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Rovira-Clavé et al., 2022, Cancer Cell 40, 1423–1439
November 14, 2022 ª 2022 The Authors. Published by Elsevier I
https://doi.org/10.1016/j.ccell.2022.09.014
Authors

Xavier Rovira-Clavé,
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Xavier Rovira-Clavé,1,2,7 Alexandros P. Drainas,3,4,7 Sizun Jiang,1,5,7 Yunhao Bai,1 Maya Baron,3,4 Bokai Zhu,1,2

Alec E. Dallas,3,4 Myung Chang Lee,3,4 Theresa P. Chu,1 Alessandra Holzem,3,4 Ramya Ayyagari,3,4

Debadrita Bhattacharya,3,4 Erin F.McCaffrey,1 Noah F. Greenwald,1MaximMarkovic,1 Garry L. Coles,3,4 Michael Angelo,1

Michael C. Bassik,4 Julien Sage,3,4,6,* and Garry P. Nolan1,6,8,*
1Department of Pathology, Stanford University, Stanford, CA 94305, USA
2Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
3Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
4Department of Genetics, Stanford University, Stanford, CA 94305, USA
5Present address: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
MA, USA
6Senior authors
7These authors contributed equally
8Lead contact

*Correspondence: gnolan@stanford.edu (G.P.N.), julsage@stanford.edu (J.S.)

https://doi.org/10.1016/j.ccell.2022.09.014
SUMMARY
Intratumoral heterogeneity is a seminal feature of human tumors contributing to tumor progression and
response to treatment. Current technologies are still largely unsuitable to accurately track phenotypes and
clonal evolutionwithin tumors, especially in response to geneticmanipulations. Here, we developed epitopes
for imaging using combinatorial tagging (EpicTags), which we coupled to multiplexed ion beam imaging
(EpicMIBI) for in situ tracking of barcodes within tissue microenvironments. Using EpicMIBI, we dissected
the spatial component of cell lineages and phenotypes in xenograft models of small cell lung cancer. We
observed emergent properties from mixed clones leading to the preferential expansion of clonal patches
for both neuroendocrine and non-neuroendocrine cancer cell states in these models. In a tumor model
harboring a fraction of PTEN-deficient cancer cells, we observed a non-autonomous increase of clonal patch
size in PTENwild-type cancer cells. EpicMIBI facilitates in situ interrogation of cell-intrinsic and cell-extrinsic
processes involved in intratumoral heterogeneity.
INTRODUCTION

Heterogeneity within the cancer cell compartment of a tumor can

be the result of genetic, epigenetic, and metabolic diversity, thus

contributing to tumor progression and resistance to treatment

(reviewed in [Easwaran et al. 2014; Jamal-Hanjani et al., 2015;

Zahir et al., 2020; Hanahan and Weinberg 2011]). This heteroge-

neity begs essential questions: Do cancer clones behave largely

autonomously, or do they functionally interact? Is the tumor

simply a competition among related peers, or is there a social

ecology of tumor cells with important contributory, symbiotic dif-

ferences that must be present for success?

The recent development of multiplexed single-cell imaging

technologies have added in-depth spatial characterization of

cellular subtypes within tumors by simultaneously measuring

dozens to hundreds of proteins or RNAs (Angelo et al., 2014;

Eng et al., 2019; Rodriques et al., 2019; Goltsev et al., 2018;

Sch€urch et al., 2020; Giesen et al., 2014; Chen et al., 2022; Liu

et al., 2020). Multiplex ion beam imaging (MIBI), in particular,

can capture post-translational modifications and measure over
Cancer Cell 40, 1423–1439, Novem
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40 proteins with a resolution down to 260 nm (Keren et al.,

2019). MIBI is thus suitable to assess active and inactive proteins

within their subcellular locales, while simultaneously revealing

phenotypic, epigenetic, and metabolic cell states.

Complementarily, single-cell lineage tracing methodologies

have been useful for delineating mutations that occur during

cancer evolution (Kalhor et al., 2018; Bowling et al., 2020;

Quinn et al., 2021). Adaptations to microscopy, such as the

CRAINBOW system for fluorescently barcoding of somatic

mutations, can provide snapshots of oncogenic clonal

expansion in vivo, and its application suggests that tumor het-

erogeneity is not random but has some predetermined char-

acteristics that are heritable (Boone et al., 2019). Previous

work has adapted protein barcodes (Pro-Codes) for cancer

cell tracking via antibody-based mass cytometry for high-

dimensional single-cell CRISPR screens (Wroblewska et al.,

2018). However, cell tracking methods are hampered by either

absence of spatial resolution or limited parameters. Ideally,

multiplexed single-cell imaging would be combined with

lineage tracing to allow clonal and perturbation analysis of
ber 14, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1423
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Imaging-based identification of specific cell populations with epitope-based barcodes

(A) Schematic of a representative EpicTag construct.

(B) Workflow for multiplex imaging of epitope-based barcodes in cell pellets.

(legend continued on next page)
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individual cancer cells to the behavior and organization of the

tumor microenvironment.

Here, we optimized Pro-Codes for multiparameter single-cell

tissue imaging, which we named epitopes for imaging using

combinatorial tagging (EpicTag), and coupled them with MIBI

(EpicMIBI) for clonal growth tracking and the visualization of a

snapshot of tumor evolution. Using xenograft models of small

cell lung cancer (SCLC), an aggressive form of lung cancer

with neuroendocrine (NE) features and considerable inter- and

intratumoral heterogeneity (Simpson et al., 2020; Rudin et al.,

2019; Gay et al., 2021; Groves et al., 2022), we found that homo-

geneously tagged cancer cells configure a tumor with reproduc-

ible phenotypically, epigenetically, andmetabolically distinct cell

types, with certain phenotypes attaining dominancewithin tumor

patches. Importantly, an emergent structure is apparent depen-

dence of co-localized phenotypes that create an ecosystemwith

NE and non-NE cancer cells arranging in defined cellular neigh-

borhoods. We also observed that loss of the PTEN tumor

suppressor can shift tumor evolution through cell-intrinsic mech-

anisms but also, in some contexts, by modifying behaviors of

neighboring cancer cells that are PTEN wild-type. These results

underscore the necessity of imaging approaches, such as

EpicMIBI, to characterize the tumor microenvironment by delin-

eating the individual contributions of cancer clones toward

global tumor burden, with clear opportunities for novel anti-can-

cer therapies.

RESULTS

Imaging-based identification of cancer populations in
tumors using epitope-based barcodes
To distinguish cell populations using epitope barcoding, we de-

signed EpicTag vectors expressing a GFP reporter linked to a

C-terminal tag consisting of combinations of epitopes (Fig-

ure 1A). We generated 20 NCI-H82 SCLC cell lines, each ex-

pressing three of six epitopes: AU1, FLAG, HA, StrepII, Prot C,

and VSVg (Figure S1A). The 20 cell lines were then barcoded

with a unique combination of palladium isotopes, pooled at the

same ratio, and labeled with antibodies targeting GFP and the

six epitopes. Mass cytometry showed GFP expression in

the majority of the population and efficient detection of each of

the epitope barcodes having unique palladium barcodes

(Figures S1B–S1F), validating the 20 NCI-H82 barcoded

cell lines.

Next, we usedMIBI to distinguish barcoded cells in sections of

cell pellets (Figure 1B). We generated a cell pellet consisting of

50% wild-type NCI-H82 cells and 50% of a pooled population

of the 20 EpicTag-barcoded NCI-H82 cell lines. MIBI identified

cells with andwithout GFP expression and expression of the epi-

topes was specifically detected in GFP+ cells, as expected (Fig-

ure 1C). The analysis of signals for each of the epitopes revealed

a multicolor image with all 20 barcodes (Figures 1D, 1E, and
(C–E) Representative MIBI images of a cell pellet. (C) Left: overlay of anti-GFP a

(yellow arrow). Right: overlay of anti-GFP and the sum of all six anti-epitope imag

field of view (FOV). The multicolor overlay at the bottom shows that each GFP+ ce

showing a representative cell for each of the 20 barcodes. Dashed lines were man

white squares indicate whether the epitope was expected (1) or not (0). Images ar

Figure S1.
S1G). These ex vivo data indicate that antibody staining of

epitope-tagged proteins, coupled to amultiplexed imaging tech-

nology, such asMIBI, enables the retention of spatial information

for barcoded cells.

We next determined the potential of the EpicMIBI strategy

in vivo by pooling the 20 barcoded cell lines to generate tumors

in mice. All combinations of epitopes were again detected by

mass cytometry in dissociated tumors (Figures S2A–S2D) and

by MIBI on tumor sections (Figures 2A and 2B), indicating that

EpicTag expression is durable in vivo. Thus, EpicMIBI can be

leveraged as a proxy for common cell ancestry in proliferating

murine tumors.

EpicTags are composed of a structured protein and a tail of

epitopes. On the protein side, distinct proteins can be tagged

with combinations of epitopes (Figure 2C, top). For example,

we tagged mCherry with the six-choose-three (6C3) scheme

described above and generated 20 additional mCherry+

EpicTag-barcoded NCI-H82 cell lines (Figure S2E). We further

validated the system by generating a pool excluding two cell

lines and recovering the 38 expected combinations (Figure S2F).

We then generated tumors in mice by mixing mCherry+ and

GFP+ cancer cells and identified them by MIBI (Figures 2C

and S2G). We further generated vectors expressing the E2

and Tag100 epitopes, grew tumors, and analyzed sections. We

detected both epitopes in vivo and detected cells expressing

up to six epitopes together and either GFP or mCherry

(Figures 2D and 2E). Altogether, these experiments demonstrate

the modularity and expandability of the EpicTag system through

the diverse combination of well-expressed proteins tagged with

a wide range of epitopes.

Complex spatial tumor structures arise from a well-
established cancer cell line
NCI-H82 cells belong to the NEUROD1high subtype of SCLC

(SCLC-N) (Rudin et al., 2019). Similar to other SCLC subtypes,

SCLC-N tumors are heterogeneous and harbor cancer cells

with NE and non-NE features (Ireland et al., 2020; Stewart

et al., 2020). Single-cell analyses suggested that cells with NE

and non-NE features co-exist in NCI-H82 cells in culture (Lim

et al., 2017; Groves et al., 2022). Accumulating evidence indi-

cates that the interplay between NE and non-NE cells is critical

for tumor growth and evolution in SCLC (reviewed in [Shue

et al. 2018]).

We investigated the spatial organization of tumor heterogene-

ity in NCI-H82 xenografts using EpicMIBI, focusing on NE and

non-NE phenotypes. We stained barcoded NCI-H82 tumors

with an antibody panel to identify cell barcodes and various

cell types in the tumor microenvironment and functional states

for the cancer cells (Figure 3A). All the antibodies tested gener-

ated detectable signal with the expected cellular localization

(Figure 3B). NCI-H82 cells were identified by GFP expression

and further confirmed using a human-specific mitochondrial
nd anti-histone H3 (HH3) images showing GFP+ (white arrow) and GFP� cells

es. Scale bars, 40 mm. (D) Representative anti-epitope images from the same

ll expresses a combination of epitopes. Scale bars, 80 mm. (E) Multiple images

ually drawn to indicate the contour of the relevant cell. The numbers within the

e enlargements from boxed regions in Figure S1G. Scale bars, 10 mm. See also
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Figure 2. Detection of epitope-based barcodes in SCLC xenografts

(A) Workflow for multiplex imaging of epitope-based barcodes in subcutaneous NCI-H82 SCLC xenografts.
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marker (Figure 3C). For each NCI-H82 cell identified, barcode

expression was analyzed, as well as markers of NE and non-

NE differentiation (synaptophysin and vimentin, respectively),

epigenetic states (H3K4me2, H3K27ac, and H4K8ac—histone

modifications linked to active transcription), and metabolic

states (GLUT1 and citrate synthase—markers for glycolysis

and citric acid cycle activity, respectively) (Figure 3D). We also

identified proliferative cells (Ki-67 and the mitosis marker phos-

pho-Ser28 of histone H3, pS28 HH3) and cells with DNA damage

(phospho-Ser139H2AX, gH2AX) (Figure 3E). In addition, we

identified mouse endothelial (CD31) and stromal cells (a-smooth

muscle actin [aSMA]) (Figure 3C). While the capabilities of the

EpicTag system are illustrated here by a 22-antibody panel,

this approach is also compatible with more extensive antibody

panels (Figure S3A).

Overall, we analyzed 16 tiles from 6 tumors to obtain the

spatial location and phenotype of >200,000 NCI-H82 SCLC cells

(Figures S3B and S3C). Cell populations were defined using un-

supervised self-organizing map (SOM) on the marker expression

from all tiles. We identified eight phenotypic clusters: seven clus-

ters based on SOM, and a final manual annotation step to iden-

tify CD31+ cells (Figure 3F). Phenotypic clusters 2, 3, 5, 6, and 7

were of human origin, and clusters 1 and 4 were of mouse origin.

Cluster 8, consisting of 0.7% of the total cells, contained cells

with low levels of expression of all markers and it was removed

from the analysis. Cluster 1 contained mouse stromal cells as

indicated by the expression of aSMA and vimentin, and lack of

expression of the human-specific mitochondrial marker. Cells

in cluster 4 were mouse endothelial cells as indicated by the

expression of CD31 and vimentin, and the absence of the hu-

man-specific mitochondrial marker. Non-NE NCI-H82 cells

(marked by vimentin and absence of synaptophysin) were found

in cluster 2, whereas NE cells (marked by synaptophysin and

absence of vimentin) were split into clusters 6 and 7. The split

into two NE clusters was mainly driven by differences in the

expression of the epigenetic markers H3K27ac and H4K8ac,

which were expressed in cluster 7 but not in cluster 6. Cluster

5 was composed of mitotic cells (marked by pS28 HH3). Cells

in cluster 3 had high expression of both synaptophysin and vi-

mentin. Visual inspection of cells in cluster 3 showed NE cells

near stromal cells, suggestive of a leakage of signal from stromal

cells into NE cells, even though some of these cells may also be

transitioning between the NE and non-NE states (Figure S3D).

GLUT1, citrate synthase, H3K4me2, Ki-67, and gH2AX were

not informative for cluster annotation. Dimension reduction

showed that cells from each phenotypic cluster grouped

together (Figure 3G), supporting the clustering results.

We next calculated the frequencies of cells from each pheno-

typic cluster (Figure 3H) and mapped the localization of the clus-

ters onto each tile (Figures 3I and S3E). Mouse stromal and

endothelial cells (clusters 1 and 4, respectively) were present in
(C–E) Representative MIBI images of a tumor consisting of a pooled population of

or mCherry tagged to six epitopes (AU1, FLAG, StrepII, Prot C, Tag100, and VSVg

EpicTag construct variable on protein expression. Bottom left: overlay of anti-GFP

but not both simultaneously. Bottom right: enlarged images from the box on the le

variable on the number of epitopes. Bottom left: overlay of anti-E2, anti-Tag100

simultaneously. Bottom right: enlarged images from the box on the left. Scale bar,

arrow) or mCherry (red arrow) and six epitopes. Scale bar, 8 mm. See also Figure
all tiles analyzed (Figure 3H) and were scattered in the cluster-

colored maps (Figure 3I). As expected for an NE cell line, more

than 75% of the cells in all tiles combined were NE cells (clusters

6 and 7) (Figure 3H, ‘‘All tiles’’), and these cells were also the ma-

jor populations in each individual tile (Figure 3H). NE cells with

high expression of H3K27ac (cluster 7) were a major population

in all tiles (Figures 3H and 3I), whereas NE cells with low levels of

expression of H3K27ac (cluster 6) were only present at a high

frequency in a subset of tiles (Figures 3H and 3I; e.g., tile 15).

Similarly, non-NE cells (cluster 2) were only present at a high fre-

quency in some tiles (Figures 3H and 3I; e.g., tile 15). These re-

sults indicate that the distinct cancer cell states observed in

NCI-H82 xenografts are not homogenously distributed, even

within the same tumor.

In a reductionist view, if two phenotypes A and B are present in

a tumor, they can be located in regions rich in A, rich in B, or con-

taining both phenotypes (Figure 3J). Complexity escalates

dramatically with increasing layered classifications. We previ-

ously showed that a tissue can be represented as a collection

of cellular neighborhoods (CNs) (Sch€urch et al., 2020). The CN

analytical framework defines regions of cells with a similar sur-

rounding within tissues and enables a quantitative study of

how cell location influence function. Phenotypes identified in

the NCI-H82 xenografts were clustered based on their 30 near-

est neighbors to obtain seven distinctive CNs (Figures 3K and

S3F) that we mapped to the segmentation maps (Figures 3L

and S3G). Certain CNs were enriched in cells with homotypic in-

teractions: NE cells with high expression of H3K27ac (CN C), NE

cells with low levels of H3K27ac (H3K27aclow) (CN D), and non-

NE cells (CN B) (Figures 3K and 3L). Other CNs were composed

of several cell types and states. For example, CN A included NE

and non-NE cells (Figures 3K and 3L). CN G, enriched in mouse

cells, indicated vascularized and stromal regions of the tumor

(Figures 3K and 3L). CN F was enriched in cells from cluster 3

(‘‘double-positive cells’’), suggesting that cells in this CN are sur-

rounding the stroma (Figures 3K and 3L). CN Ewas composed of

a mixture of NE cells with high and low expression of H3K27ac

and non-NE cells (Figures 3K and 3L). Overall, 52.9% of cells

within NCI-H82 xenografts were in CNs with homotypic interac-

tions (CNB, C, andD). These analyses show that complex spatial

rearrangements can arise in vivo even from a well-established

cancer cell line, raising the question of whether clonal expansion

of cancer cells drive the formation of such structures.

Clonal cancer cell growth is not spatially constrained to
single patches in NCI-H82 xenografts
We reasoned that identifying the ancestries of the cells surround-

ing each cancer cell in NCI-H82 xenografts would provide

insights into the processes that shape tumor architecture. By

integrating cell- and pixel-based debarcoding approaches, we

developed clonal tumor maps to represent the spatial location
wild-type NCI-H82 cells and four barcoded NCI-H82 cell lines expressing GFP

) or to three epitopes (FLAG, HA, and E2). (C) Top: schematic of a representative

, anti-mCherry, and anti-HH3 images showing cells expressing GFP ormCherry

ft. Scale bar, 40 mm. (D) Top: schematic of a representative EpicTag construct

, and anti-HH3 images showing cells expressing Tag100 or E2 but not both

40 mm. (E) Images of the same FOV showing cells expressing either GFP (green

S2.
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of barcoded cells (Figure 4A and STAR methods). We identified

the 20 possible epitope combinations in NCI-H82 xenografts us-

ing this pipeline (Figures 4B, 4C, and S4A), and both cell- and

pixel-based debarcoding approaches identified all barcodes.

Approximately 67% of the cells shared barcode in both ap-

proaches, indicating proper debarcoding accuracy (Figure S4B).

The rest of cells were assessed for swapping from the cell- to

pixel-based assignment to correct for mismatches and further

improve debarcoding accuracy (STAR Methods). Some barco-

des swapped at a higher frequency than others (Figure S4C)

and the swap inversely correlated with patch size (Figure S4D),

suggesting that proximity of certain epitope combinations in

space is an important confounding effect, which is especially

relevant for smaller clones. GFP and epitope expression corre-

lated at the single-cell level (Figure S4E), which appears to be

relevant for debarcoding, as cells with high barcode expression

swapped less often than cells with low barcode expression (Fig-

ure S4F). Overall, each debarcoded cell line expressed the ex-

pected epitopes (Figure 4D), indicating that computational

deconstruction of epitope-based images identifies common an-

cestries in the cancer cell population within the tumor.

We then debarcoded the NCI-H82 xenograft dataset to obtain

a clonal tumor map for each tile (Figure S4G). After single-cell

extraction and pooling, we obtained the percentages for each

barcode (Figure 4E). The deviation from the expected 5% contri-

bution from each of the 20 barcoded cell lines in some tiles and in

the pool might be explained by several technical and biological

issues, for instance minor differences at initial seeding (Fig-

ure S4H) and limited sampling. These data indicate that global

tumor clonality is not a faithful representation of local clonal

growth, suggesting that leveraging local scale as a variable

may reveal novel mechanisms driving tumor evolution.

A clonal tumor map conveys a static and fractional picture of

the local complexity of cell-cell interactions within a tumor.

Despite these limitations, certain local cancer cell behaviors

that shape tumor growth can be inferred in such clonal tumor

map. Cancer cells sharing a barcode are expected to be de-

tected both as individually distributed cells and as grouped in

clonal tumor patches of distinct sizes (Figure 4F, top). Further-

more, individual cells and clonal tumor patches with the same

barcode are expected both in proximity to one another and scat-

tered through the tumor (Figure 4F, top). This distribution is ex-

pected to arise in concert with the distribution from other cancer

cells with distinct barcodes (Figure 4F, top; gray cells). Individu-

ally distributed cells represented 33% of cancer cells in the NCI-
(C) Images for aSMA, CD31, and human cell marker in a representative region o

(D) Images for 14 markers in a representative region of the dataset. These data e

(second to the left), epigenetic state (second to the right), and metabolic state (r

(E) Images of gH2AX, Ki-67, and pS28 HH3 in a representative region of the data

(F) A heatmap ofmeanmarker expression in the eight phenotypic clusters (rows). T

counts). The mitotic phenotypic cluster is composed by non-NE and NE cells.

(G) UMAP of all cells in the dataset (n = 231,715) colored by their phenotypic clu

(H) Frequencies of each phenotypic cluster in the entire dataset (n = 231,715) an

(I) Representative phenotypic cluster maps on a region enriched in NE cells (tile 5

clusters 1 to 8). Scale bars, 100 mm.

(J) Schematic of cellular neighborhoods.

(K) A heatmap of the frequencies of each phenotypic cluster for each of the seve

(L) Representative neighborhood maps on a region enriched in homotypic NE cel

CNs 1 to 7). Scale bars, 100 mm. See also Figure S3.
H82 xenografts (Figure S4I); however, these cells could still be

connected in the z axis to other cells with the same barcode.

The remaining 67% were found within patches ranging in size

from two cells to groups of hundreds of cells (Figure S4I). We

plotted the distance of each cell with barcode 12 to the fifth near-

est neighbor with the same barcode in tile 1 and observed that

most distances were smaller than the ones from a randomized

distribution (Figure S4J). The same trend appearedwhen consid-

ering the nearest neighbors up to 300 (Figure S4K) and was

shared among all barcodes in all tiles in the dataset (Figure S4L).

Together, these analyses show that cancer cells are not

randomly distributed in NCI-H82 xenografts and tend to form

clonal patches.

Spatial cell distribution within a tumor can be viewed as a grid

of pairwise distances (Figure 4F, bottom). This representation

summarizes all existing distances below a given threshold,

revealing clonal dynamics otherwise difficult to observe. For all

cells sharing the same barcode in a tile, we plotted the distances

to the cells within the same patch and the distances to their near-

est neighbors sharing a barcode. Some cancer cells sharing the

same barcode grouped in relatively large, well-defined patches,

whereas others were scattered individually around the tumor, far

from cells of the same barcode. Certain patches co-existed near

other patches of the same barcode (Figure 4G, top), and this

spatial distribution did not occur in randomized data (Figure 4G,

bottom). For each tile in the dataset, we applied a sliding window

approach to quantify areas enriched in clonal patches higher

than 10 cells. Certain areas of the tumor were enriched in individ-

ual cells and patches of a smaller size (Figure 4H; patch-poor)

and certain others in patches of a larger size (Figure 4H; patch-

rich). Notably, areas enriched in large patches were not only

composed of one unique barcode but also of groups of patches

with different barcodes (Figures S4G and S4M). These results

indicate that clonal growth in NCI-H82 xenografts is not spatially

constrained to single patches and is dependent on the local

environment.

Non-NE SCLC cells establish large clonal patcheswithin
the tumor
Three basic layers of information can be extracted for each cell in

the barcodedNCI-H82 xenograft dataset: the isogenic cell line to

which the cell belongs (EpicTag barcodes), its type and state

(phenotypic clusters), and the functional markers expressed

(Figure 5A). The spatial component provides deeper layers of in-

formation on the cell type and state of the cells surrounding each
f the dataset. Scale bars, 20 mm.

xemplify antibody staining patterns used to assess barcode (left), phenotype

ight). Scale bars, 100 mm (top) and 50 mm (bottom).

set. Scale bars, 20 mm.

he intensity of eachmarker is defined by the color bar at the bottom (normalized

ster.

d in each individual tile (tiles 1 to 16).

; phenotypic cluster 7) and a region with distinct cell types (tile 15; phenotypic

n CNs (rows).

l interactions (tile 5; CN 3) and in a region with distinctive substructures (tile 15;
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cell (i.e., the CN), inference of clonality of surrounding cancer

cells (i.e., tumor patches), and the subcellular location of the

markers (Figure 5A). For an integrative data visualization, we

plotted the expression of eight markers for all barcoded cells

from the non-NE, NE H3K27aclow, and NE cell states (clusters

2, 6, and 7, respectively) in all CNs (Figure S5A). The coefficients

of variation of marker expression among barcodes in each can-

cer cell state and CN (Figures S5B and S5C) indicate that there is

an overall similar expression ofmarkers across cancer cell states

on the three main cancer cell states (non-NE, NE, and NE

H3K27aclow) in their respective homotypic CNs (Figure 5B) as

well as outside the clusters in their homotypic CNs (Figure S5A),

as would be expected for 20 isogenic cell lines and CNs, with

rare exceptions that might be explained by the low number of

cells analyzed. Taken together, these analyses show good

marker expression agreement among barcodes across clusters

and CNs.

EpicTag-barcoded NCI-H82 cells generate patches of a broad

range of sizes. We askedwhether the total number of cells corre-

lated with increased patch numbers and sizes for each barcode

and phenotypic cluster. For NE cells (cluster 7), the number of

cells and patches strongly correlated across barcoded cell lines

(Radj
2 = 99%) (Figures 5C and S5D). In contrast, there was a

lower correlation for non-NE cells (cluster 2; Radj
2 = 63%)

(Figures 5C and S5D). An exponential model might provide a bet-

ter fit to the non-NE data (Radj
2 = 84%) (Figure 5C), but few data

points inform the curve. Although the data points are limited by

the number of barcodes, these results suggest that the mecha-

nisms of expansion differ for the NE and non-NE patches. The

barcoded cells are from the same parent cell culture, and we ex-

pected similar barcode representations across the different clus-

ters (with cells switching from one state to another similarly in all

barcoded cell lines), which was observed for most phenotypic

clusters (Figure S5E). One notable exception was the lack of cor-

relation for the ratio betweenNE and non-NE cells (clusters 7 and

2, respectively) when comparing barcoded cell lines (Figure S5F),

suggestive of specific dynamics in the acquisition of these can-

cer cell states within tumors.

The non-NE cells (cluster 2) generated fewer patches than the

NE cells (cluster 7) (Figure 5C). The ratio of the slopes from the

linear models indicates that, for NE cells (cluster 7), 1.8

times more cells were in fewer patches than for non-NE cells

(cluster 2), suggesting that non-NE cells are contained in larger
Figure 4. A debarcoding strategy identifies clonal tumor patches

(A) Pipeline to reconstruct clonal tumor maps.

(B and C) Representative clonal tumor map from a barcoded NCI-H82 xenograft. (

the left. Scale bars, 100 mm. (C) Enlarged view of the white boxes in (B).

(D) Epitope signal on each debarcoded population. Left: expected signal for ea

epitope signal in each debarcoded population from (B). Color shows the median

(E) Frequencies of each EpicTag barcode in the dataset (n = 231,715) and in eac

(F) Top: schematic representation of cells with the same EpicTag barcode. Cells w

(e.g., cells 2 to 4). Cells sharing a barcode can be distributed nearby (e.g., cells 6 a

the schematic shown on top.

(G) Grid of pairwise interactions showing the distances of each cell to its fifth nea

(bottom). Randomization was performed by randomly assigning EpicTag 12 to s

arranged in the diagonal by patch size (larger patches in the top left corner). The

tumor patches that are closer in space. The red box exemplifies individually sca

(H) A clonal tumor map (left image) can be decomposed based on the size of the c

patches (right, bottom image) or depleted (right, top image). See also Figure S4.
patches (Figure 5D, white arrow). Indeed, patch size was signif-

icantly larger in non-NE (cluster 2) compared with NE (cluster 7)

and other cell states (Figures 5E, right, and S5G and H). These

data suggest that NCI-H82 cells with a non-NE phenotype

remain together after cell division and tend to form larger

patches. Certain areas of the NCI-H82 xenografts are enriched

in large patches of non-NE cells (cluster 2) from distinct isogenic

cell lines (Figures S3E, e.g., tiles 4 and 14, and 5D). This is in

contrast to other areas of the NCI-H82 xenografts, where non-

NE cell (cluster 2) patches are mostly absent (Figure S3E,

e.g., tiles 5 and 10). Close to the large patches of non-NE cells

(cluster 2), other large patches of NE cells (cluster 7) sharing

the same barcode are observed (Figure 5D, yellow arrows).

This suggests that, in certain regions of the tumor, interactions

of non-NE cells are stabilized, switching the phenotype of the tu-

mor in that area to a non-NE phenotype.

Non-NE cells (cluster 2) were identified in all barcoded popu-

lations (Figure 5E), but six barcoded cell lines generated much

larger patches of non-NE cells (cluster 2) compared with their

NE counterparts (cluster 7) (Figure 5E; EpicTags 5, 6, 8, 12, 14,

and 18) and four barcoded cell lines contained only 25–50 cells

of non-NE cells (cluster 2) (Figure 5E; EpicTags 1, 3, 4, and 17),

depicting a high variation in non-NE cell number across the 20

barcoded cell lines. Notably, approximately 90% of cells in

each patch were assigned to the same cluster and the presence

of a dominant cluster was significantly higher than expected

based on a random distribution (Figure S5I). These observations

suggest that NCI-H82 cells grown in vivo are mostly NE in nature

but that large patches of non-NE cells may sometimes ‘‘stabi-

lize’’ and expand in response to unknown stimuli.

We surmised that the generation of these large patches of

non-NE cells (cluster 2) may be due to increased proliferation.

Analysis of Ki-67, a marker of non-quiescent cells (Miller et al.,

2018), showed that mitotic cells (cluster 5) had the highest level

of Ki-67 expression (Figure 5F), as expected. In non-NE cells

(cluster 2), Ki-67 levels significantly increased, and the number

of quiescent cells significantly decreased with patch size

(Figures 5F and 5G). In contrast, there was no significant corre-

lation between Ki-67 expression, number of quiescent cells,

and patch size for NE cells (cluster 7) (Figures 5F and 5G). NE

H3K27aclow cells (cluster 6) had a low proliferative index

(Figures 5F and 5G), highlighting a functional difference with

NE cells (cluster 7). Interestingly, non-NE (cluster 2) and NE cells
B) Left: overlay of anti-epitope images. Right: clonal tumor map of the image on

ch epitope in each barcode. Gray indicates positive signal. Right: measured

of the normalized counts.

h individual tile (tiles 1 to 16).

ith a particular barcode can be individually distributed (e.g., cell 1) or grouped

nd 11) or far apart (e.g., cell 5). Bottom: schematic grid of pairwise distances of

rest neighbor for cells with EpicTag 12 in tile 1 (top) and a randomized sample

egmented cells in tile 1, up to the number of EpicTag 12 in tile 1. Cells were

green box exemplifies a clonal tumor patch. The white boxes exemplify clonal

ttered cells.

lones into patch enrichment maps (middle image). Certain areas are enriched in
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Figure 5. Non-neuroendocrine SCLC cells establish large patches with increased proliferative index and decreased DNA damage

(A) Overview of the different layers obtained with epicMIBI. Scale bars, 100 mm.

(B) Polar plots of marker expression in homotypic CNs (cluster 2, CN B; cluster 6, CN D; cluster 7, CN C). Synaptophysin (SYP) and citrate synthase (CS).

(legend continued on next page)
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(cluster 7) were more quiescent in CN D (18% and 11%, respec-

tively), which is enriched in NE H3K27aclow cells (cluster 6)

(Figures S5J and S5K). This suggests that the proliferation of

NE and non-NE cells is affected by the presence of more slowly

cycling NE-H3K27aclow cells. Ki-67 expression was higher in the

larger patches across all CNs, although this was observed to a

less extent for CN D, enriched in NE H3K27aclow cells (cluster

6) (Figure S5L). Notably, citrate synthase expression was signif-

icantly elevated in larger non-NE (cluster 2) patches (more than

10 cells), but GLUT1 levels were similar across patch sizes in

both non-NE (cluster 2) and NE cells (cluster 7) (Figures 5H and

5I), suggesting elevated activity of the citric acid cycle compared

with glycolysis in larger non-NE patches. Finally, we noted that

that larger patches (more than 10 cells) of non-NE (cluster 2)

and NE cells (cluster 7) showed less DNA damage (Figure 5J) in-

dependent of the neighborhood in which these cells were

located (Figure S5M). Decreased DNA damage, changes in

metabolism, and increased proliferation may all contribute to

the expansion of larger non-NE clonal patches once small

patches have formed.

Our results are influenced by the choice of antibodies in the

panel. NEUROD1 is highly expressed in NCI-H82 cells;

NOTCH2 and YAP1 are non-NE markers in SCLC (Tlemsani

et al., 2020; Lim et al., 2017; Shue et al., 2022). While these an-

tibodies were not included in our epicMIBI panel, single staining

showed widespread expression of NEUROD1 throughout the tu-

mor, as expected, but distinctive patch-like staining for NOTCH2

and YAP1 (Figure S5N), reminiscent of the pattern observed for

vimentin.

PTEN loss in the NCI-H82 model promotes a non-cell
autonomous increase of patch size in neighboring PTEN

wild-type cancer cells
PTEN is a known tumor suppressor in SCLC (McFadden et al.,

2014; Cui et al., 2014), but the evolution of PTEN mutant clones

within SCLC tumors has not been examined. We knocked out

PTEN by Cas9-sgRNA ribonucleoprotein (RNP) delivery

(PTEN�/�) in NCI-H82 cells expressing EpicTags 1 and 20

and generated six control cell lines (EpicTags 2, 4, 14, 16, 17,

and 18) by delivering non-targeting RNPs (Figure 6A). These 8

cell lines were then pooled with the remaining 12 wild-type

EpicTag-barcoded NCI-H82 lines to generate a population con-

sisting of 20 cell lines (‘‘PTEN�/� pool’’), and a pool of the 20

original EpicTag-barcoded lines was used as a control. In the

PTEN�/� pool, EpicTag lines 1 and 20 grew more rapidly in cul-

ture than the other lines (Figures 6B and 6C), as assessed by

mass cytometry, and accounted at the end of the experiment

for 15% and 29% of the population, respectively. The original

(PTEN wild-type) EpicTag lines 1 and 20 did not have a

competitive advantage (Figure 6C). These observations vali-
(C) Total number of barcoded cells and patches for each EpicTag plotted for clu

(D) Representative image of large patches with phenotypic clusters and EpicTag b

arrows indicate where non-NE and NE cells share the same barcode. Scale bars

(E) Patch sizes by cell number per EpicTag for cluster 2 (non-NE cells, red) and c

(F–J) Single-cell analysis in individual clusters. For each cluster the data were s

calculated by ANOVA within and between groups and adjusted by Bonferroni (T

expression. (G) Quiescent cells per cluster quantified by the percentage of cells pe

(I) GLUT1 expression. (J) Percentage of cells with DNA damage per cluster, infer
dated the expected tumor suppressor role for PTEN in SCLC

cells in culture.

We next analyzed by MIBI >198,000 cells from ten tiles from

tumors generated from the PTEN�/� pool and four tiles from tu-

mors with only PTEN wild-type cells. All 20 barcodes were de-

tected in tumors from both groups (Figure S6A). Surprisingly, in

this context, PTEN�/� cells did not expand more than control

cells (Figure 6C, right). We also found no difference in the prolif-

eration of PTEN�/� and control cells in the xenografts (Fig-

ure S6B). These data show that PTEN knockout in NCI-H82 cells

provides a competitive growth advantage in culture but not

in vivo in the context studied, suggesting that wild-type and

PTEN�/� cells may interact differently in 3D tumors than

in vitro. However, the overall tumor architecture, as defined

by SOM clusters and CNs, was comparable between pools con-

taining PTEN�/� cells and controls (PTEN wild-type) (Figures

S6C–S6G), suggesting that nomajor differences in the spatial ar-

rangements of the NCI-H82 xenografts were induced when 10%

of the population lacked PTEN.

We next analyzed patches in tumors generated from the

PTEN�/� pool and in tumors from the PTEN wild-type pool.

Similar to our previous analysis (Figure S5I), we observed

patches of cells with a dominant phenotype for the control

(PTEN wild-type) cells (Figure S6H). In contrast, the patches of

cells that lacked PTEN were generally composed of multiple

cell states (Figure S6H), including patches with a mixture of NE

(cluster 7), vimentin+ (cluster 2), and NE H3K27aclow (cluster 6)

cells (Figure S6I). Notably, PTEN�/� cells had a higher percent-

age of NE H3K27aclow cells (cluster 6) compared with control

cells in the same tumor (Figure 6D). NE H3K27aclow cells (cluster

6) were smaller than conventional NE cells (cluster 7) (Figure S6J)

and were identified in areas with features of necrosis (Fig-

ure S6K). In pellets from in vitro cultured PTEN�/� and control

(PTEN wild-type) NCI-H82 cells, PTEN�/� cells had higher vi-

mentin expression, similar H3K27ac expression, and similar

levels of cell death compared with control cells (Figure S6L). In

NCI-H82 xenografts, PTEN�/� cells were more likely to be in

CN E (Figure 6E), areas of the tumor corresponding to the border

between regions rich in conventional NE cells (cluster 7) and NE

H3K27aclow (cluster 6) (Figure 6F). Cells in CN E expressed

considerably less H3K27ac compared with cells in CN C, and

levels of H4K8ac were lower than in CN C and CN D, although

the difference was less dramatic (Figure S6M), suggesting a

stepwise process of epigenetic alterations. Overall, these data

show that loss of PTEN in NCI-H82 cell populations in vivo is

accompanied by a higher number of vimentin-positive cells

(cluster 2) and NE H3K27aclow cells (cluster 6) as well as co-resi-

dence of these cell types with NE cells (cluster 7) within the same

clonal tumor patch, which may account for the lack of observed

competitive advantage of PTEN�/� cells in vivo.
sters 2 (non-NE) and 7 (NE) in all acquired tiles.

arcodes indicated. White arrow highlights a large patch of non-NE cells. Yellow

, 100 mm.

luster 7 (NE cells, green). p = 2.2*10�16.

eparated by patch size: 1 cell, 1 to 10 cells, and over 10 cells. Significance is

able S1). *p-adj = 0.05–0.01, **p-adj = 0.01–0.001, ***p-adj < 0.001. (F) Ki-67

r cluster that are negative for Ki-67 expression. (H) Citrate synthase expression.

red from gH2AX expression. See also Figure S5.
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Our patch analysis of control NCI-H82 xenografts (Figure 4)

provided a ground truth for the expected clonal growth dynamics

of this cell line in vivo (Figure 6G; ‘‘First set control’’). The same

patch size was also observed in the control tumors generated

in parallel to the tumors containing PTEN�/� populations (Fig-

ure 6G; ‘‘Second set control’’). Strikingly, the clonal patches

were larger in tumors containing PTEN�/� cells than in tumors

with only control cell lines (Figure 6G; ‘‘Second set PTEN�/�’’).
Not only were patches containing PTEN�/� cells larger, but there

was also an increase of patch size for most PTEN wild-type con-

trol cell lines (Figures 6H and 6I). Larger patch size in control cells

in tumors containing PTEN�/� cells could not be explained by

increased proliferation, altered GLUT1 or citrate synthase levels,

higher amounts of DNA damage, or total tumor size

(Figures S6N–S6P). While the reason for the larger patch size re-

mains unknown, and was unexpected, these data demonstrate

that the overall architecture of NCI-H82 xenografts is altered

by the presence of a PTEN�/� population seeded at �10%.

We measured tumor growth in mice after transplant of sam-

ples containing defined ratios of control and PTEN�/� cells and

observed that the presence ofPTEN�/� cells did not influence tu-

mor size (Figure 6J). Furthermore, the ratio of PTEN�/� to wild-

typePTEN control cells was higher in vitro than in vivo (Figure 6K),

and tumor size was not greater in mice transplanted with a higher

percentage of PTEN�/� cells (Figure S6Q). These tumor growth

measurements further support our hypothesis that cancer cell-

intrinsic, pro-growth phenotypes, such as those induced by

PTEN loss, can be reshaped by the tumor microenvironment.

In NCI-H82 xenografts, the modified tumor architecture is not

just explained from a PTEN�/� cell-intrinsic perspective: these

genetically edited cells exert non-autonomous effects on other

cancer cells within the tumor.

We further validated the EpicMIBI approach and examined

some of the key finding of the NCI-H82model using NJH29 cells,

another SCLC-N model. We grew tumors containing defined

ratios of control and PTEN�/� NJH29 cells and observed that

tumors with only PTEN�/� cells had some growth advantage

(Figure S7A). We quantified the percentage of each barcode in

the tumors from the mixed and control pools by EpicMIBI and
Figure 6. PTEN deficiency in a fraction of cancer cells modifies tumor

(A) Workflow for multiplex imaging of genetically modified epitope-based barcod

(B) UMAP of cultured cells (n = 69,065) grouped and colored by epitope expressio

20 (top).

(C) Frequencies of each EpicTag barcode in cells grown in vitro and in vivo in ‘‘C

(D) Frequencies of each phenotypic cluster in ‘‘Control’’ (n = 56,199) and ‘‘PTEN�/

type cells (‘‘–’’), PTEN unedited but nucleofected cells (‘‘ctrl’’), and PTEN knocko

(E) Frequencies of each CN in ‘‘Control’’ and ‘‘PTEN�/�’’ tumors.

(F) Clonal tumor, phenotypic cluster, and CN maps, and epigenetic markers in a

cells. Bottom row images are enlarged representations of red dashed squares in

H3K4me2+ cells enriched in CN E. Scale bars, 40 mm (top) and 10 mm (bottom).

(G) Overall patch size by cell number in ‘‘Control’’ and ‘‘PTEN�/�’’ tumors. The ove

set control’’). P values calculated by the Student’s t test.

(H) Images of clonal tumor map with EpicTag barcodes highlighted in patches of

PTEN knockout patches. The legend indicates the color for each EpicTag barc

consequence of a tile having eight FOVs instead of nine (see Figure S3C). Scale

(I) Patch size by cell number per EpicTag in ‘‘Control’’ and ‘‘PTEN�/�’’ tumors. P

(J) Tumor volume of 25 days of growth in mice. Groups: PTEN�/� cells (5 mice for r

for Rep. A, 6 mice for Rep. B), PTEN�/�10%: WT 90% (4 mice for Rep. A, 6 mic

(K) Ratio of GFP to mCherry in NCI-H82 cells in vitro and in vivo at day 25. Mixes

(GFP):WT (mCherry). See also Figures S6 and S7.
analyzed cells grown in vitro by CyTOF. In vivo, we analyzed

>287,000 cells from 8 mixed tumors and 7 control tumors (Fig-

ure S7B). Cells in the control pool grew at similar rates both

in vitro and in vivo (Figure S7C), validating the experimental

approach. Missing barcodes had the fewest counts with a false

positive rate of 0.01% in vitro and 1.5% in vivo (Figure S7C), vali-

dating the debarcoding approach. PTEN�/� cells in the mixed

pool accounted for a total of 83% of the population in vitro,

and 38% of the population in vivo (Figure S7C). As also observed

in the NCI-H82 model, PTEN�/� NJH29 cells expanded less

in vivo than in vitro (Figures S7C and S7D). Interestingly,

PTEN�/�NJH29 cells andwild-type NJH29 cells inmixed tumors

proliferated in vivo at a similar ratio than cells in control tumors

(Figure S7E). Overall, these results show that PTEN is a strong tu-

mor suppressor in vitro in the NJH29 cell model, but its loss only

leads to limited increased tumor growth in vivo.

PTEN�/� NJH29 cells arranged in large clonal patches, as

observed in the NCI-H82 model (Figures S7F and S7G). In

contrast to the NCI-H82 model, however, the clonal PTEN

wild-type patches were not larger in tumors containing PTEN�/�

cells than in tumors with only control cell lines (Figures S7F and

S7G). The phenotypic clusters and their percentages observed

in control NCI-H82 xenografts were conserved in control

NJH29 xenografts (Figure S7H-K), but the overall spatial distri-

bution was shifted toward increased intermixing of NE-

H3K27aclow cells (cluster 6) with NE cells (cluster 7) (Figures

S7L–S7N). Similar to the observation made in NCI-H82 xeno-

grafts, NE H3K27aclow NJH29 cells (cluster 6) were smaller

than NE cells (cluster 7) (Figure S7O), suggesting that these

two NE clusters are functionally distinct in the two models.

PTEN�/� NJH29 cells had a higher percentage of non-NE cells

(cluster 2) but not NE H3K27aclow cells (cluster 6) compared

with the wild-type cells within the same tumor (Figure S7J). As

also observed in NCI-H82 xenografts, patches of NJH29 cells

that lacked PTEN were characteristically heterogeneous

compared with PTEN wild-type patches in the same tumor and

control tumors (Figure S7P).

In summary, PTEN is a potent tumor suppressor in vitro for

both NCI-H82 and NJH29 cell lines and its loss leads to limited
architecture through cell-intrinsic and -extrinsic mechanisms

ed cells in subcutaneous NCI-H82 xenografts.

n. Dashed ellipses and percentages indicate PTEN�/� EpicTag 1 (bottom) and

ontrol’’ and ‘‘PTEN�/�’’ pools. Black dashed boxes indicate PTEN�/� cells.
�’’ (n = 142,056) tumors. For the ‘‘PTEN�/�’’ tumors, frequencies for PTENwild-

ut cells (‘‘PTEN�/�’’) are shown.

representative region of a PTEN�/� NCI-H82 xenograft highlighting wild-type

the top row. White arrows indicate representative H3K27ac�, H4K8ac+, and

rall patch size from the dataset shown in Figure 5 is shown as reference (‘‘First

more than 50 cells in ‘‘Control’’ and ‘‘PTEN�/�’’ tumors. White arrows indicate

ode. The black square in the image at the bottom, second from the right, is

bars, 100 mm.

value calculated by the Student’s t test.

eplicate (Rep.) A, 6mice for Rep. B), PTEN�/� 50%:wild-type (WT) 50% (5mice

e for Rep. B), WT 50%: WT 50% (5 mice for Rep. A, 6 mice for Rep. B).

are 10:90 and 50:50 mixes for PTEN�/� (GFP):WT (mCherry) and 10:90 for WT
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increased tumor growth in NJH29 but no growth advantage

for NCI-H82 xenografts. Many biological observations are reca-

pitulated in the two SCLC models. For instance, the same

phenotypic clusters are detected in wild-type cells in both

models, and there were increased patch sizes, higher percent-

ages of non-NE cells, and phenotypic cluster mixing in the

same patch in the PTEN�/� cell population in both models.

EpicMIBI provided unique insights into themechanisms underly-

ing the in vivo growth differences between NCI-H82 and NJH29

PTEN knockout cells: there was a higher percentage of NE

H3K27aclow cells in the PTEN�/� NCI-H82 population, a strong

compartmentalization of NE H3K27aclow cells within the NCI-

H82 xenografts, and an increased patch size on PTEN wild-

type cells mixed with PTEN�/� NCI-H82 cells.

DISCUSSION

Clonal evolution is a major determinant of tumorigenesis. By

applying a strategy for in situ tracking of barcodes in SCLC xeno-

grafts, we show that barcode-basedmultiplexing integrated with

single-cell, deep in-situ tissue characterization can reveal new

insights into tumor architecture and evolution. Our data show

that even well-established cell lines can form complex tumor

structures with inter-dependencies wherein one or more pheno-

typic states prefer or generate nearby distinct phenotypic states.

Within these structures, we identified localized growth of clonal

patches and detected distinct spatial dynamics of cell pheno-

types within the tumor. We further extended the capabilities of

the system by linking barcode expression to specific genome

edits, opening new opportunities to study, in situ, complex

autonomous and non-autonomous cellular effects during tumor

growth.

The NCI-H82 and NJH29 cell lines were useful models to char-

acterize and benchmark EpicMIBI, and this report exemplifies

some of the biological insights that can be gained from these

models. However, these cell line-based models are not fully

representative of real tumor dynamics or cancer cell phenotypic

heterogeneity as the immune system is absent, and certain

clonal spatial dynamics might be biased. Expanding EpicMIBI

to genetically modifiedmousemodels and patient-derived xeno-

grafts will provide additional insights into tumor clonality,

including cancer cell interactions with immune cell populations.

This study is focused on how PTEN loss impacts spatial tumor

heterogeneity. Other alterations in SCLC (George et al., 2015)

with greater clinical and biological significance and additional

SCLC subtypes (Rudin et al., 2019) could be similarly investi-

gated by tagging edited cell lines and using more advanced

in vivo models. EpicMIBI could be applied to study other cancer

types to evaluate clonal patch behaviors across cancer types in

tumor progression and response to therapy.

EpicMIBI is constrained by the number of barcodes deployed,

the size and quality of the antibody panel, acquisition area, and

debarcoding fidelity. Expanding the panel with additional anti-

bodies targeting phenotypic, hypoxic, or cell death markers

may generate new hypotheses about how certain cancer cell

processes and protein functions shape the tumor microenviron-

ment. MIBI is applicable to 2D tissue sections, limiting preserva-

tion of relevant clonal cell spatial interactions in the z axis, such

as irregularly shaped tumor patches and vascular growth. The
1436 Cancer Cell 40, 1423–1439, November 14, 2022
lack of information in the z dimension may be the reason for

some of the observed ‘‘breaks’’ in connectivity of a clone, high-

lighting the need for 3D imaging. An appealing future direction is

leveraging on technologies for 3D multiplex imaging, such as

STARmap (Wang et al., 2018) or clearing-enhanced 3D micro-

scopy (Li et al. 2017). In addition, multi-omics integration of

EpicMIBI datasets with transcript-level information will provide

a deeper understanding on tumor patch behavior (Zhu et al.,

2021; Palla et al., 2022). The debarcoding pipeline also has lim-

itations. Cells surrounded by other cells with different barcodes,

cells with low barcode expression, and untagged cells are more

prone to artifacts. In addition, signal spillover from neighboring

cells may be a confounding factor; the application of a correction

method similar to REDSEA (Bai et al., 2021) and machine

learning approaches (Moen et al., 2019) are promising ap-

proaches to improve debarcoding.

In summary, the ability to track barcoded cancer cells in situ,

together with the characterization of their spatial surroundings,

opens new avenues for understanding tumor evolution.

Leveraging the capability to trace complex populations at the

subcellular level with distinct sets of genetic modifications,

future work will be able to identify causal relations of genotypes

and phenotypes to cellular neighborhoods and inter- and multi-

clone behaviors. Recently, Perturb-map, a combination of

spatial epitope barcoding and spatial transcriptomics, has

demonstrated an increase in the ability to identify regulators of

the tumor microenvironment (Dhainaut et al., 2022). Spatial bar-

code tracing is a blooming technology uniquely positioned to

reveal the spatiotemporal dynamics of tissues at the single-cell

scale (reviewed in [Wagner and Klein 2020]); yet, major technical

hurdles limit widespread availability. The refinement of EpicMIBI,

Perturb-map, and other similar technologies (Frieda et al., 2017;

Askary et al., 2020; Chow et al., 2021; Kudo et al. 2022; Zhao

et al., 2022; Dhainaut et al., 2022) will help reveal principles

and mechanisms of tissue developmental processes, in both

normal and malignant growth, which will thus accelerate thera-

peutic discoveries.
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Antibodies

Vimentin (D21H3) XP� Rabbit Cell Signaling Technology Cat# 5741S; RRID: AB_10695459

Histone H3 (D1H2) XP Cell Signaling Technology Cat# 4499S; RRID: AB_10544537

Histone H3 Phospho (Ser28) BioLegend Cat# 641002; RRID: AB_1227659

Mitochondria Abcam Cat# ab92824; RRID: AB_10562769

Ki-67 Cell Signaling Technology Cat# 9449; RRID: AB_2797703

a-Smooth Muscle Actin Cell Signaling Technology Cat# 19245; RRID: AB_2734735

CD31 Abcam Cat# ab225883

Citrate Synthase Abcam Cat# ab129095

GLUT1 Abcam Cat# ab115730; RRID: AB_2832207

H2AX (pS139), gH2AX BD Biosciences Cat# 560443; RRID: AB_1645592

Synaptophysin Novus Cat# NBP1-47483; RRID: AB_10010435

H3K27ac Thermo Fisher Scientific Cat# MA5-23516; RRID: AB_2608307

H3K4me2 Thermo Fisher Scientific Cat# 701764; RRID: AB_2532505

H4K8ac Thermo Fisher Scientific Cat# 701796; RRID: AB_2532510

mCherry Abcam Cat# ab167453; RRID: AB_2571870

GFP Abcam Cat# ab183735; RRID: AB_2732027

VSV-G Tag Thermo Fisher Scientific Cat# PA1-30138; RRID: AB_1961360

E2 Tag GenScript Cat# A00630; RRID: AB_914515

Strep Tag II GenScript Cat# A01732; RRID: AB_2622218

Protein C Tag GenScript Cat# A01774; RRID: AB_2744686

Tag-100 Tag GenScript Cat# A00677; RRID: AB_915550

AU1 Tag Bethyl Cat# A190-124A; RRID: AB_155848

FLAG Tag Millipore-Sigma Cat# F1804; RRID: AB_262044

HA Tag Thermo Fisher Scientific Cat# 26183; RRID: AB_10978021

Cleaved caspase 3 BD Biosciences Cat# 559565; RRID: AB_397274

NEUROD1 Abcam Cat# ab109224; RRID: AB_10861489

YAP1 Cell Signaling Technology Cat# 14074; RRID: AB_2650491

NOTCH2 Cell Signaling Technology Cat#5732; RRID: AB_10693319

Hexokinase-1 Abcam Cat# ab150423; RRID: N/A

H4K12ac Thermo Fisher Scientific Cat# 712991; RRID: AB_2895909

Na+ K+ ATPase Abcam Cat# ab167390; RRID: AB_2890241

H3K4me1 Thermo Fisher Scientific Cat# 710795; RRID: AB_2532764

ATP5A Abcam Cat# ab14748; RRID: AB_301447

CD56 Ionpath Cat# 715101-100; RRID: AB_2861293

H4K20me1 Thermo Fisher Scientific Cat# MA5-18067; RRID: AB_2539450

SLC1A5 / ASCT2 Abcam Cat# ab251591; RRID: N/A

CD107a (LAMP-1) BioLegend Cat# 328602; RRID: AB_1134259

H3K9ac Cell Signaling Technology Cat# 9649; RRID: AB_823528

H3K27me3 Cell Signaling Technology Cat# 9733; RRID: AB_2616029

ImmPRESS HRP Horse anti-Rabbit IgG Vector Labs MP-7801-15

Alexa Fluor 594 Donkey anti-Goat IgG Thermo Fisher Scientific Cat# A-11058; RRID: AB_2534105

Alexa Fluor 488 Donkey anti-Rabbit IgG Thermo Fisher Scientific Cat# A-21206, RRID: AB_2535792

Bacterial and virus strains

Endura� Chemically Competent Cells Lucigen Cat# 60240-1

(Continued on next page)
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Chemicals, peptides, and recombinant proteins

Alt-R� S.p. Cas9 Integrated DNA Technologies Cat# 1081059

Polyethylenimine (PEI) Polysciences Cat# 23966-1

Polybrene Millipore-Sigma Cat# TR-1003-G

Opti-MEM Thermo Fisher Scientific Cat# 31985088

RPMI 1640 Corning Cat# 15-040-CV

DMEM Thermo Fisher Scientific Cat# 11965092

Bovine Growth Serum Thermo Fisher Scientific Cat# SH3054103HI

Penicillin-Streptomycin-Glutamine Thermo Fisher Scientific Cat# 10378016

Fetal Bovine Serum Thermo Fisher Scientific Cat#16000044

Matrigel BD biosciences Cat# 356237

Tris(2-carboxyethyl) phosphine

hydrochloride (TCEP)

Thermo Fisher Scientific Cat# 77720

PBS antibody stabilizer Thermo Fisher Scientific Cat# NC0414486

Paraformaldehyde (PFA) Thermo Fisher Scientific Cat# 28906

Saponin Millipore-Sigma Cat# S7900-100G

Bovine Serum Albumin (BSA) Millipore-Sigma Cat# A3059

Sodium azide Millipore-Sigma Cat# 71289

Cell-ID Intercalator-Ir Fluidigm Cat# 201192B

L15 media Millipore-Sigma Cat# L1518

Collagenase I Millipore-Sigma Cat# C0130

Collagenase II Millipore-Sigma Cat# 6885

Collagenase IV Millipore-Sigma Cat# 5138

Elastase CellSystems Cat# LS002292

DNAseI Millipore-Sigma Cat# 10104159

RBC Lysis Buffer Thermo Fisher Scientific Cat# 00-4333-57

Histogel Thermo Fisher Scientific Cat# NC9150318

Vectabond Vector Labs Cat# SP-1800-7

1X Dako Target Retrieval Solution Agilent Cat# S2375

1X TBS IHC wash buffer with Tween 20 Cell Marque Cat# 935B-09

Donkey serum Millipore-Sigma Cat# D9663-10ML

Triton X-100 Millipore-Sigma Cat# T8787-100ML

Glutaraldehyde Electron Microscopy Sciences Cat# 16120

H-3300 Vector Labs Cat# H-3300-250

DAB reagent Vector Labs Cat# SK-4100

Hematoxylin Millipore-Sigma Cat# HHS32

Refrax Mounting Medium Anatech Ltd Cat# 711

Fluoromount-G SouthernBiotech Cat# 0100-01

Histo-Clear II National Diagnostics Cat# HS-202

Hydrogen peroxide VWR Cat# BP2633-500

Horse serum Thermo Fisher Cat# 16050-130

Critical commercial assays

SE Cell Line 4D-NucleofectorTM X Kit S Lonza Cat# V4XC-1032

Herculase II Fusion DNA Polymerase kit Agilent Cat# 600675

Maxpar X8 polymers Fluidigm Cat# 201300

Cell-IDTM 20-Plex Pd Barcoding Kit Fluidigm Cat# 201060

TSA Plus Fluorescein kit Akoya Biosciences Cat# NEL741001KT

Deposited data

Source data for datasets 1 to 3 and the code for

debarcoding

Mendeley Data https://data.mendeley.com/datasets/

4y3fzctgxn/draft?a=042a495e-998a-

4caf-b967-4030b7f5e7bf
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Experimental models: Cell lines

293T ATCC� HTB-3216�
NCI-H82 ATCC� HTB-175�
NJH29 Sage Lab N/A

NCI-H82-epicTAG-GFP-VSVg-StrepTagII-ProtC This paper N/A

NCI-H82-epicTAG- GFP-VSVg-StrepTagII-HA This paper N/A

NCI-H82-epicTAG- GFP-VSVg-StrepTagII-FLAG This paper N/A

NCI-H82-epicTAG- GFP-VSVg-StrepTagII-AU1 This paper N/A

NCI-H82-epicTAG- GFP-VSVg-ProtC-HA This paper N/A

NCI-H82-epicTAG- GFP-VSVg-ProtC-FLAG This paper N/A

NCI-H82-epicTAG- GFP-VSVg-ProtC-AU1 This paper N/A

NCI-H82-epicTAG- GFP-VSVg-HA-FLAG This paper N/A

NCI-H82-epicTAG- GFP-VSVg-HA-AU1 This paper N/A

NCI-H82-epicTAG- GFP-VSVg-FLAG-AU1 This paper N/A

NCI-H82-epicTAG- GFP-StrepTagII-ProtC-HA This paper N/A

NCI-H82-epicTAG- GFP-StrepTagII-ProtC-FLAG This paper N/A

NCI-H82-epicTAG- GFP-StrepTagII-ProtC-AU1 This paper N/A

NCI-H82-epicTAG- GFP-StrepTagII-HA-FLAG This paper N/A

NCI-H82-epicTAG- GFP-StrepTagII-HA-AU1 This paper N/A

NCI-H82-epicTAG- GFP-StrepTagII-FLAG-AU1 This paper N/A

NCI-H82-epicTAG- GFP-ProtC-HA-FLAG This paper N/A

NCI-H82-epicTAG- GFP-ProtC-HA-AU1 This paper N/A

NCI-H82-epicTAG- GFP-ProtC-FLAG-AU1 This paper N/A

NCI-H82-epicTAG- GFP-HA-FLAG-AU1 This paper N/A

NCI-H82-epicTAG-mCherry-VSVg-

StrepTagII-ProtC

This paper N/A

NCI-H82-epicTAG-mCherry -VSVg-StrepTagII-HA This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-

StrepTagII-FLAG

This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-

StrepTagII-AU1

This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-ProtC-HA This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-ProtC-FLAG This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-ProtC-AU1 This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-HA-FLAG This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-HA-AU1 This paper N/A

NCI-H82-epicTAG- mCherry -VSVg-FLAG-AU1 This paper N/A

NCI-H82-epicTAG- mCherry -StrepTagII-

ProtC-HA

This paper N/A

NCI-H82-epicTAG- mCherry -StrepTagII-

ProtC-FLAG

This paper N/A

NCI-H82-epicTAG- mCherry -StrepTagII-

ProtC-AU1

This paper N/A

NCI-H82-epicTAG- mCherry -StrepTagII-

HA-FLAG

This paper N/A

NCI-H82-epicTAG- mCherry -StrepTagII-HA-AU1 This paper N/A

NCI-H82-epicTAG- mCherry -StrepTagII-

FLAG-AU1

This paper N/A

NCI-H82-epicTAG- mCherry -ProtC-HA-FLAG This paper N/A

NCI-H82-epicTAG- mCherry -ProtC-HA-AU1 This paper N/A

NCI-H82-epicTAG- mCherry -ProtC-FLAG-AU1 This paper N/A

NCI-H82-epicTAG- mCherry -HA-FLAG-AU1 This paper N/A

(Continued on next page)
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Continued
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NJH29-epicTAG-GFP-VSVg-StrepTagII-ProtC This paper N/A

NJH29-epicTAG- GFP-VSVg-StrepTagII-HA This paper N/A

NJH29-epicTAG- GFP-VSVg-StrepTagII-FLAG This paper N/A

NJH29-epicTAG- GFP-VSVg-StrepTagII-AU1 This paper N/A

NJH29-epicTAG- GFP-VSVg-ProtC-HA This paper N/A

NJH29-epicTAG- GFP-VSVg-ProtC-FLAG This paper N/A

NJH29-epicTAG- GFP-VSVg-ProtC-AU1 This paper N/A

NJH29-epicTAG- GFP-VSVg-HA-FLAG This paper N/A

NJH29-epicTAG- GFP-VSVg-HA-AU1 This paper N/A

NJH29-epicTAG- GFP-VSVg-FLAG-AU1 This paper N/A

NJH29-epicTAG- GFP-StrepTagII-ProtC-HA This paper N/A

NJH29-epicTAG- GFP-StrepTagII-ProtC-FLAG This paper N/A

NJH29-epicTAG- GFP-StrepTagII-ProtC-AU1 This paper N/A

NJH29-epicTAG- GFP-StrepTagII-HA-FLAG This paper N/A

NJH29-epicTAG- GFP-StrepTagII-HA-AU1 This paper N/A

NJH29-epicTAG- GFP-StrepTagII-FLAG-AU1 This paper N/A

NJH29-epicTAG- GFP-ProtC-HA-FLAG This paper N/A

NJH29-epicTAG- GFP-ProtC-HA-AU1 This paper N/A

NJH29-epicTAG- GFP-ProtC-FLAG-AU1 This paper N/A

NJH29-epicTAG- GFP-HA-FLAG-AU1 This paper N/A

NJH29-epicTAG- mCherry-ProtC-FLAG-AU1 This paper N/A

NJH29-epicTAG- mCherry -HA-FLAG-AU1 This paper N/A

Experimental models: Organisms/strains

NOD-scid IL2Rgammanull mice (NSG mice) The Jackson

Laboratory

#005557

Oligonucleotides

sgPTEN-1: GTGCATATTTATTACATCG This paper Synthego

sgPTEN-2: GAGGCCCTAGATTTCTATG This paper Synthego

sgPTEN-3: GATAAGTTCTAGCTGTGG This paper Synthego

sgSAFE-1: GATTAATTATGCAACCAGTA This paper Synthego

sgSAFE-2: GTGATGTGTGTGGCTTGGAT This paper Synthego

sgSAFE-3: GTTAGACTGCAAACACCCAC This paper Synthego

sgNON-TAR-A-1: GTGCGCGCATCATGCTACGA This paper Synthego

sgNON-TAR-A-2: GGGCCGTTATATGACGGT This paper Synthego

sgNON-TAR-A-3: GCGGAGCGTACCCGATTGGG This paper Synthego

sgNON-TAR-B-1: GTTTATCGCCCGTGGTCG This paper Synthego

sgNON-TAR-B-2: GTGCGGCGCATATCGAG This paper Synthego

sgNON-TAR-B-3: GGCTCGTACGCGCCCCTGT This paper Synthego

Recombinant DNA

pEpicVector3G_Puro-T2A-EGFP-VSVg-

StrepTagII-ProtC

This paper Addgene: #162079

pEpicVector3G_Puro-T2A-EGFP-VSVg-

StrepTagII-HA

This paper Addgene: #162080

pEpicVector3G_Puro-T2A-EGFP-VSVg-

StrepTagII-FLAG

This paper Addgene: #162081

pEpicVector3G_Puro-T2A-EGFP-VSVg-

StrepTagII-AU1

This paper Addgene: #162082

pEpicVector3G_Puro-T2A-EGFP-VSVg-ProtC-HA This paper Addgene: #162083

pEpicVector3G_Puro-T2A-EGFP-VSVg-

ProtC-FLAG

This paper Addgene: #162084

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pEpicVector3G_Puro-T2A-EGFP-VSVg-

ProtC-AU1

This paper Addgene: #162085

pEpicVector3G_Puro-T2A-EGFP-VSVg-HA-FLAG This paper Addgene: #162086

pEpicVector3G_Puro-T2A-EGFP-VSVg-HA-AU1 This paper Addgene: #162087

pEpicVector3G_Puro-T2A-EGFP-VSVg-

FLAG-AU1

This paper Addgene: #162088

pEpicVector3G_Puro-T2A-EGFP-StrepTagII-

ProtC-HA

This paper Addgene: #162089

pEpicVector3G_Puro-T2A-EGFP-StrepTagII-

ProtC-FLAG

This paper Addgene: #162090

pEpicVector3G_Puro-T2A-EGFP-StrepTagII-

ProtC-AU1

This paper Addgene: #162091

pEpicVector3G_Puro-T2A-EGFP-StrepTagII-

HA-FLAG

This paper Addgene: #162092

pEpicVector3G_Puro-T2A-EGFP-StrepTagII-

HA-AU1

This paper Addgene: #162093

pEpicVector3G_Puro-T2A-EGFP-StrepTagII-

FLAG-AU1

This paper Addgene: #162094

pEpicVector3G_Puro-T2A-EGFP-ProtC-HA-FLAG This paper Addgene: #162095

pEpicVector3G_Puro-T2A-EGFP-ProtC-HA-AU1 This paper Addgene: #162096

pEpicVector3G_Puro-T2A-EGFP-ProtC-

FLAG-AU1

This paper Addgene: #162097

pEpicVector3G_Puro-T2A-EGFP-HA-FLAG-AU1 This paper Addgene: #162098

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

StrepTagII-ProtC

This paper Addgene: #162099

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

StrepTagII-HA

This paper Addgene: #162100

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

StrepTagII-FLAG

This paper Addgene: #162101

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

StrepTagII-AU1

This paper Addgene: #162102

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

ProtC-HA

This paper Addgene: #162103

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

ProtC-FLAG

This paper Addgene: #162104

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

ProtC-AU1

This paper Addgene: #162105

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

HA-FLAG

This paper Addgene: #162106

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

HA-AU1

This paper Addgene: #162107

pEpicVector3mC_Puro-T2A-mCherry-VSVg-

FLAG-AU1

This paper Addgene: #162108

pEpicVector3mC_Puro-T2A-mCherry-StrepTagII-

ProtC-HA

This paper Addgene: #162109

pEpicVector3mC_Puro-T2A-mCherry-StrepTagII-

ProtC-FLAG

This paper Addgene: #162110

pEpicVector3mC_Puro-T2A-mCherry-StrepTagII-

ProtC-AU1

This paper Addgene: #162111

pEpicVector3mC_Puro-T2A-mCherry-StrepTagII-

HA-FLAG

This paper Addgene: #162112

pEpicVector3mC_Puro-T2A-mCherry-StrepTagII-

HA-AU1

This paper Addgene: #162113

(Continued on next page)
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pEpicVector3mC_Puro-T2A-mCherry-StrepTagII-

FLAG-AU1

This paper Addgene: #162114

pEpicVector3mC_Puro-T2A-mCherry-ProtC-

HA-FLAG

This paper Addgene: #162115

pEpicVector3mC_Puro-T2A-mCherry-ProtC-

HA-AU1

This paper Addgene: #162116

pEpicVector3mC_Puro-T2A-mCherry-ProtC-

FLAG-AU1

This paper Addgene: #162117

pEpicVector3mC_Puro-T2A-mCherry-HA-

FLAG-AU1

This paper Addgene: #162118

pRSV-Rev Addgene Addgene: #12253

pMDLg/pRRE Addgene Addgene: #12251

pCI-VSVG Addgene Addgene: #1733

Software and algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

R R Core Team (2020) https://www.R-project.org/

Custom debarcoding algorithm This paper N/A

CellEngine CellCarta https://cellcarta.com/

Cytobank Cytobank https://cytobank.org/

Other

0.22 mm filter Millipore-Sigma Cat# SLMP025SS

70 mm strainer Fisher Scientific Cat# 08-771-2

Superfrost Plus glass slides of

25 mm width and 75 mm length

Thermo Fisher

Scientific

Cat#12-550-15

PAP pen Vector Laboratories Cat# H-4000

Lonza 4D-NucleofectorTM X Unit Lonza AAF-1002X

Linear stainer Leica Cat# ST4020

PT module Thermo Fisher

Scientific

Cat# A80400012

CytoFLEX Flow Cytometer Beckman Coulter https://www.beckman.com/flow-

cytometry/instruments/cytoflex

BD FACSAriaTM III Cell Sorter BD Biosciences https://www.bdbiosciences.com/en-

us/instruments/research- instruments/

research-cell-sorters/facsaria- iii

CyTOF II Mass Cytometer Fluidigm https://www.fluidigm.com/products/helios

MIBI-TOF Mass Spectrometers

(Alpha and Production)

IonPath https://www.ionpath.com/mibiscope/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact: Garry P.

Nolan, gpnolan@stanford.edu.

Materials availability
Plasmids generated in this study have been deposited to Addgene (Deposit 78,757).

Data and code availability
Three datasets were acquired in this study. Datasets were named ‘‘Batch 3’’ (related to Figures 3–5 and S3–S5), ‘‘Batch 6’’ (related to

Figures 6 and S6), and ‘‘Batch 7’’ (related to Figure S7). Metadata that includes the number of mice, tumors, and regions acquired per

dataset is available in Table S1. Single-cell information for each dataset is available in Tables S2–S4. Themetadata in Table S1 can be

paired to the sheets named ‘‘SummaryMatrix.csv’’ of Table S2 by the columns named ‘‘tile_ID’’ and ‘‘file_name’’. Source data for
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datasets 1 to 3 and the code for debarcoding is available at Mendeley Data: https://data.mendeley.com/datasets/4y3fzctgxn/draft?

a=042a495e-998a-4caf-b967-4030b7f5e7bf.

METHOD DETAILS

Cell line model
NCI-H82 cells were purchased from ATCC (HTB-175). NJH29 cells were developed at Stanford (Jahchan et al., 2013). Cells were

cultured in RPMI media: RPMI 1640 (Corning, #15-040-CV) with 10% bovine growth serum (Thermo Fischer Scientific,

#SH3054103HI), plus 1x penicillin/streptomycin plus glutamine (Thermo Fisher Scientific, #10378016). Cells tested negative for

mycoplasma.

Xenograft mouse model
Mice were maintained according to practices prescribed by the NIH at Stanford’s Research Animal Facility and by the Institutional

Animal Care and Use Committee (IACUC, protocol 13,565) at Stanford. Additional accreditation of Stanford animal research facility

was provided by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). All mice were housed in

micro-isolator cages and sentinel mice were used for monitoring for pathogens. Single cell suspensions were prepared in anti-

biotic-free media and mixed with Matrigel (BD biosciences, # 356,237) at a 1:1 ratio. Aliquots of 200 mL (2-5 x 106 cells) were injected

subcutaneously into the flanks of NOD-scid IL2Rgammanull mice (NSG mice). Tumors were collected once they reached a size of

�1 cm3. Following tumor induction, animals were monitored daily, including weekends and holidays, as recommended by the Guide

for the Care and Use of Laboratory Animals. Animals were observed for pain, distress, and abnormal behavior and physiology. Any

mouse with a tumor that ulcerated or inhibited limb movement was euthanized immediately.

Vectors
EpicVectors are lentiviral vectors that express a puromycin resistance gene, T2A, and GFP or mCherry linked to a combination of

three of six possible epitopes (VSVg, AU1, FLAG, StrepII, Prot C, and HA). The vectors are deposited to Addgene (#162079-

162118), and information available is in the Key Resources table.

Lentiviral production
One day prior to transfection, 293T cells (ATCC, CRL-3216) were seeded in DMEM (Thermo Fisher Scientific, #11965092) and 10%

fetal bovine serum (Thermo Fisher Scientific, # 16,000,044) at 106 cells per well of a 6-well plate. The following day, 293T cells were

transfected with a mixture of 0.5 mg of each lentiviral EpicVector (Key Resources), 0.5 mg of third generation lentiviral vectors (at a

1:1:1 ratio of VSV-g, pMDLg/pRRE, and pRSV-Rev), 5 mL PEI (Polysciences, #23966-1) in 50 mL Opti-MEM (Thermo Fisher Scientific,

# 31,985,088). The mixture was incubated 10 min and added dropwise to cells. The next day, the media was removed, and 2 mL of

fresh antibiotic-free media was added to the cells. After 2 days, all viruses were collected, and cells were infected with 2 mL of virus

per 4x106 cells for each EpicVector, with the addition of polybrene (Millipore-Sigma, #TR-1003-G) at 8 mg/mL, bringing the total

volume of media to 5 mL. The next day, the virus was removed, and fresh media containing penicillin/streptomycin (Thermo Fisher

Scientific, #10378016) was added. After 2 days, MOI wasmeasured by FACS for GFP or mCherry. Puromycin was added for approx-

imately 1 week until over 98% of cells were positive for GFP or mCherry.

Ribonucleoprotein nucleofection
Three sgRNAs were designed to hybridize approximately 150 bases apart on the target of interest (see Key Resources) and were

synthesized by Synthego. The three sgRNAswere resuspended in Tris-EDTA and weremixed at a 1:1:1 ratio. First, 12 mL of SE buffer

(Lonza, #V4XC-1032) was added to each well of a 96-well v-bottom plate. Then 3 mL of sgRNA (300 pmol for all three sgRNAs) was

added to the SE buffer. An aliquot of 0.5 mL of Alt-R S.p. Cas9 (Integrated DNA Technologies, # 1,081,059) was added to 10 mL of SE

buffer. Next the Cas9 was added to the sgRNA solution, mixed thoroughly, and incubated at 37�C for 15 min to form the ribonucleo-

proteins (RNPs). NCI-H82 and NJH29 cells were pelleted, counted, and resuspended to 106 cells per reaction in 5 mL of SE Buffer.

Cells and the RNP solution were added to each well. Cells were immediately nucleofected using the Lonza 4D-Nucleofector X Unit

(Lonza, #AAF-1002X) with the EN150 program. After nucleofection, warm RPMI media was added to the cells. Cells were incubated

at 37�C for 15 min and then transferred to a 24-well plate. Editing efficiency was evaluated 4 days later by FACS or sequencing.

Competition assays
NCI-H82 and NJH29 expressing EpicTag vectors (GFP-VSVg-StrepTagII-ProtC and GFP-VSVg-StrepTagII-HA) were subjected to

PTEN inactivation via ribonucleoprotein nucleofection. Controls NCI-H82 and NJH29 cells expressing mCherry EpicTag vectors

(mCherry-ProtC-FLAG-AU1, mCherry-HA-FLAG-AU1) were mixed with PTEN�/� cells in specific ratios: 10% GFP-PTEN�/�:90%
mCherry-WT cells or 50% GPF-PTEN�/�:50% mCherry-WT or 10% GPF-WT:90% mCherry-WT. Cells were then cultured in vitro

or injected subcutaneously in the flanks of NSG mice. Cells were collected from in vitro and in vivo when the tumors reached

�1 cm3. GFP and mCherry expressing cells were analyzed by flow cytometry.
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Flow cytometry and cell sorting
Flow cytometry was conducted on a CytoFLEX (Beckman Coulter) and on a FACSAria (BD Biosciences). Analysis of the data was

done using Cytobank and R analysis software.

Antibody conjugation to isotopes
The antibodies listed in the Key Resources Table were conjugated to isotope-chelated Maxpar X8 polymers (Fluidigm, #201300) as

previously described (Han et al., 2018). Briefly, 100 mg of antibody in carrier-free PBS were partially reduced by TCEP treatment

(Thermo Fisher Scientific, #77720) for 30 min at 37�C. Reduced-antibodies were mixed with isotope-chelated polymers for 1.5 h

at 37�C. Antibody concentration was quantified via Nanodrop. Isotope-conjugated antibodies were diluted to >0.2 mg/mL in PBS

antibody stabilizer (Thermo Fisher Scientific, #NC0414486) and stored at 4�C.

Palladium barcoding for CyTOF
Cells were fixed in freshly prepared 1.6% Paraformaldehyde (PFA) in 1X PBS (Thermo Fisher Scientific, #28906) for 20 min at room

temperature. Cells were washed twice with ice-cold 1X PBS and once with ice-cold 0.02%Saponin (Millipore-Sigma, #S7900-100G)

in 1X PBS for 20 min at 4�C. Each palladium barcode (Fluidigm, #201060) was resuspended in 1 mL ice-cold 0.02% Saponin in 1X

PBS and transferred to the selected sample. Cells were pipetted to ensure proper mixing with the palladium barcoding reagent and

incubated for 15 min at room temperature. Cells were then washed twice with cell staining media (CSM; 0.5% BSA (Millipore-Sigma,

#A3059) and 0.02% sodium azide (Millipore-Sigma, #71289) in 1X PBS), and mixed into a single cell suspension.

Cell preparation for CyTOF
Cells were fixed in freshly prepared 1.6% PFA in 1X for 20 min at room temperature. Cells were washed thrice with cold 1X PBS and

permeabilized in pre-chilled 100%methanol for 20 min at 4�C. Cells were washed once with 1X PBS and twice with CSM. Barcoded

cells were stained for 3 h at 4�C in CSMwith the following cocktail of isotope-conjugated antibodies at 2 mg/mL: anti-GFP, anti-AU1,

anti-FLAG, anti-HA, anti-StrepII, anti-Prot C, anti-VSVg, and anti-cleaved caspase 3 (clone C92-605, BD Biosciences, #559565). Af-

ter staining, cells were washed twice with CSM, once with 1X PBS, and incubated with 1X PBS containing 1.6% PFA and 1 mM

iridium-based DNA intercalator (Fluidigm, #201192B) for 16 h at 4�C. After intercalation, cells were washed once with 1X PBS and

thrice with distilled water before analysis. Data were collected with a CyTOF II mass cytometer (Fluidigm). The raw FCS files process-

ing was performed in CellEngine (CellCarta) by gating out doublets based on cell length, debris based on iridium staining, and dead

cell based on cleaved caspase staining. The resulting data were plotted using UMAP (umap R package v.0.2.7.0) (McInnes et al.

2018) and visually inspected to identify barcodes.

Tumor preparation for CyTOF
Tumors were collected from the flanks of the mice and were minced using a razor blade. The samples were then placed to a 50 mL

conical tube containing 9 mL of L15 media (Sigma Aldrich, #L1518) plus 1 mL enzyme mix (10 mL L15 with 85 mg Collagenase I

(Millipore-Sigma, #C0130), 28 mg Collagenase II (Millipore-Sigma, # 6885), 85 mg Collagenase IV (Millipore-Sigma, # 5138),

12.5 mg Elastase (CellSystems, # LS002292), 12.5 mg DNAseI (Millipore-Sigma, #10104159) and filtered with a 0.22 mm filter

(Millipore-Sigma, # SLMP025SS)). The samples were incubated at 37�C for 15 min in a slant with rotation. Then the mixture was

filtered using a 70 mm strainer (Fisher Scientific, # 08-771-2) into a new 50 mL tube. The samples were centrifuged at 400 xg for

5 min at room temperature. The supernatant was discarded, and 1 mL of red blood cell lysis buffer (Thermo Fisher Scientific,

Cat# 00-4333-57) was added for 30 s. Then, 30 mL of 1XPBS were added and the samples were centrifuged at 400 g for 5 min at

room temperature. Cells were collected in RPMI media without antibiotics supplemented with 10% DMSO, and frozen down to

�80�C until use.

Cell pellet preparation for MIBI
All 20 barcoded NCI-H82 cell lines were mixed in a 15mL conical tube and washed twice in cold 1X PBS by centrifuging at 125 xg for

5 min at 4�C. The supernatant was decanted, 10 mL of freshly prepared 4% PFA in 1X PBS was carefully placed on top of the pellet,

and the tube was placed on a rocker set at low speed for 16 h at 4�C. The PFA-fixed cell pellet was pressed with a tip to cast it loose

from the bottom of the tube and rinsed thrice by pouring and decanting 10mL 1X PBS. The pellet was briefly dried on top of an absor-

bent piece of paper, transferred to a new 15 mL conical tube, submerged in pre-heated Histogel (Thermo Fisher Scientific,

#NC9150318), and incubated for 10 min at 4�C. The Histogel-embedded pellet was placed in a 9-spaces chamber, submerged in

80% ethanol, and FFPE processed.

Immunohistochemistry and immunofluorescence
Paraffin sections were rehydrated with serial immersion in Histo-Clear (National Diagnostics, #HS-202), 100% ethanol, 95% ethanol,

70%ethanol, andwater for 5min each. For antigen retrieval, rehydrated sections were immersed in citrate-based antigen unmasking

solution (Vector Laboratories, #H-3300-250) at boiling temperature for 15 min. Slides were then incubated in 3% hydrogen peroxide

(VWR, #BP2633-500) for 1 h, washed in PBS-T (PBS +0.1% Tween 20), blocked using blocking buffer (5% horse serum (Thermo

Fisher, #16050-130) in PBS-T) for 1 h at room temperature, and incubated overnight with primary antibodies at 4�C. Sections
were then washed with PBS-T, incubated with secondary antibodies for 1 h at room temperature, and either developed using
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DAB reagent for immunohistochemistry (Vector Laboratories, #SK-4100) or stained with 0.6 nM DAPI in PBS for 10 min at room tem-

perature for immunofluorescence following PBS-T washes. For immunohistochemistry, slides were then counterstained with hema-

toxylin (Millipore-Sigma, #HHS32), dehydrated with 70% ethanol, 100% ethanol, and xylene immersions, and mounted with Refrax

Mounting Medium (Anatech Ltd, #711). For immunofluorescence, slides were mounted with Fluoromount-G (SouthernBiotech,

#0100-01) and stored in 4�C overnight or �20�C for a few days prior to visualization. For YAP1, signals were amplified using TSA

Plus Fluorescein kit (Akoya Biosciences, #NEL741001KT).

The following antibodies and kits were used: anti-NEUROD1 (Abcam, #ab109224, 1:200), anti-YAP1 (CST, #14074S, 1:200), anti-

NOTCH2 (CST, #5732, 1:400) ImmPRESS HRP Horse anti-Rabbit IgG (Vector Laboratories, #MP-7801-15).

Tumor preparation for MIBI
Tumors were collected immediately after euthanasia, submerged in 10 mL of freshly prepared 4% PFA in 1X PBS (Thermo Fisher

Scientific, #28906), and placed on a rocker set at low speed for 24 h at room temperature. Tumors were then rinsed thrice with

1X PBS, transferred to 80% ethanol, and FFPE processed.

Gold-coated glass slide preparation
Superfrost Plus glass slides of 25 mmwidth and 75mm length (Thermo Fisher Scientific, #12-550-15) were soaked in dish detergent,

rinsed twice with distilled water, soaked in acetone, and air-dried with compressed air in a fume hood. Clean slides were coated with

a 30 nm tantalum layer followed by a 100 nm gold layer. Coating was prepared at the Stanford Nano Shared Facility (Stanford, CA)

and New Wave Thin Films (Newark, CA) as previously described (Ji et al., 2020; Keren et al., 2019).

Vectabond treatment of gold-coated slides
Gold-coated slides were silanized by Vectabond treatment (Vector labs, #SP-1800-7). Using glass beakers, gold-coated slides were

submerged in acetone for 5 min, placed in freshly prepared Vectabond solution (3.5 mL Vectabond and 175 mL acetone) for 30 min,

and air-dried with compressed air in a fume hood. Slides were baked at 70�C for 30 min and stored at room temperature.

Sample preparation for MIBI
FFPE blocks were sectioned using a microtome into 5 mm thin sections and placed on vectabond-treated gold-coated slides. Tissue

sections were baked for 20 min at 70�C, and immediately deparaffinized and rehydrated with fresh reagents as follows: xylene (x3),

100% ethanol (x2), 95% ethanol (x2), 80% ethanol, 70% ethanol, distilled water (x3). Each wash was performed for 3 min at room

temperature with repetitive dipping using a linear stainer (Leica, #ST4020). Slides were transferred for heat-induced epitope retrieval

to a PTmodule (Thermo Fisher Scientific, #A80400012) pre-heated to 75�C. Samples in 1X Dako Target Retrieval Solution, pH 9 (Agi-

lent, #S2375) were heated to 97�C, stayed at the same temperature for 10 min, and then cooled down to 65�C.
Slides were washed twice with 1X TBS IHC wash buffer with Tween 20 (Cell Marque, #935B-09) and 0.1% BSA (Thermo Fisher

Scientific, #BP1600-100) for 5 min at room temperature. A hydrophobic barrier around the tissue was drawn using a PAP pen (Vector

Laboratories, #H-4000). Tissue sections were blocked in 1X TBS IHC wash buffer with Tween 20, 2% normal donkey serum

(Millipore-Sigma, #D9663-10ML) (MIBI wash buffer), 0.1% Triton X-100 (Millipore-Sigma, #T8787-100ML), and 0.05% sodium azide

(Millipore-Sigma, #71289-50G) for 1 h at room temperature. Tissue sections were then stained for 16 h at 4�C in 1X TBS IHC wash

buffer with Tween 20, 3% normal donkey serum, and 0.05% sodium azide with the following cocktail of isotope-conjugated anti-

bodies: anti-GFP, anti-AU1, anti-FLAG, anti-HA, anti-StrepII, anti-Prot C, anti-VSVg, anti-Vimentin, anti-HH3, anti-phosphoS28

HH3, anti-human-specific mitochondrial marker, anti-Ki-67, anti-aSMA, anti-CD31, anti-Citrate synthase, anti-GLUT1, anti-phos-

phoS139H2AX (gH2AX), anti-synaptophysin, anti-H3K27ac, anti-H3K4me2, and anti-H4K8ac.

After staining, slides were washed thrice with MIBI wash buffer for 5 min at room temperature, post-fixed with a solution of 2%

glutaraldehyde (Electron Microscopy Sciences, #16120) and 4% PFA in 1X PBS for 5 min at room temperature and quenched

with 100mM Tris pH 7.5 for 5 min at room temperature. Tissue sections were then dehydrated with fresh reagents as follows:

100mM Tris pH 7.5 (x2), distilled water (x3), 70% ethanol, 80% ethanol, 95% ethanol (x2), 100% ethanol (x2). Each wash was per-

formed for 3 min at room temperature with repetitive dipping using a linear stainer. The slides were air-dried and stored at room tem-

perature under vacuum until MIBI acquisition.

MIBI data acquisition
We acquired three datasets for this study. Datasets 1 and 2 consist of NCI-H82 xenografts, and dataset 3 consists of NJH29

xenografts. Dataset 1, also named Batch 3, consists of the 16 tiles used for Figures 3–5 and S3–S5. Dataset 2, also named Batch

6, consists of 14 tiles, 4 ‘‘Control’’ and 10 ‘‘PTEN’’, used for Figures 6 and S6. Tile 13 of batch 6 consists of eight FOVs. Dataset

3, also named Batch 7, consists of 15 tiles, 7 ‘‘Control’’ and 8 ‘‘PTEN’’, used for Figure S7.

MIBI datasets 1 and 2 were acquired on a customMIBI-TOFmass spectrometer, named Alpha MIBI, equipped with a duoplasma-

tron ion source running research grade oxygen (Airgas, OX R80). MIBI dataset 3 was acquired on a commercially available

MIBIscope� System (IonPath), named Production MIBI, equipped with a xenon ion source. Each tile acquired consisted of 9 FOV

(Figure S3C). The acquisition parameters per FOV were the following:
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Alpha MIBI
d Pixel dwell time: 7 ms

d Image area: 400 3 400 mm

d Image size: 512 x 512 pixels

d Probe size: � 400 nm

d Primary ion current: � 3.5 nA

d Number of depths: 1 depth
Production MIBI
d Pixel dwell time: 1 ms

d Image area: 400 3 400 mm

d Image size: 1024 x 1024 pixels

d Probe size: � 400 nm

d Primary ion current: � 5 nA

d Number of depths: 1 depth
Initial processing of MIBI images
Raw MIBI data from datasets 1 and 2 were processed using MIBIAnalysis tools (https://github.com/lkeren/MIBIAnalysis) as previ-

ously described (Baranski et al., 2021; Keren et al., 2018). Themass spectra were calibrated using sodium and gold, and background

was subtracted using the gold channel. Raw MIBI data from dataset 3 was processed using toffy (https://github.com/angelolab/

toffy), background and signal contamination were removed and channel crosstalk compensated by the Rosetta algorithm. The num-

ber of nearest neighborhoods for denoising of all datasets was 25. Image stitching and flat-field correction was performed using

custom MATLAB scripts developed by Dmitry Tebaykin (https://github.com/dtebaykin/MibiStitch) and Sizun Jiang.

Cell segmentation of MIBI images
MIBI image cell segmentation was obtained with Mesmer, a deep learning algorithm based on the DeepCell library (deepcell-tf 0.6.0)

(Van Valen et al., 2016; Greenwald et al., 2022). The neural network weights for prediction were imported from https://deepcell-data.

s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5. Segmentation was computed us-

ing denoised and capped at the 99.seventh percentile images of HH3 and human-specific mitochondrial marker as input, to account

for the nucleus and cytoplasm, respectively. Model_mpp in the python script multiplex_segmentation.py was 1.8 for dataset 1, 1.6 for

dataset 2, and 1.0 for dataset 3.

Cell type annotation
Cell segmentation was used to extract cell counts per marker. Counts were normalized by cell size, scaled based on themedian HH3

expression per cell in each tile, and transformed using an inverse hyperbolic sine (asinh) with cofactor of 0.05 (to account for the

adjustment based on HH3 scaling).

Unsupervised single-cell clustering was performed using the FlowSOMRpackage (VanGassen et al., 2015). The channels used for

clustering were vimentin, pS28 HH3, human-specific mitochondrial marker, Ki-67, aSMA, CD31, citrate synthase, GLUT1, gH2AX,

synaptophysin, H3K27ac, H3K4me2, and H4K8ac. Phenotypic SOM clusters weremanually annotated based on visual inspection of

the heatmap ofmarker expression per SOMcluster. MultiplexMIBI imageswere carefully compared to the SOMcluster maps, gener-

ated by coloring the cells with the respective SOM cluster, to assess accuracy and specificity of the clustering result and annotation.

Single-cells were plotted using the umap R package (n_neighbors = 15 and min_dist = 0.01) and colored by SOM cluster to orthog-

onally inspect the clustering results and annotation. Single cells in properly annotated clusters were classified, and the remainder

clusters were subjected to additional rounds of clustering until all cells were annotated. A post-clustering identification of endothelial

cells was performed by selecting cells with low human-specific mitochondrial marker, small cell size, and high CD31 expression.

Cellular neighborhood analysis
Cell centroids were computed and the 30 nearest neighbors were selected for each cell. The frequencies of each SOM cluster were

calculated per cell. Data from all tiles for each dataset were combined, and CNS were selected using k-means (k = 20) and labeled

based on visual inspection of the heatmap of SOM cluster frequencies per CN. The CN maps were generated by coloring the cells

with the respective CN.

Debarcoding pipeline
Epitope debarcoding was performed by merging cell-based and pixel-based barcode assignment. The input for cell-based assign-

ment of barcodes were the segmentation map and the six epitope MIBI images. Epitope counts within each segmented cell were

extracted, normalized, and ordered to provide a barcode (1–20) to each cell.
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The input for pixel-based assignment of barcodes were the six epitope MIBI images. A sliding window scan was applied to extract

the counts of each epitope by centering an n x nwindow to each pixel. The size of the slidingwindowwas an odd number (e.g., 3 x 3, 5

x 5, etc.). After applying a sliding window, the value of each epitope was capped at the 95th percentile, and a barcode (1–20) was

provided based on the 3 most expressed epitopes. A selection step of the third minus the fourth most expressed epitopes being

higher than 0.05 was applied to account for blank pixels. The data were plotted back to the 2D tissue space and groups of pixels

larger than 30 and sharing a barcode were selected. The unselected pixels were subjected to extra rounds of scanning with sliding

window of larger size, up to sliding windows of 11 x 11.

To merge cell- and pixel-based barcode assignments, each cell within the tile is classified in one of six categories.

d Category a: a cell with the same cell-based barcode as its pixel-based barcode retains that barcode.

d Category b: a cell with a cell-based barcode without pixel-based barcode is assigned the cell-based barcode.

d Category c: a cell without a cell-based barcode without pixel-based barcode results in a cell without barcode.

d Category d: a cell without a cell-based barcode that has 50%ormore of its areawithin an area of the same pixel-based barcode

is assigned the pixel-based barcode.

d Category e: A cell with cell-based barcodewithin areas with two ormore pixel-based barcodes results in a cell with the barcode

of the area from which the cell shares the highest surface percentage.

d Category f: A cell with cell-based barcode overlapping with an area presenting a distinct pixel-based barcode results in a cell

keeping the cell-based barcode if the percentage of shared area is less than 50%. Alternatively, it results in a cell with pixel-

based barcode if the percentage of shared area is 50% or more.

To identify clonal tumor patches, a barcode based on themerging stepwas provided to pixels related to single cells, and a barcode

from the pixel-based barcode assignment was provided to pixels unrelated to single cells. Single cells within groups of pixels sharing

a barcode were provided with the same patch identification number.

The debarcoding pipeline is schematically depicted in Figure 4: (1a) Epitope images are the input for pixel-based assignment of

barcodes. (1b) A sliding window approach is applied to obtain a pixel-based assignment of barcodes. The cyan region within the

dashed red circle in the enlarged image exemplifies a large region of the tumor sharing the same barcode. (2a) HH3 and human

cell marker images are the initial inputs for cell-based assignment of barcodes. (2b) Single cells are segmented using Mesmer.

(2c) Segmentation maps (step 2b) and epitope images (step 1a) are merged to obtain a cell-based assignment of barcodes. Epitope

counts within each segmented region are extracted, normalized, and ordered to provide a barcode for each cell. Cyan cells within the

dashed red circle in the enlarged image show that cells within the same patch (as shown in 1b) are not in direct contact after seg-

mentation. (3) Merging step for cell- and pixel-based barcode assignments. Patches are shown as irregular shapes. Single cells

are shown as small circles. Both depicted patches are bigger than a single cell to exemplify than patches consist of a group of cells.

Barcodes are shown as colors. A dashed circle indicates a cell without an assigned barcode. Tomerge cell- and pixel-based barcode

assignments, each cell within the tile is classified in one of six merging categories. On each category, left indicates the results from

cell- and pixel-based barcode assignments and right indicates the result after integration. (4a) A connectivity map is obtained for each

tile. Each circle represents a cell. Gray lines indicate that cells not directly touching in the segmentationmap are from the same patch.

(4b) A barcode is provided to each cell, resulting in a collection of images (one for each of the 20 barcodes). (5) Together the con-

nectivity map (4a) and the barcode readouts (4b) represent a clonal tumor map.

Patch enrichment analysis
For each clonal tumormap, a patch sizemapwas createdwith pixels having a value of the patch size they belong, in pixels. Patch size

was capped at 10 times the median of cell size, in pixels, in the entire dataset. A sliding window of 119 x 119 pixels was applied to the

patch size map, summing values at each pass. The patch enrichments maps were generated by coloring the results of the sliding

window to a continuous scale.

Statistical analysis
Statistical analysis was conducted using R. Significance is calculated by ANOVA within and between groups and adjusted by Bon-

ferroni. P-adjusted: 0.05–0.01:*, 0.01–0.001:**, <0.001:***.

Data visualization
MIBI data visualization was performed in ImageJ or Ionpath MIBITracker. Plots were created using the ggplot2 R package (Wilkinson

2011). Figures 1, 2, 6A, and S2A were created in part using BioRender.com. All figures were prepared using Illustrator (Adobe).
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