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Natural quantum reservoir 
computing for temporal 
information processing
Yudai Suzuki1*, Qi Gao2,3, Ken C. Pradel2, Kenji Yasuoka1 & Naoki Yamamoto3,4

Reservoir computing is a temporal information processing system that exploits artificial or physical 
dissipative dynamics to learn a dynamical system and generate the target time-series. This paper 
proposes the use of real superconducting quantum computing devices as the reservoir, where the 
dissipative property is served by the natural noise added to the quantum bits. The performance of 
this natural quantum reservoir is demonstrated in a benchmark time-series regression problem and 
a practical problem classifying different objects based on temporal sensor data. In both cases the 
proposed reservoir computer shows a higher performance than a linear regression or classification 
model. The results indicate that a noisy quantum device potentially functions as a reservoir computer, 
and notably, the quantum noise, which is undesirable in the conventional quantum computation, can 
be used as a rich computation resource.

Recent remarkable advances in machine learning have attracted more and more attention in the field of 
 bioinformatics1, computer  visions2,3,  finance4,5, and  physics6,7 due to it offering powerful and efficient techniques 
for solving various types of tasks in those research areas. One common task is temporal information processing, 
where sequential or time-series data is processed to achieve a specific goal, such as natural language  processing8 
and  robotics9. To solve temporal information tasks, recurrent neural network (RNN)10 is often used. The basic 
strategy to train RNN is to recurrently connect the nodes, so that it approximates a target dynamical system. 
However, this is a computationally demanding process.

As a special type of RNN, reservoir computing (RC)11 has been actively studied, which originate from echo 
state networks (ESNs)12 and liquid state machines (LSMs)13. In RC, the temporal input data is mapped into the 
state of a high-dimensional dynamical system called the reservoir, and then a simple linear regression is used to 
adjust the weight of the readout signal of the dynamics, allowing for approximation of the target output signal. 
By virtue of this simple learning process, RC can realize fast and stable learning at a lower computational cost 
compared to typical RNNs.

The reservoir serves as a nonlinear pattern mapping of the input signal to high-dimensional dynamical states, 
as do kernel functions in kernel  methods14. Thus, choosing the right type of reservoir systems to be implemented 
is of significance. In the last few decades, many different implementations of reservoirs have been proposed, 
from the original ESN and LSM models to physical reservoir such as field programmable gates arrays (FPGAs)15, 
a bucket of  water16, soft  robotics17, tensegrity-structured  robots18, and  spintronics19. Demonstrations of physical 
reservoir implementation has attracted increased attention, because physical reservoirs could potentially process 
information faster at a lower computational cost of learning and with higher  performance20,21. In this direction, 
quantum systems are proposed as a promising candidate for the physical  reservoir22. This is because of the com-
mon thought corroborated by theoretical and experimental  results23–26 that large quantum systems would be in 
general hard to simulate by classical computers, and thus the quantum reservoirs (QRs) with intrinsic complex 
dynamics are conjectured to show higher performance for some temporal information tasks. In fact, quantum 
reservoir computing (QRC) has been extensively investigated from theoretical analysis of the QR  property27,28, to 
performance analysis through numerical  simulations29,30, and various other  improvements31–33. It has also been 
applied to quantum tasks such as quantum  tomography34,35. Also, thanks to advances in quantum hardware, the 
physical implementations of QRs have been demonstrated in the nuclear magnetic resonance (NMR) ensemble 
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 systems36 and superconducting quantum  processors28. QRC thus represents a promising direction in the field 
of quantum machine  learning37–41.

In this paper, we propose a QRC framework that exploits a natural quantum dynamics on a gate-based super-
conducting quantum processors as a reservoir, for temporal information processing. This is in stark contrast to 
the previously developed artificial QRC architecture, where the quantum dynamical system at each timestep is 
realized by injecting the inputs into one ancillary qubit and driving the whole QR system via an input-independ-
ent Hamiltonian, and finally discarding and resetting the ancillary qubit for the next step. Discarding the ancillary 
qubit in this process is crucial to realize the dissipative nature of the system, which is an essential property for 
reservoirs. On the other hand, in our QR systems, we instead utilize the intrinsic noise of the quantum devices to 
realize a dissipative quantum dynamics. That is, we rather positively take advantage of currently available noisy 
intermediate-scale quantum (NISQ)  devices42 which have unavoidable dissipative noise (decoherence). The idea 
behind our proposal comes from harnessing this seemingly undesired behavior of dynamical systems as a rich 
computational resource for the RC framework, such as a soft robot  reservoir17. Note that in this manuscript, we 
use the term natural reservoir to denote a physical reservoir that is difficult to describe mathematically such as 
the dynamics of soft robotics  in17, while the term artificial reservoir is used to denote those whose mathematical 
model is in principle available.

The proposed natural QRC approach is a hardware-specific one, and its performance must be experimentally 
evaluated on a real device. In this work we utilized IBM superconducting quantum processors to demonstrate our 
QR systems for two temporal information tasks, emulation of the Nonlinear Auto-Regressive Moving Average 
dynamics (NARMA task) and classification of different objects based on the sensor-data obtained by grabbing 
them (object classification task). For NARMA task, we observed that our QR systems realized on ‘ibmq_16_mel-
bourne’ (we simply call the Melbourne device) show higher performance than a linear regression model. As for 
the object classification task, our QR system on ‘ibmq_toronto’ (the Toronto device) shows higher classification 
accuracy than a simple linear classifier for the task of classifying three different objects. These results indicate that 
a natural QR realized on a noisy quantum device can be considered a promising candidates as a reservoir for the 
RC framework. At the same time, this work paves the way for using NISQ devices to solve practical problems.

Methods
General framework of reservoir computing. RC utilizes a dynamical system to execute temporal infor-
mation processing tasks. Typically, the goal of this task is to learn a function that transforms an input sequence 
(time series) to a target output sequence, for the purpose of time series  forecasting43 and pattern  classification44. 
In this work, we consider a given pair of scalar input {ut}Mt=1 and target output {yt}Mt=1 signals. The RC model is 
described as follows;

where xt is the state vector at time t and ȳt is the corresponding scalar output. Wout is the vector of adjustable 
parameters, which is to be optimized by a learning algorithm, so that the output ȳt approximates to the target 
output yt . The function f represents the time evolution of the reservoir state xt , driven by the input ut , and h is a 
function that observes signals from xt . The point of this RC framework is that the reservoir part is fixed unlike 
an RNN, meaning that the learning algorithm is much simpler than an RNN. On the other hand, the crucial 
role of feature extraction is left to the reservoir dynamics, so the choice/design of reservoir is very important.

In the RC framework, the parameter Wout is tuned in a supervised manner. The mean squared error (MSE) 
between the output ȳt and the target output yt during the training phase, MSE =

∑tl
t=tf

(

ȳt − yt
)2 , is minimized, 

where tf  and tl are the first and last timestep of the training phase, respectively. This can be readily solved via the 
linear regression technique, given by the pseudo inverse of the linear equation

where X =
(

h̃(xtf ), . . . , h̃(xtl )
)

 and y = (ȳtf , . . . , ȳtl ) . Here h̃(·) is the vector containing both h(·) and the bias 
term 1, i.e. h̃(·) =

(

h(·)T, 1
)T.

Quantum reservoir computing model. In the QRC framework, the dynamical system (1) is given by

where ρt is the density operator that represents a state of the QR at time t, and Tut is an input-dependent com-
pletely positive and trace preserving (CPTP) map that describes the time evolution of the QR system. The CPTP 
map considered in Ref.22 is given by

where ρinput = |ψut ��ψut | with |ψut � =
√
1− ut |0� +

√
ut |1� . Here |0� and |1� represent [1, 0]T and [0, 1]T , respec-

tively, and �·| is the Hermitian conjugate of |·� . That is, the input ut ∈ [0, 1] is injected onto one ancillary qubit, and 
then the whole QR system is time-evolved by the input-independent unitary operator e−iHτ with user-defined 

(1)xt =f (xt−1, ut),

(2)ȳt =WT
outh(xt),

(3)y = WT
outX,

(4)ρt = Tut (ρt−1),

(5)
ρt = Tut (ρt−1)

= e−iHτ
(

ρinput ⊗ Trinput(ρt−1)
)

eiHτ ,
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Hamiltonian H and time interval τ . The partial trace over the ancillary qubit, represented by Trinput , is essential 
to determine the dissipative property of the QRC.

The function h in Eq. (2) is usually given by a set of expectation values of local observables defined by the QR 
system. For an n-qubit QR system, we can take a set of the expectation values

where Zi is the Pauli Z matrix on the ith qubit, i.e.,

Natural quantum reservoir. Here we describe our QR system that, unlike the artificial mixing process 
Trinput given in Eq. (5), makes full use of natural noise as a computational resource for the QRC paradigm.

As mentioned in “Introduction”, currently available quantum devices all suffer from quantum noise. However, 
in the QRC framework, that unwanted quantum noise could be rather beneficial. For example, the QR system 
with depolarizing error can satisfy one of the essential properties of the reservoir, the echo-state45 or the conver-
gence  property46, which is in a broad sense a condition where the system asymptotically forgets its initial state. 
To be more specific, the depolarizing error is given by the following CPTP map:

where ρ is a system density matrix with the size of d and p is the parameter proportional to the probability that 
the quantum state becomes the maximally-mixed  state47. The convergence property of the QR in this case can 
be easily checked; if the depolarizing channel is successively applied to the system, ρ asymptotically converges 
to the maximally-mixed state, I/d. In general, the dynamical system under unital error process converges to a 
stable equilibrium  state48,49. In addition, the QR system implemented on a noisy device potentially has a desirable 
“memory” property. It was reported  in50 that a noisy quantum device has some memory effects such as temporal 
correlation. For these reasons, an open quantum system under natural error is potentially usable as a QR.

Based on the above discussion, we consider the following dynamics as the QR system (4):

where U(ut) is an input-dependent unitary operator and Edevice is the un-modeled CPTP map corresponding to 
the real device during operation. In this work, we consider the n-qubits system driven by the unitary operator

where Ūi,j(ut) is the identical local 2-qubits unitary operator acting on the ith and jth qubits:

Here sut = aut with a ∈ R and CXi,j is the CNOT gate with control qubit i and target qubit j. Also 
RZi(s) = exp (−isZ/2) and RXi(s) = exp (−isX/2) are the rotation gate applied on the ith qubit, around the 
Pauli Z and X axis, respectively. At t = 0 , the state is prepared as |+� = |+�⊗n = H⊗n|0�⊗n with H the Hadamard 
gate. The quantum circuit representation of the local unitary operator Ūi,j(ut) is depicted in Fig. 1. This 2-qubits 
unitary operator is a type of hardware-efficient  ansantz39; as seen from the figure, this unitary can realize a limited 
transformation of state. The purpose of choosing such a specific unitary gate is to see if the quantum noise could 
enrich the complexity of the dynamical system. That is, we restricted the type of gate to exclude the possibility that 
the performance improvement comes from the richness of the unitary gate and clearly see the net effect of natural 
noise. Note that, in the noiseless situation, Eq. (8) is a trivial dynamics composed of identical and independent 
2-qubits subsystems. However, the subsystems implemented on a noisy real device may be able to couple with 
the neighboring subsystems due to the natural noise introduced from the surrounding environment, such as the 
 crosstalk51,52, which as a result may lead to non-trivial QR dynamics. Lastly, the output signal at timestep t given 
by Eq. (6) is obtained by repeatedly acting the quantum circuit on the initial state ρ0 = |+��+| as

(6)h(ρt) = [Tr(Z1ρt), . . . , Tr(Znρt)]T,

Zi = I ⊗ · · · ⊗ Z ⊗ · · · ⊗ I , Z = |0��0| − |1��1| =
[

1 0
0 − 1

]

, I =
[

1 0
0 1

]

.

Edep(ρ) = (1− p)ρ + p
I

d
,

(7)
ρt = Tut (ρt−1)

= Edevice

(

U(ut)ρt−1U(ut)
†
)

,

(8)U(ut) = Ū0,1(ut)⊗ Ū2,3(ut)⊗ · · · ⊗ Ūn−2,n−1(ut),

(9)Ūi,j(ut) = CXi,jRZj(sut )CXi,jRXi(sut )RXj(sut ).

Figure 1.  Quantum circuit representation of the local 2 qubits unitary operator (9).
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and then measuring ρt in the computational basis, as shown in Fig. 2. In the experiment, we took 8192 measure-
ment shots for each t to calculate the mean Tr(Ziρt) in Eq. (6).

Results and discussion
Here we show the result of our test of the performance of our QRC scheme. We consider two temporal informa-
tion processing tasks, regression of the NARMA dynamics (NARMA task) and classification of different objects 
based on the sensor-data obtained by grabbing them (object classification task). We use two IBM superconduct-
ing quantum processors; Melbourne and Toronto devices, whose configurations are illustrated in Fig. 3. Also, 
in the Qiskit package that we used for the experiments to work with the IBM quantum processors, users can 
determine the “optimization level” of the quantum circuit transpiler for reducing noise caused by sources such 
as redundant gate operations. In the QRC scenario, we are rather interested in introducing the noise, hence an 
optimization level of zero was chosen (i.e., no noise reduction).

NARMA task. We first demonstrate the performance of our QR systems with the NARMA task. The 
NARMA task is a benchmark test used to evaluate the performance of dynamical models for temporal informa-
tion processing, in terms of nonlinearity and memory (dependence on past output)  properties53,54. The goal of 
the task is to emulate the dynamics generating the NARMA output sequence {yt}Mt=1 . An example studied  in22,55 
is described as

(10)ρt = Tut ◦Tut−1 ◦ · · · ◦Tu1(ρ0)

Figure 2.  Circuit diagram of the proposed QR system. |0� stands for the initial state, and Tui is a fixed CPTP 
map with input ui . The output signal (6) is obtained by repeatedly running the quantum circuit according to 
Eq. (10) and measuring Z for each qubit.

Figure 3.  Configuration of the NISQ devices used for the experiments, (a) the Melbourne device and (b) 
the Toronto device. In the figures, the nodes and edges represent qubits and the physical coupling of qubits, 
respectively, where the numbers on the nodes are just labels.
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where ut and yt are the input and target output sequences, respectively. Another NARMA dynamics studied 
 in22,33,55 is expressed as

where (α,β , γ , δ) = (0.3, 0.05, 1.5, 0.1) and no is the order that determines the degree of the nonlinearity. In our 
experiment, we consider the following three NARMA dynamics; NARMA of Eq. (11) (we call it NARMA2), 
and NARMAs of Eq. (12) with no = 5 and no = 10 (we call them NARMA5 and NARMA10, respectively). Note 
that the number in the task name (e.g., 5 in “NARMA5”) implies the order of the nonlinearlity, and hence these 
three NARMA tasks can be used to evaluate the nonlinearity of the QR systems.

As for the input {ut}Mt=1 , we use the following time series for all the NARMA tasks;

where (ᾱ, β̄ , γ̄ ,T) = (2.11, 3.73, 4.11, 100) , as used  in22. Here, we set the length of inputs and outputs to M = 100 , 
where the first 10 timesteps are used for washout, the following 70 timesteps are used for training, and the 
remaining 20 timesteps are used for testing. The washout period is necessary for the QR system to lose its 
dependence on the initial state ρ0 , and thus the signals in this period are not used for training. Figure 4 shows 
the inputs and the target output sequences for each NARMA task.

(11)yt+1 = 0.4yt + 0.4ytyt−1 + 0.6u3t + 0.1,

(12)yt+1 = αyt + βyt





no−1
�

j=0

yt−j



+ γ ut−no+1ut + δ,

(13)ut = 0.1

(

sin

(

2πᾱt

T

)

sin

(

2πβ̄t

T

)

sin

(

2πγ̄ t

T

)

+ 1

)

,

(a) input sequence

(b) target sequence for NARMA2

(c) target sequence for NARMA5

(d) target sequence for NARMA10

Figure 4.  Time series data used for the experiment. (a) Shows the input sequence. (b–d) Shows the target 
sequences for NARMA2, NARMA5, and NARMA10, respectively.
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We use the Melbourne and Toronto devices to run the unitary operator given in Eqs. (8) and (9) with a = 2 . 
These devices are used in the same condition to compare the effect of the hardware-specific noises. In particular, 
we investigate if increasing the system size (accordingly the number of output signals) may improve the perfor-
mance of QRC, which was numerically predicted  in22. For this purpose, we study the cases where the number 
of qubits is chosen as n = 8, 10 , and 12. This means that the number of 2-qubit subsystems is m = 4, 5 , and 6, 
respectively. The qubits used are shown in Fig. 5.

To quantitatively evaluate the performance of the QRC, we calculate the normalized mean squared errors 
(NMSE) between the output (2), ȳt = Wouth(xt) , and the target output yt for the testing period, which is 
expressed as

Table 1 summarizes the NMSE for each experimental setting, where the NMSEs are averaged over 10 experi-
mental trials under the same conditions. The experiments had been performed during the period between Aug. 
16th and Nov. 2nd in 2020. To see the effect of nonlinearity induced by the QR systems, we compared our model 
with a simple linear regression (LR) model that predicts the output by ȳt+1 = wut + b0 with optimized param-
eters w and b0 . Also Figs. 11, 12 and 13 shows the result for each NARMA task. Below we list the summary of 
the results, depending on the type of task.

(14)NMSE =
∑100

t=81(ȳt − yt)
2

∑100
t=81 y

2
t

.

Figure 5.  Qubits that constitute the subsystems in (a) Melbourne device and (b) Toronto device. The black box 
indicates the subsystem with labels from 1 to 6. When we mention “m subsystems are used”, this means that the 
subsystems labeled 1 to m are used.

Table 1.  List of NMSEs for (a) NARMA2, (b) NARMA5, and (c) NARMA10. For comparison, NMSEs of the 
classical linear regression model (denoted as LR) are shown. The bold script indicates the best NMSE for each 
NARMA task.

Quantum model Classical model

Melbourne device Toronto device

LR4-Subsystems 5-Subsystems 6-Subsystems 4-Subsystems 5-Subsystems 6-Subsystems

(a) NARMA2

Mean 1.3× 10
−5

1.3× 10
−5

8.9× 10
−6 2.9× 10

−5
2.5× 10

−5
2.2× 10

−5
1.8× 10

−5

Std 6.3× 10
−5

2.8× 10
−6

2.8× 10
−6

6.7× 10
−6 1.3× 10

−5
4.1× 10

−6 —

(b) NARMA5

Mean 1.3× 10
−3

1.3× 10
−3

1.3× 10
−3

2.7× 10
−3

2.2× 10
−3

1.9× 10
−3

2.6× 10
−3

Std 6.7× 10
−4

4.0× 10
−4

5.3× 10
−4

9.6× 10
−4

2.1× 10
−4

3.7× 10
−4 —

(c) NARMA10

Mean 1.9× 10
−3

2.1× 10
−3

2.0× 10
−3

3.6× 10
−3

3.1× 10
−3

2.3× 10
−3 9.7 × 10

−4

Std 4.8× 10
−4

6.0× 10
−4

3.5× 10
−4

8.5× 10
−4

1.2× 10
−3

5.3× 10
−4 —
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• For the NARMA2 task, all the QR systems on the Melbourne device outperformed the LR model. In par-
ticular, a larger QR system showed higher performance with the QR with 6 subsystems showing the lowest 
NMSE among all models. On the other hand, every QR system on the Toronto device was inferior to the LR 
model.

• We found a similar tendency for the NARMA5 task. All the QR systems on the Melbourne device were bet-
ter than the LR model. However, the performance of the QR system did not improve even by increasing the 
system size in this task. On the other hand, for the QR systems on the Toronto device, the performances of 
QRs with 5 or 6 subsystems was higher than the LR model. Also the larger system shows a better performance.

• As for the NARMA10 task, the QR systems on both Melbourne and Toronto devices could not outperform 
the LR model. Also, the tendency with respect to the system size differed from the cases of the NARMA2 
and NARMA5. The performance improved when the system size of the Toronto device was increased, while 
that of the Melbourne device did not improve.

These results show that the performance of our QRC scheme heavily depends on the device; the Melbourne 
device is always better than the Toronto device for the tasks with the same experimental setting. Also, we find 
the different tendency of these devices with respect to the number of subsystems. Namely, the performance of 
the Toronto device is monotonically improved by increasing the system size for all the NARMA tasks, while the 
Melbourne device does not show this tendency, except for the NARMA2 task.

These device-dependent features can be partially explained by analyzing the output signals from the QR 
systems. In the analysis, we focus on the the stationarity of the output signals. Broadly speaking, stationarity is 
a notion that represents the time-consistent property of time-series data. Here, to see the stationarity of output 
signals from the devices, we calculate their mean and variance over the training and testing phase, which are 
summarized in Figs. 6 and 7, respectively. From Fig. 6, we observe that, for the case of the Melbourne device, the 
mean values of the output signals over the training and testing phase are relatively close for every qubit, meaning 
that the output signals are stationary in view of the mean. On the other hand, some qubits on the Toronto device 
(say, qubits labeled 0 and 1) witnessed a large gap in the mean value between the training and test phase, implying 
that the output signals are not stationary. Further, the non-stationarity of the Toronto device can also be seen 
in view of the variance. In Fig. 7, although both devices experience a decrease in variance when changing the 

(a) 4-subsystems (Melbourne) (b) 5-subsystems (Melbourne) (c) 6-subsystems (Melbourne)

(d) 4-subsystems (Toronto) (e) 5-subsystems (Toronto) (f) 6-subsystems (Toronto)

Figure 6.  Mean of the output signal from each qubit over training (red) and testing (blue) phases. Note that 
we show the absolute value of the mean for the sake of the convenience. The number on the horizontal axis 
indicates the label of the qubit from which the signal is measured. The upper three panels (a–c) and lower three 
panels (d–f) show the results for the Melbourne and Toronto device, respectively.
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phase, the gap for the Toronto device is more significant. (Note that a logarithmic scale is used for the vertical 
axis of the plots in Fig. 7.) Consequently, for the Toronto device, the output signals used for training vary greatly 
from those in the testing phase, which might be one reason why the Toronto device is inferior to the Melbourne. 
Also, because the target output for every NARMA task is stationary in terms of both the mean and the variance, 
as shown in Table 2, the non-stationary dynamics of the Toronto device cannot track the target well, which is 
also one reason of the inferior performance.

The above-mentioned difference in the stationarity may be attributed to the non-identical noise characteris-
tics resulting from the layout of the device; that is, a device with qubit configuration that is susceptible to noise 
is more likely to show faster convergence of the dynamics resulting in a more stationary output signal over the 
training and testing phase. Presumably the Melbourne device suffers from more serious and complicated noise 
than the Toronto one, due to the difference in the structure design of the device. It is reported in  Ref56 that the 
CNOT gate error rate for a device with a dense square lattice structure like the Melbourne device is greater than 
that of one with a sparse hexagonal structure like the Toronto device. Hence, our results would indicate that noise 
in the Melbourne device is more suitable for the NARMA tasks in the sense of the stationarity over the training 
and testing period. From this standpoint, we can also understand another device-dependent feature regarding 
the relation between the performance and the system size; the powerful noise on the Melbourne device results in 
the stationary output signals that are though lacking in the higher order time series. Therefore, the extra output 

(a) 4-subsystems (Melbourne) (b) 5-subsystems (Melbourne) (c) 6-subsystems (Melbourne)

(d) 4-subsystems (Toronto) (e) 5-subsystems (Toronto) (f) 6-subsystems (Toronto)

Figure 7.  Variance of the output signal from each qubit over training (red) and testing (blue) phases. The 
number on the horizontal axis indicates the label of the qubit from which the signal is measured. The upper 
three panels (a–c) and lower three panels (d–f) show the results for the Melbourne and Toronto device, 
respectively.

Table 2.  Mean and Variance of the target output sequence for (a) training and (b) testing phase.

NARMA2 NARMA5 NARMA10

(a) Training phase

Mean 0.193 0.178 0.192

Variance 1.71× 10
−6

1.61× 10
−4

1.74× 10
−4

(b) Testing phase

Mean 0.193 0.182 0.197

Variance 9.14× 10
−7

4.35× 10
−5

6.46× 10
−4
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signals coming from the added system may contribute little to the performance improvement. On the other hand, 
output signals generated from the Toronto device have higher-order time series due to the moderate noise, which 
as a result improves the performance as we increase the system size. In this way, our scheme shows the different 
performance depending on the hardware, even if the operations (i.e. the type of quantum circuits) are the same. 
Therefore, it is critical to investigate what kind of noise in quantum hardware and structure of quantum proces-
sors are preferable for our scheme, which will be left to a future work.

Furthermore we compare our QR system to the standard ESN, as a typical machine learning model. The ESN 
used here is the RC model given by Eqs. (1) and (2), where h(xt) = xt and the function f is expressed as

with the hyperbolic tangent function g and the randomly initialized weighting matrices Win and W. Specifi-
cally, with the number of internal nodes NESN (i.e., the state vector xt ∈ R

NESN ), Win is a NESN dimensional 
random binary vector, and W is a NESN × NESN matrix whose element is drawn from a standard normal distri-
bution. In general, the performance of the ESN depends on not only NESN but also the spectral  radius57 of W. 
Hence, we investigate the performance of the ESN over a range of values for these two hyper-parameters; for 
NESN = 2, 5, 10, 20, 50 and the spectral radius ranging from 0.01 to 1 in increments of 0.01, we performed 100 
trials with different Win and W for each experimental setting. Then, for comparison with our QR models, we 
calculate the global average of NMSE and the global minimum of NMSE introduced  in17. The former is the NMSE 
averaged over all trials for the entire settings of the spectral radius with a fixed number of internal nodes NESN , 
and can be understood as the expected performance of an arbitrary ESN with NESN internal nodes. The latter 
is the minimum NMSE averaged over 100 trials for all the settings of the spectral radius with a fixed NESN and 
interpreted as an optimal ESN with NESN internal nodes. The results for the numerical experiments are summa-
rized in Supplementary Table S1. We observed that an ESN with a larger NESN shows the better values for these 
factors in general, as is expected. With these factors of the ESN, we compare the performance of the ESN model 
with that of our model. Unfortunately we observed that our QR system on the Melbourne device is comparable 
to the ESN with several nodes, and that on the Toronto device is worse than the ESN with only a few nodes; 
the Melbourne device is comparable to an optimal ESN with NESN = 2 ( 8.9× 10−6 , 1.5× 10−3 , 1.2× 10−3 for 
NARMA2, NARMA5 and NARMA10, respectively), but inferior to an arbitrary ESN with NESN = 5 ( 3.5× 10−6 , 
4.9× 10−4 , 7.7× 10−4 for NARMA2, NARMA5 and NARMA10, respectively), while the Toronto device is not 
as good as an arbitrary ESN with NESN = 2 ( 1.3× 10−5 , 1.8× 10−3 , 1.3× 10−3 for NARMA2, NARMA5 and 
NARMA10, respectively). See more details of the experimental results in Supplementary Table S1. It is not sur-
prising that the ESN outperforms our QR system, because the QR is not originally designed for these machine 
learning tasks. Moreover, it seems that our scheme is “over-simplified” for the purpose of seeing the contribution 
of quantum hardware noise, and thus it has plenty room for improvement by tuning hyper-parameters, such as 
changing the gate sets and the way to inject the input. Thus, our fully-tuned QR system is a potential candidate 
for strong physical reservoir computing systems.

Object classification task. Next we show the performance of our QR systems for the task of classifying 
different objects, using the time series data generated from the sensor robot that grabs them. This task is equiva-
lent to identifying the class to which the time series data belongs. Hence QR system aims to separate different 
types of those inputs.

We use the linear regression technique to train the readout weight Wout ∈ R
N+1 × R

K , where N is the number 
of observed signals from the reservoir state and K is the number of classes. Recall that an additional dimension 
for Wout (i.e. “+1” in RN+1 ) comes from the extra bias term. To learn the parameters, we simply solve the fol-
lowing linear equation by the pseudo inverse:

where X̃i =
(

h̃(xits ), . . . , h̃(x
i
te
)

)

 and Yi = (ȳi , . . . , ȳi) . Here xit represents the reservoir state at timestep t, and ȳi 
the target output for the i-th training data with the total number of the training data Ntrain . Also ts and te represent 
the first and last timestep for each data, respectively. The target output is expressed by the one-hot vector (i.e., 
[1, 0]T for Object A and [0, 1]T for object B, for the binary-classification task). As for testing, with the optimized 
parameter Wopt

out  and X̃new =
(

h̃(xnewts
), . . . , h̃(xnewte

)

)

 for the unseen testing data, we compute the following:

In fact, tnew shows the index of the maximum value in the predicted one-hot vector averaged over the used 
timesteps (i.e. the period between time ts and te ), and thus indicates the class of the data (indeed, this is equivalent 
to the Winner-Takes-All strategy). Note that this learning method was employed for the classification task with 
the RC model, as shown  in58,59.

In this experiment, the following three objects were used; the first object was a cube made of ABS LEGO 
blocks weighing 15 grams and measuring 3.2 cm wide (Object A) and the remaining two were a polylactic acid 
(PLA) cube and sphere made using a 3D printer with equal widths of 3 cm (Object B and object C, respectively). 
A picture of these objects are shown in Fig. 8a. The sensor data of these objects was obtained by grabbing them 
using the triboelectric nanogenerator (TENG) sensor and the grabbing robot, illustrated in Fig. 8b,c respectively. 
The TENG sensor is a pressure sensor which uses an electronegative silicone bubble shaped dome and an elec-
tropositive nylon layer as the active materials. Figure 9 shows the raw time series data for each object, where the 

f (xt−1, ut) = g(WTxt−1 +WT
inut),

(15)
(

Y1, . . . ,YNtrain

)

= WT
out

(

X̃1, . . . , X̃Ntrain

)

,

(16)tnew = argmax

(

meant

(

W
opt
out

T
X̃new

))

.
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Figure 8.  The objects and an instrument used to collect the sensor-data for the classification tasks. Here, the 
sensor data of three objects (a) are obtained using the TENG sensor (b), which is manipulated by the grabbing 
robot (c).

(a) Object A

(b) Object B

(c) Object C

Figure 9.  The raw data of each object. (a) Object A, (b) Object B and (c) Object C.
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Table 3.  Classification accuracy of our QR system and a simple linear regression model for all classification 
tasks.

A vs. B A vs. C B vs. C A vs. B vs. C

(a) Our QR system

Mean 0.90 1.00 1.00 0.95

Std 0.20 0.00 0.00 0.11

(b) Linear regression

Mean 1.00 0.90 1.00 0.67

Std 0.00 0.20 0.00 0.00

(a) Training (QR) (b) Testing (QR)

(c) Training (LR) (d) Testing (LR)

Figure 10.  The confusion matrices for our QR systems and the linear regression (LR) model in one round of 
cross-validation. The confusion matrices of QR systems (LR model) for training and testing are shown in (a,c) 
and (b,d), respectively.

Figure 11.  The result for NARMA2 using different QR systems. In the figures, the blue line represents the 
targets, green circles and red crosses are the predictions in the training and testing phase, respectively, and the 
blur orange regions are 2σ intervals.
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grabbing process was repeated for 25 cycles. We here used 20 pieces of a time-series data obtained in one cycle 
(90 timesteps) for each object, and pre-processed the data as follows:

where ut and u′t represent the pre-processed and the raw data at time t, respectively. Note that the pre-processing 
is just taking a finite difference of u′t , and thus its computational cost is negligible.

In this experiment, we consider four classification tasks; three binary classification tasks (A vs. B, A vs. C, 
and B vs. C) and a three-class classification task (A vs. B vs. C). For all these tasks, we performed 10-fold cross 
validation to evaluate the performance via the averaged classification accuracy. As for our QR system, we used 
the 4-subsystems on the Toronto device (subsystems labeled 1 to 4 in Fig. 5) with the same unitary operators in 
Eq.  (9), where we set a = π . Also, for each data, we discard first 40 timestep for washout and the remaining 49 
timesteps are used for the learning, i.e. ts = 41 , te = 89 . Note that the experiments were performed during the 
period from Feb. 22nd to Feb. 23rd in 2021.

(17)ut = u′t+1 − u′t ,

Figure 12.  The result for NARMA5 using different QR systems. In the figures, the blue line represents the 
targets, green circles and red crosses are the predictions in the training and testing phase, respectively, and the 
blur orange regions are 2σ intervals.

Figure 13.  The result for NARMA10 using different QR systems. In the figures, the blue line represents the 
targets, green circles and red crosses are the predictions in the training and testing phase, respectively, and the 
blur orange regions are 2σ intervals.
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The classification accuracies are shown in Table 3, where we also show the performance of a simple linear 
classification model to compare the results. Here, the simple linear classifier predicts the class of the data at 
timestep t by ȳt = WT

outut + bT with Wout , b ∈ R
1 × R

K and predict the testing data according to Eq. (16). We 
found that our QR system is superior to the linear model for the binary classification task (A vs. C) and the 
three-class classification, while the linear model is better for the task classifying A and B. Notably, the accuracy 
of our QR system is almost 0.3 higher than that of the linear model, for the three-class classification task. This 
result indicates that the QR system can accurately classify three different classes based on inputs, although some 
classes of which look similar may be more difficult to categorize. As a matter of fact, the confusion matrix of the 
linear model in one round of cross-validation (Fig. 10) reveals that Object C in the existence of Objects A and 
B seems difficult to identify, while our QR systems successfully identify them. Moreover, the accuracies for our 
QR systems are greater than or equal to 0.95 for all the classification tasks, which might be enough comparable 
to that achieved by some existing effective classifiers such as a logistic classifier. Hence this experiment shows 
that our proposed QR system also has a potential for executing classification tasks.

Conclusion
In this work, we propose a QRC scheme that utilizes natural quantum noise; that is, the intrinsic quantum noise, 
which unavoidably occurs in currently available quantum information devices, is leveraged as a (possibly very 
rich) computational resource in our QRC framework. We used IBM superconducting quantum processors to 
experimentally demonstrate the performance of the proposed scheme in two temporal information processing 
tasks; emulation of the NARMA dynamics and classification of different objects based on sensor-data. As a 
result, we observed that our proposed scheme outperforms a linear regression or classification model for some 
NARMA tasks and classification tasks.

There are many remaining works to be examined. In particular, it is important to improve the performance 
and the processing speed. To improve the performance, we need to somewhat identify the underlying mecha-
nisms of quantum noise on the device under operation, from the perspective of controllability. In fact, recently 
we found several quantum system identification methods, which aim to elucidate the complex quantum noises 
such as  crosstalk51,52. These analyses will help us design a quantum reservoir system with suitable configuration 
of qubits as well as a unitary gate for the subsystems. Reducing the processing speed of our QR scheme is also 
important. Processing speed is one of the advantages of physical RC framework compared to other machine 
learning  architectures20. In our experimental setting, we have to run the quantum circuits repeatedly to aver-
age the stochastic outcomes and obtain the output signals. That is, for the total timesteps L and the number 
of required measurement S, we need to run the quantum circuit a total of LS times, which is time consuming. 
However, thanks to the recent rapid advance of the quantum hardware, we can now perform mid-circuit measure-
ments for IBM superconducting  processors60, which generates the output signal with only S running the circuit, 
meaning that our RC method is scalable.

Finally note that the proposed QRC scheme is not limited to NISQ. Even in the era of future fault-tolerant 
quantum computing devices, it is easy to introduce noise by simply relaxing the control level for qubits. There-
fore the degree of noise level introduced as well as the structure of noise dynamics will be a central topic to be 
explored in the future. Also, in addition to the important direction to explore relevant applications  Ref61,62, an 
intriguing open problem is to characterize “quantum-reservoir oriented” processors which are specialized for our 
QRC scheme; examples of such processors are a system with qubits configuration suitable for machine learning 
tasks and a system whose hyper-parameters such as noise level are tunable.
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