2.2) using the top hyper-
variable genes (filtered to remove genes high in ambient RNA pool, mitochondrial genes
and ribosomal genes; 403 genes in total). The likelihood-based dynamical velocities were
calculated using default parameters.

Processing of the Cnt-PR-A growth medium sample was performed similarly as
described above, apart from no batch integration step. After quality filtering, the resulting
dataset consisted of 5280 cells.

2.3. Reanalysis of Public scRNA-Seq Datasets

The dataset of human pulmonary fibrosis and control patients [35] was downloaded
from GEO (accession GSE122960; HDF5 processed data files produced by CellRanger
v2.0). Processing of the UMI counts matrix was performed using the Bioconductor
packages DropletUtils (version 1.5.4) [24,25], scran (version 1.12) [26,36] and scater (ver-
sion 1.12) [28], following mostly the steps illustrated in the OSCA Bioconductor book
(https://bioconductor.org/books/release/OSCA/; last accessed on 20 May 2022) [27]. The
resulting filtered and normalized expression matrix included 14,983 genes and 108,509 cells
from 17 patients. Clustering of cells was done on normalized log-count values using a
shared nearest-neighbours graph approach (scran function buildSNNGraph), resulting
in 93 clusters. Annotation of cell type and identification of clusters of cell doublets was
done based on the expression of known marker genes and following the annotation of
the original study [35] (Supplement Figure S1). Clusters of cell doublets and clusters of
immune cells were filtered out for further analyses.

The IPF Cell Atlas dataset from Adams et al. [6] was downloaded from GEO (accession
GSE136831; R “.rds” files including exonic UMI count matrices for each patient, and the
“GSE136831_AllCells.Samples.CellType.MetadataTable.txt.gz” file including the annota-
tion for cells). Only non-immune cells from control and IPF patients were retained. We
additionally excluded cells from patients with less than 50 cells left. The final dataset was
composed of 30,617 cells, 7898 from control patients, and 22,719 from IPF patients.

The Habermann et al. dataset [7] was downloaded from GEO (accession GSE135893;
Full Seurat object downloaded as “.rds” file). Only non-immune cells from control and IPF
patients were retained. The final dataset was composed of 44,137 cells, 12,151 from control
patients, and 31,986 from IPF patients.

The atlas of cell types in the human lung from Travaglini et al. [31] was downloaded
from https://www.synapse.org/#!Synapse:syn21041850/files/ (processed UMI count ma-
trix and annotation of cells; last accessed on 20 May 2022). For simplicity the different
subsets of immune cells were grouped, as well as the fibroblast/myofibroblast/smooth
muscle subsets. We also ignored the site of sampling (proximal, medial or distal lung).

The dataset from Kathiriya et al. [5] of cultured AT2 epithelial cells undergoing transd-
ifferentiation in vitro towards basal cells organoids was downloaded from GEO (accessions
GSE150068 and GSE150247). The outputs from CellRanger v2 (day 0, sample “NL_2”, and
day 14, sample “Day14_Organoid”) or v3 (day 7, sample “Day7_Organoid”, and day 21,
sample “Day21_Organoid”) were used to gather the UMI count matrix and the clustering
and annotation metadata for the cells was obtained from the authors upon E-mail request.

https://cytotrace.stanford.edu/
https://bioconductor.org/books/release/OSCA/
https://www.synapse.org/#!Synapse:syn21041850/files/
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The mouse dataset from Strunz et al. [19] was obtained from GEO (accession GSE141259).
The processed data files for the epithelial cells dataset (“HighResolution” dataset) were
used. The clustering and annotation metadata for the cells was obtained from the authors
upon E-mail request. For annotation of our cells with SingleR, the correspondence from
mouse to human Ensembl IDs was made by retrieving the 1-to-1 orthologs between human
and mouse from Herrero et al. 2016 [37].

2.4. TaqMan RT-PCR, Immunofluorescence & Electron Microscopy

TaqMan® PCR and immunofluorescence (IF) stainings were performed as previously
described [20,38]. Details for primer and antibodies are listed in Supplement Table S1. For
electron microscopy (EM) imaging, cells were fixed in 4% paraformaldehyde/0.1% glu-
taraldehyde/0.2 M HEPES and embedded in epoxy resin (Epon®) and subjected to EM
imaging as previously described [39]. Semi-thin sections were cut and stained with tolu-
idine blue for light microscopic investigation. Afterwards, ultrathin sections were used
for transmission electron microscopy (Morgagni, FEI, Eindhoven, The Netherlands) to
characterize the ultrastructure of isolated cells.

3. Results
3.1. Morphology of Alveolar Basal Cells Cultured in DMEM Growth Medium

We previously reported the outgrowth of KRT17+/KRT5+ alveolar basal cells from
peripheral fibrotic lung tissue [9]. The morphology of the alveolar basal cells cultured in
DMEM growth medium for five days is shown in representative phase contrast (Figure 1A)
and EM (Figure 1B) images. The cells display a flattened morphology showing a certain
polarity. Microvilli-like structures were observed on their surface and desmosomes and
tight junctions joined the cells. Multi-lamellate bodies were occasionally seen. Bundles of
intermediate filaments were often found oriented along the axis of the cell and connected to
the plaques of the desmosomes. Occasionally, late endosomes and autophagosomes were
detected in the cells (Figure 1B).
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3.2. scRNA-Seq Analysis of Alveolar Basal Cells Cultured in DMEM Growth Medium

To characterize this population of alveolar basal cells, we performed scRNA-seq using
the 10× Genomics technology. The cells were obtained from lung tissue of three different
IPF patients and were cultured in DMEM growth medium for five days [9]. After cell quality
filtering and removal of patient-specific effects (Supplement Figure S1), the 8625 cells were
grouped into nine clusters, encompassing between 2.1% and 31% of the cells (Figure 2A).
The expression patterns of the top cluster-specific genes (full gene list available from Supple-
ment Table S2) and the comparison of our dataset to publicly available scRNA-seq atlases of
the human lung [6,7,31,35] allowed us to annotate these clusters (Figures 2B,C and S2A–E).
The majority of our cultured cells show transcriptomic similarity closest to cells derived
from IPF patients and not to cells from control donors (Supplement Figure S2A,B). This
suggests that the fibrotic signature of the cells is maintained in vitro.

The transcriptome of cells from clusters 1, 2, 6 and 8 matched best to an aberrant
basaloid cell population reported by Adams et al. (Figures 2C and S2A) [6] and Haberman
et al. [7] (Supplement Figure S2B, coined “KRT5−/KRT17+” cells). Of note, this population
is not present in the other references used (Reyfman et al. [35] and Travaglini et al. [31];
Supplement Figure S2C,D), so cells from these four clusters had closest transcriptomic
similarity to the basal cells from these datasets. Similar to the described aberrant basaloid
cells, cells from clusters 1 and 6 expressed the mesenchymal markers FN1 and VIM, along
with the basal cell marker KRT17. The expression of the basal cell marker KRT5 was only
slightly lower (Figures 2B,D and S3A–C), while it was reported absent in the aberrant
basaloid cell population (see Discussion).

The marker for transitional epithelial cells KRT8 was expressed in cells of all epithelial
clusters, consistent with a transcriptomic proximity close to a population of KRT8+ alveolar
differentiation intermediates described in mice (Supplement Figure S2F) [19].

A scRNA-seq reference dataset from organoids derived from cultured human AT2
cells undergoing trans-differentiation to basal cells in vitro [5] provided interesting insights
into cells from the clusters 2 and 8, which matched closely to the alveolar-basal interme-
diates ABI1 and ABI2, respectively (Supplement Figure S2E). These cells expressed the
mesenchymal markers VIM and FN1 at lower levels than clusters 1 and 6 and cells from
cluster 2 expressed low levels of KRT5 (Figures 2D and S3A,C).

From the remaining cells in our dataset, those from cluster 3 and 5 matched closely
to basal cells or proliferating basal cells (Figures 2C and S2A–E). They displayed a strong
expression of KRT5 and KRT17 (Figures 2B,D and S3A) as well as the basal cell markers
KRT14, TP63, ITGB4 and ITGA6 (Figure 2B,D). The strong proliferation signal in cluster 3
was confirmed by the inferred cell cycle phase, the expression of MKI67 and a proliferative
signature score gathering 11 markers [31] (Supplement Figure S4).

Cells from cluster 4 matched best to more differentiated types of secretory epithelial
cells, such as goblet or club cells (Figures 2C and S2A–E). Accordingly, they expressed the
secretory epithelial cell markers SCGB1A1 and MUC4, along with a reduced expression
of KRT17 and KRT8, and a low expression of all other basal markers (KRT5, TP63, KRT14,
ITGB4 and ITGA6; Figures 2B,D and S3A,B,D).

Finally, cells from cluster 9 clearly matched to mesenchymal cells, with notably the
strongest expression of VIM and FN1 (Figure 2B). The identity of cells from cluster 7 was
less clear. Depending on the reference dataset used, they matched best to endothelial,
epithelial, or immune subtypes (Supplement Figure S2A–E). The high expression of MHC
class I and CD45 (PTPRC) genes (Figure 2B) corroborated this.

In further analyses we excluded cells from non-epithelial clusters 7 and 9 to focus on
the bulk of epithelial cells.
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Figure 2. Clustering and cell type annotation of alveolar basal cells cultured in DMEM growth
medium. (A) tSNE showing the separation of cells into nine clusters. (B) t-SNE showing the best
matching cell type for each cell from the SingleR analysis using as reference the scRNA-seq dataset
from Adams et al. [6]. Cell types represented by no more than 10 cells in our dataset were pooled
into the category “Others”. Reference cell types originating from IPF or control patients are not
distinguished in this figure, but see Supplement Figure S2A. (C) Relative expression across clusters
and patients of the strongest cluster-specific genes. The log-normalized expression levels were
averaged across cells from the same cluster and patient, and averaged values are then centered and
scaled per gene. Clusters of epithelial cells are ordered along the presumed differentiation gradients
described in the text, indicated with a gradient color bar on top of the heatmap. (D) Violin plot
showing the log-normalized expression of basal cell marker KRT5, KRT17, KRT14, TP63, ITGB4,
mesenchymal marker FN1 or VIM, secretory epithelial cell marker MUC4 or SCGB1A1 or transitional
epithelial cell marker KRT8 across epithelial clusters. Only clusters of epithelial cells (i.e., without
clusters 7 and 9) are shown, ordered along the presumed differentiation gradients described in the
text, indicated with a gradient color bar on top of the panel.

The expression and co-expression patterns of these markers (Figure 3A–D) indi-
cated a differentiation gradient from basal cells (KRT5high/KRT17high cells from clusters 3
and 5) to aberrant basaloid-like cells (KRT5intermediate/KRT17high/FN1high/VIMhigh cells
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from clusters 1 and 6) on one side, and to secretory epithelial-like cells on the other
(KRT5low/KRT17low/MUC4high/SCGB1A1high cells of cluster 4). Both these gradients were
supported by a CytoTRACE analysis, a computational method inferring the differentiation
state of cells by using the number of detectably expressed genes as a determinant of devel-
opmental potential [34] (Figure 3E). An RNA velocity analysis, using the signal of spliced
and unspliced mRNAs to infer the short-term dynamics in gene expression state across
cells [40,41], confirmed a clear trajectory from cluster 3 to 1 and 6. There was some path
from basal cells of cluster 5 towards secretory epithelial-like cells of cluster 4, but this came
along with another strong trajectory starting from cluster 4 towards cluster 2 (Figure 3F).
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Figure 3. Co-expression of specific marker and differentiation states and trajectory in alveolar
basal cells cultured in DMEM growth medium. tSNE showing co-expression patterns of (A) KRT5
and KRT17 with (B) FN1, VIM, (C) SCGB1A1, MUC4 or (D) KRT8. A log-normalized expression
level of 0.5 was used to call genes expressed or not expressed. The relative proportion of cells
expressing/co-expressing the different markers across clusters is shown in bar plots. (E) tSNE
showing the CytoTRACE differentiation state scores across cells. (F) tSNE overlaid with the embedded
velocity vectors of the RNA velocity showing the differentiation trajectories inferred from comparison
of spliced and unspliced signal across genes in single cells. A grid-based approach is used to
summarize the per-cell vectors into local representatives for effective visualization.

3.3. Alveolar Basal Cell Differentiation towards Secretory Epithelial- or Aberrant Basaloid-like
Cells Is Reversible

Keeping cultured alveolar basal cells in DMEM growth medium for more than five
days usually resulted in no further cell proliferation, even when the medium was regularly
exchanged with fresh growth medium (Supplement Figure S5). Accordingly, after five
days in DMEM growth medium very few cells were positive for the proliferation marker
Ki67 (Figure 4A). On the contrary, when the medium was changed to an epithelial-specific
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growth medium (Cnt-PR-A), cells showed robust proliferation and an increased number
of Ki67 positive cells (Figure 4B). This was confirmed by TaqMan PCR, showing higher
levels of Ki67 RNA expression (Figure 4C) and lower levels of the cell cycle inhibitor p27
(Figure 4E) in cells cultured in Cnt-PR-A compared to cells cultured in DMEM growth
medium. Furthermore, in Cnt-PR-A the cell morphology changed from flattened (Figure 1B)
to that of cuboidal epithelial cells as displayed in a representative phase contrast image
(Figure 4F). Alveolar basal cells showed positivity for the basal cell markers KRT17 and
KRT5 in DMEM growth medium [9] and in Cnt-PR-A (Figure 4G).
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Figure 4. Alveolar basal cell proliferation in DMEM growth medium versus Cnt-PR-A. Representative
Ki67 immunofluorescence (IF) stainings (n = 3) of cells (A) cultured in DMEM growth medium for 5
days or (B) after medium change to Cnt-PR-A and culture for an additional 5 days. (C) Quantification
of Ki67 IF stainings relative to total cell number (DAPI) in DMEM growth medium and Cnt-PR-A.
Dots (•) in the bar chart represent the individual datapoints generated from cell stainings of three
different patients. * indicates p < 0.05 (unpaired student’s t-test). (D) Ki67 or (E) p27 RNA expression
comparing both culture conditions (n = 12). TaqMan PCR data are expressed as −∆Ct. ** indicates p
= 0.0017, *** indicates p = 0.0002 (unpaired student’s t-test). (F) Representative phase contrast image
of alveolar basal cells in Cnt-PR-A, (G) Representative immunofluorescence images (n = 4) and their
quantification relative to the total cell number (DAPI) showing the expression of KRT17 and KRT5 in
cells cultured in Cnt-PR-A. Dots (•) in the bar chart represent the individual datapoints generated
from cell stainings of four different patients.

To characterize the effect of this medium change at the transcriptomic level, we
performed scRNA-seq on cells derived from an IPF patient that were first cultured in
DMEM growth medium for five days and harvested after five more days in medium
changed to Cnt-PR-A. After cell quality filtering (Supplement Figure S6), the 5280 cells
were grouped into seven clusters, each encompassing between 1.6% and 37% of the cells
(Figure 5A). The relative expression of the top cluster-specific genes is shown in Figure 5B
(full gene list available from Supplement Table S3). The reference-based annotation of our
dataset this time yielded a simpler picture with the vast majority of the cells best matching
the transcriptome of basal cells (Figures 5C and S7A–E). Of note, our cultured cells again
showed closest transcriptional similarity to cells from IPF patients relative to those of
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control patients (Supplement Figure S7A,B). This suggests that their fibrotic signature is
maintained in vitro even after changing conditions and prolonged culture of the cells.
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for each cell, similar to Figure 2B. (C) Relative expression across clusters of the strongest cluster-
specific genes in the dataset. Clusters are ordered to reflect the presumed differentiation gradients
described in the text, indicated with a gradient color bar on top of the heatmap. (D) Violin plot
showing the log-normalized expression of basal cell marker KRT5, KRT17, KRT14, TP63, ITGB4,
mesenchymal marker FN1 or VIM, secretory epithelial cell marker MUC4 or SCGB1A1 or transitional
epithelial cell marker KRT8 across clusters. Clusters are ordered to reflect the presumed differentiation
gradients described in the text, indicated with a gradient color bar on top of the panel. (E) tSNE
showing the CytoTRACE differentiation state scores across cells. (F) tSNE overlaid with the embedded
velocity vectors of the RNA velocity analysis, similar to Figure 3F.

The shift in the cell transcriptome upon transfer to Cnt-PR-A medium was reflected by
the up-regulation of the basal cell markers KRT17 and KRT5, the loss of the secretory mark-
ers SCGB1A1 and MUC4, and the reduction in expression of the mesenchymal markers
FN1 and VIM, and the transitional epithelial cell marker KRT8 (Figures 5B,D and S8A–D).
However, the shift from aberrant basaloid-like to basal cells did not seem fully com-
plete, with cells from cluster 5 still closely matching the aberrant basaloid transcriptome
(Figures 5C and S7A,B).

A single cluster (cluster 3) was distinctive with a strong proliferation signal and
expression of the marker MKI67 (Figures 2B and S9). Using the proliferative signature
score, we could confirm an increase in cell proliferation in Cnt-PR-A medium (11.9% of the
cells proliferating) relative to DMEM growth medium (7.4% of the cells proliferating).

Interestingly a gradient in expression of different markers was still present, leading us
to investigate potential differentiation trajectories. CytoTRACE analysis confirmed a differ-
entiation gradient originating from clusters 3 and 5 towards clusters 6 and 7 (Figure 5E).
An RNA velocity analysis (Figure 5F) indeed confirmed a trajectory towards more differen-
tiated cells of clusters 6 and 7, but surprisingly there was also a clear trajectory towards
the aberrant basaloid-like cells (cluster 5). This trajectory path towards a less differentiated
state would require further investigation.

TaqMan PCR and immunofluorescence analysis confirmed decreased expression of
the mesenchymal cell marker FN1 (Figure 6A,C) and the secretory epithelial cell marker
SCGB1A1 (Figure 6B,C) in cells cultured in Cnt-PR-A compared to cells cultured in DMEM
growth medium (Figure 6A,B,D), validating our scRNA-seq data.
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Figure 6. Validation of scRNA data by TaqMan PCR and immunofluorescence stainings. (A) FN1
or (B) SCGB1A1 RNA expression in cells cultured in DMEM growth medium or Cnt-PR-A (n = 5).
Data are expressed as −∆Ct. * indicates p < 0.05, *** indicates p = 0.0002 (unpaired student’s t-test).
Immunofluorescence images (n = 4) showing the co-expression of KRT17 with FN1 or SCGB1A1
in cells cultured in DMEM growth medium (C,D) in Cnt-PR-A and their respective quantification
relative to the total cell number (DAPI). Dots (•) in the bar charts represent the individual datapoints
generated from cell stainings of four different patients.

4. Discussion

In this study, we analyzed cultured alveolar basal cells under different cell culture
conditions. In DMEM growth medium, alveolar basal cells readily grew from periph-
eral fibrotic lung tissue, as described in our previous studies [9]. The cultured cells dis-
played a commonly observed flattened morphology, promoting epithelial cell differen-
tiation [42,43]. scRNA-seq analysis demonstrated a differentiation gradient from basal
to secretory epithelial-like cells, reflected by reduced expression of the basal cell marker
KRT5 and the appearance of secretory epithelial cell markers in the more differentiated
cell fraction. Airway basal cells have the ability to differentiate into secretory epithelial
cells [4], suggesting that alveolar basal cells possess similar differentiation capacities. In
the peripheral IPF lung, basal cells line pathological honeycomb cysts [44] which contain a
bronchiolar-like epithelium [44], suggesting that differentiation of alveolar basal cells to-
wards secretory epithelial cells also occurs in vivo. In our culture model, we observed only
reversible differentiation towards secretory epithelial-like cells. Specific culture conditions,
such as air-liquid-interface (ALI) [45] or organoid culture [46], may be required for the full
differentiation to occur.

Surprisingly, a large fraction of cultured alveolar basal cells showed transcriptomic
similarities closest to the recently described KRT17+/KRT5− aberrant basaloid cells [6,7].
A direct culture and expansion of the aberrant basaloid cells present in the fibrotic lung
tissue with our culture method seems unlikely, as these cells are only present at very low
numbers and specifically located on the surface of fibroblastic foci [6,7]. In an earlier
study, we demonstrated that KRT17+/KRT5+ basal cells were abundant in peripheral
IPF lung tissue and that individual tissue pieces that showed outgrowth of alveolar basal
cells contained KRT17+/KRT5+ basal cells [9]. Therefore, KRT17+/KRT5+ alveolar basal
cells cultured in DMEM growth medium likely differentiate towards aberrant basaloid-
like cells in vitro, a pattern confirmed in our scRNA-seq dataset by a clear differentiation
gradient originating from a cluster of proliferating basal cells towards aberrant basaloid-
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like cells. However, a main characteristic feature of aberrant basaloid cells is the absence
of KRT5 [6,7]. Aberrant basaloid-like cells in our culture still express KRT5, suggesting
that these cells could be primed but not fully differentiated towards aberrant basaloid
cells. A recent study demonstrated that human AT2 cells have the capacity to trans-
differentiate to basal cells, via SFTPC+/KRT17+/KRT5− alveolar-basal-intermediate (ABI)1
and SFTPC−/KRT17+/KRT5− ABI2 cells [5]. Another study described the occurrence of
KRT8+ alveolar differentiation intermediates (ADI) during AT2 to AT1 differentiation [19].
Interestingly, ABI1, ABI2 and KRT8+ ADI cells showed some transcriptional similarity to
aberrant basaloid cells [5,19]. Our dataset included cells with similarity to these ABI1, ABI2
and KRT8+ ADI cells, indicating that they might have the capacity to trans-differentiate
towards AT2 cells, as was previously demonstrated in mice [12,13]. Supporting this,
our cultured cell population contains cells showing some typical characteristics of AT
cells (microvilli-like structures and multi-lamellar bodies) on EM images. However, this
assumption remains highly speculative and needs to be proven in future studies.

Importantly, we here show that differentiation of cultured alveolar basal cells towards
secretory epithelial-like cells or aberrant basaloid-like cells is largely reversible by changing
the cell culture medium. This suggests that the cell differentiation capacity is largely
influenced by their specific microenvironment. A previous study proposed that the IPF
microenvironment may initiate an abnormal differentiation program in resident AT cells,
and that this may be responsible for the appearance of atypical epithelial cells in the
peripheral IPF lung [47]. Furthermore, in bleomycin-injured animal lungs, bronchial
epithelial stem cells were shown to contribute either to pathological bronchiolization or to
alveolar regeneration depending on the cells microenvironment and subsequent activation
of specific signaling pathways [13].

5. Conclusions

In this study, we cultured primary alveolar basal cells from peripheral lung tissue of
IPF patients, which provide a valuable model for IPF research. The low number of patients
included in the study limits the robustness of our results and we are aware that alveolar
basal cells cultured in vitro may not fully reflect the cells characteristics and capacities
in vivo. However, we provide evidence that while cultured primary human alveolar basal
cells maintain their fibrotic signature in vitro, they have the potential to undergo reversible
differentiation towards secretory epithelial or aberrant basaloid-like cells. This seems highly
dependent on their microenvironment. Determining specific factors that induce or reverse
these differentiation paths may help to define novel drug targets for IPF therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11111820/s1, Supplement Figure S1: tSNE showing the
distribution of cells cultured in DMEM growth medium from patient 1, 2, and 3; the percentage of
scRNA-seq reads originating from mitochondrial genes, and the number of detected genes across
cell; Supplement Figure S2: tSNE showing the best matching cell type from the SingleR analysis
for each cell cultured in DMEM growth medium using different datasets as reference; Supplement
Figure S3: tSNE showing the log-normalized expression of different marker genes in cells cultured
in DMEM growth medium; Supplement Figure S4: tSNE showing the inferred cell-cycle phase, the
log-normalized expression of MKI67, and the proliferative signature score in cells cultured in DMEM
growth medium; Supplement Figure S5: Cell counts of alveolar basal cells cultured in DMEM growth
medium at different time points; Supplement Figure S6: tSNE of cells cultured in Cnt-PR-A showing
the percentage of scRNA-seq reads originating from mitochondrial genes and the number of detected
genes across cell; Supplement Figure S7: tSNE showing the best matching cell type from the SingleR
analysis for each cell cultured in Cnt-PR-A; Supplement Figure S8: tSNE showing the log-normalized
expression of different marker genes in cells cultured in Cnt-PR-A; Supplement Figure S9: tSNE
showing the inferred cell-cycle phase, the log-normalized expression of MKI67, and the proliferative
signature score in cells cultured in Cnt-PR-A. Supplement Table S1: Materials; Supplement Table S2:
Cluster specific genes in cells cultured in DMEM growth medium; Supplement Table S3: Cluster
specific genes in cells cultured in Cnt-PR-A.
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