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Droplet digital PCR-based circulating
microRNA detection serve as a promising
diagnostic method for gastric cancer
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Abstract

Background: Novel non-invasive biomarkers for gastric cancer (GC) are needed, because the present diagnostic
methods for GC are either invasive or insensitive and non-specific in clinic. The presence of stable circulating
microRNAs (miRNAs) in plasma suggested a promising role as GC biomarkers.

Methods: Based on the quantitative droplet digital PCR (ddPCR), four miRNAs (miR-21, miR-93, miR-106a and
miR-106b) related to the presence of GC were identified in plasma from a training cohort of 147 participants
and a validation cohort of 28 participants.

Results: All circulating miRNA levels were significantly higher in the plasma of GC patients compared to healthy controls
(P < 0.05). Through a combination of four miRNAs by logistic regression model, receiver operating characteristic (ROC)
analyses yielded the highest AUC value of 0.887 in discriminating GC patients from healthy volunteers. Furthermore, miR-
21, miR-93 and miR-106b levels were significantly related to an advanced TNM stage in GC patients. ROC analyses of the
combined miRNA panel also showed the highest AUC value of 0.809 in discriminating GC patients with TNM stage I and II
from stage III and IV. Through combining four miRNAs and clinical parameters, a classical random forest model was
established in the training stage. In the validation cohort, it correctly discriminated 23 out of 28 samples in the blinded
phase (false rate, 17.8%).

Conclusions: Using the ddPCR technique, circulating miR-21, miR-93, miR-106a and miR-106b could be used as diagnostic
plasma biomarkers in gastric cancer patients.
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Background
Gastric cancer is second most common cancer in terms
of incidence and mortality in China, according to the
most recent cancer statistics [1]. With the improvement
of surgical technique, radiotherapy and chemotherapy in
recent years, patients in the early stage of GC had a sig-
nificant increased 5-year survival rate, but the prognosis
for advanced GC remains poor [2, 3]. Thus, it is import-
ant to diagnose GC in the early stage thus yielding better
outcome. Gastroscopy is the gold standard test for GC

diagnosis, but it is invasive and couldn’t be frequently
used as regular health examination. Carcinoembryonic
antigen (CEA), α-fetoprotein (AFP) and carbohydrate
antigen 19–9 (CA19–9) are widely used as non-invasive
markers in clinical, but their sensitivities and specificities
are not enough for early diagnosis of GC [4]. Therefore,
novel non-invasive biomarkers with better sensitivities
and specificities are urgently needed.
MicroRNAs (miRNAs) are small noncoding RNAs,

about 22–24 bases long, that inhibit their target mRNAs
translation by inducing mRNA degradation or transla-
tional repression [5, 6]. Up to now, there are thousands
of miRNAs have been reported to be associated with
tumor growth, invasion, metastasis and apoptosis [7].
Several studies have demonstrated that circulating
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miRNAs can serve as biomarkers for GC diagnosis. For
example, miR-223, miR-16 and miR-100 were highly
expressed in the serum of GC patients, and positively as-
sociated with TNM stage, metastatic status, tumor size
and differentiation grade [8]. The level of let-7a expres-
sion in the plasma of GC patients was significant lower,
and the value of the area under the receiver-operating
characteristic curve was 0.879 for the miR-106a/let-7a
ratio in GC patients and healthy volunteers [9]. Thus,
miRNAs in peripheral blood have great potential for
helping early diagnosis of GC.
Although the results of previous studies are promising,

their clinical transferability remains uncertain, which
mainly due to the lack of uniformity and reproducibility
in the criteria for determining the circulating miRNA
levels by quantitative real-time PCR (qPCR). Besides,
several variables such as sample storage, RNA isolation,
PCR inhibitors and normalization could affect final re-
sults [10]. The droplet digital PCR (ddPCR) technique is
increasingly considered to be the gold standard in the
application of liquid biopsy, because it has shown super-
ior precision and sensitivity, being less affected by PCR
inhibitors, and unnecessity of internal/external
normalization while detecting low concentration of tar-
get nucleic acids molecules [11, 12]. In this study, we
used the ddPCR technique to explore the circulating
miRNA signatures which could be potential biomarkers
for GC diagnosis, and discriminating GC patients with
different TNM stage. Four miRNAs, miR-21, miR-93,
miR-106a and miR-106b, which have been most
reported to be closely correlated with GC in tissue and
plasma of patients and represent as candidate
biomarkers for human GC, were examined by novel
technique of ddPCR. [9, 13–15].
Furthermore, without the assist of tissue biopsy and

imaging examinations, it would be difficult for clinicians
to make diagnosis and tumor staging for GC, because
there are many factors could probably influence the
results. To improve the precision and accuracy of diag-
nosing disease, new approaches such as machine learn-
ing which is the main technical basis for data mining,
provide an effective solution [16]. Several studies have
been reported to use machine learning tools for data
mining to diagnose disease or predict prognosis [17–19].
In this study, we explored the use of random forest
model based learning for GC diagnosis, by using circu-
lating miRNA expressions and clinical parameters such
as age, gender, CEA and CA19–9.

Methods
Patients and blood samples
The present study was approved by the ethics committee
of Sichuan Provincial People’s Hospital. All participants

provided written informed consent form to approve the
use of their blood samples for research purposes.
From Sichuan Provincial People’s Hospital, a total of

101 patients with gastric cancer (GC) and 46 healthy
volunteers were recruited to the training cohort between
January 2017 and June 2017, and a total of 11 patients
with GC and 17 healthy volunteers were recruited to the
validation cohort between December 2017 and February
2018. For plasma, 5 ml peripheral blood was collected in
EDTA tubes, the sampling time was pre-surgery for GC
patients, especially. And within 2 h, plasma was sepa-
rated by centrifugation at 2000×g for 10 min, the super-
natant was followed by a second centrifugation at
12000×g for 20 min. Then, the plasma was either stored
at − 80 °C or miRNA was extracted immediately.
For patients, GC paraffin-embedded tissue samples were

obtained after surgical resection. The clinicopathological
classification and staging were determined according to
the World Health Organization pathological classification
of tumors. The clinical information for GC patients in the
training stage is summarized in Table 1. Among the 101
patients included 51 male and 50 female, the median age
was 56 years old (range, 35–75 years) and the median
tumor size was 3.9 cm (range, 1.0–7.5 cm). There were 16
cases well differentiated, 35 were moderately differentiated
and 50 were poorly differentiated. There were 35 cases
without lymph node metastasis, 66 cases with lymph node
metastasis, 18 cases with distant metastasis and 83 cases
without distant metastasis. According to TNM stage clas-
sification, 28 cases were categorized as stage I, 13 cases for
stage II, 36 cases for stage III and 24 cases for stage IV.

RNA isolation and reverse transcription
Total circulating miRNA was extracted from 200 μL
plasma using the miRNeasy Serum/Plasma Kit (Qiagen) ac-
cording to the manufacturer’s protocol. In addition, 10 μL
of a 1.5 nmol/L solution of the custom synthetic miRNA
cel-miR-54-5p was added after the sample was mixed with
1 mL QIAzol Lysis reagent for 5 min. RNA was eluted from
spin columns in 40 μL nuclease-free water.
Four circulating human miRNAs (miR-21, miR-93,

miR-106a and miR-106b) and one spike-in control
miRNA (cel-miR-54-5p) were determinated by TaqMan™
MicroRNA Assays, TaqMan miRNA Reverse Transcrip-
tion kits (Life Technologies) and miRNA-specific RT
primers were used for reverse transcription. For each
sample, 3 μL RNA sample was added in a 15 μL reaction
mixture using standard protocol. Then, the resulting
cDNA was prepared for the droplet digital PCR.

ddPCR workflow
For each ddPCR assay, 3 μL cDNA sample, 10 μL 2×
ddPCR supermix for probes (Bio-Rad), 1 μL 20× Taq-
Man miRNA probe and 6 μL RNase-free Water was
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added in a 20 μL reaction mixture. Then, the mixture
and 70 μL droplet generation oil for probes (Bio-Rad)
were respectively loaded into the sample wells and oil
wells of a disposable droplet generator cartridge
(Bio-Rad). After that, droplets were generated by QX200
droplet generator device (Bio-Rad) and carefully trans-
ferred to a 96-well PCR plate (Eppendorf ). The cycling
conditions were: 95 °C for 10 min, 40 cycles of 95 °C for
15 s and 57 °C for 1 min, and a final step at 98 °C for
10 min. At the end of the PCR reaction, droplets were

read in the QX200 droplet reader and analyzed using
the Quantasoft™ version 1.7.4 software (Bio-Rad). In
addition, a no template control (NTC) was included in
every assay. And the spike-in control miRNA was used
as an internal calibrator to monitor extraction efficiency.

Statistical analysis
The statistical analyses were performed using the
SPSS version 19.0 software. The Mann-Whitney U
test was used to compare significant differences in

Table 1 Clinicopathological characteristics of all individuals in the training stage and relationships with circulating miRNAs in the
plasma

Characteristics miR-21 miR-93 miR-106a miR-106b

Total (%) Mean ± SD P value Mean ± SD P value Mean ± SD P value Mean ± SD P value

GC patients

Gender

Male 51(50.5) 300.2 ± 127.7 0.437 206.3 ± 87.8 0.318 41.3 ± 18.7 0.404 26.3 ± 11.8 0.353

Female 50(49.5) 300.8 ± 187.5 188.6 ± 70.5 37.7 ± 16.1 24.0 ± 11.1

Age (years)

≥ 60 45(44.6) 303.4 ± 187.7 0.562 203.5 ± 87.0 0.696 36.9 ± 16.4 0.159 22.7 ± 11.2 0.019*

< 60 56(55.4) 298.1 ± 133.9 192.7 ± 73.9 41.6 ± 18.2 27.1 ± 11.4

Tumor size (cm)

≥ 5 29(28.7) 358.8 ± 183.5 0.029* 198.9 ± 63.9 0.684 43.0 ± 14.9 0.071 26.5 ± 8.8 0.165

< 5 72(71.3) 277.0 ± 143.2 196.9 ± 85.8 38.1 ± 18.3 24.6 ± 12.4

Differentiation

Well 16(15.8) 296.4 ± 158.4 0.078 200.9 ± 86.1 0.976 39.7 ± 17.4 0.601 26.7 ± 13.1 0.891

Moderate 35(34.7) 353.8 ± 187.5 196.0 ± 69.2 37.9 ± 18.8 25.4 ± 12.1

Poor 50(49.5) 264.5 ± 127.9 197.5 ± 86.0 40.6 ± 16.1 24.5 ± 10.6

Lymph node metastasis

Positive 66(65.3) 329.1 ± 172.3 0.014* 210.8 ± 80.7 0.019* 40.1 ± 16.7 0.438 27.9 ± 11.2 0.0002*

Negative 35(34.7) 246.5 ± 115.4 172.4 ± 72.7 38.5 ± 19.0 20.0 ± 10.1

Distant metastasis

Positive 18(21.7) 304.1 ± 122.3 0.435 218.8 ± 91.4 0.371 41.4 ± 15.1 0.297 25.6 ± 10.5 0.572

Negative 83(78.3) 299.7 ± 166.8 192.9 ± 76.9 39.1 ± 18.0 25.1 ± 11.7

TNM stage

I 28(27.7) 234 ± 119.7 0.0062* 175.8 ± 78.3 0.0571 37 ± 19.4 0.7371 19.3 ± 9 0.0016*

II 13(12.9) 241.8 ± 101.5 182.5 ± 84.6 40.9 ± 15.6 21.7 ± 10.9

III 36(35.6) 329.5 ± 173.2 195.9 ± 66.1 39.2 ± 17.7 27.8 ± 11.1

IV 24(23.8) 366.2 ± 171.2 233.4 ± 89.7 42.3 ± 16.4 29.9 ± 12

Healthy voluteers

Gender

Male 26(56.5) 142.8 ± 62.8 0.475 128 ± 56.6 0.784 29.2 ± 17.1 0.33 17.4 ± 10.6 0.123

Female 20(43.5) 172 ± 101.1 133.3 ± 63.2 25.1 ± 14.7 13.1 ± 7.3

Age (years)

≥ 60 18(39.1) 158.2 ± 67.2 0.632 146.7 ± 66.8 0.249 28.4 ± 21.4 0.486 16.4 ± 12.2 0.726

< 60 28(60.9) 153.7 ± 91.4 119.8 ± 51.8 26.8 ± 11.9 15 ± 7.4

*means P-value< 0.05
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miRNA expression between different groups. Logistic
regression was used to develop a combined miRNA
panel to diagnose GC with different TNM stage. Re-
ceiver operating characteristic (ROC) curves were
established to evaluate the capacity of the tested
miRNA to discriminate cancer cases in different
TNM stage, and its potential use as a diagnostic tool
for detecting GC. A p-value of less than 0.05 was
considered to be significant.
A total of 147 participants in the training cohort

were grouped into the training data set, and 28 par-
ticipants in the validation cohort were grouped into
the testing data set. In the training stage, a classical
random forest algorithm in R version 3.4.2 software
was used to construct variable selection models for
combined four miRNA panel and clinical parameters
in this study. Next, using single blind method, we
tested the model by using the 28 cases of the testing
data set as a prospective validation set, to assess its
predictive ability. And we also retrospectively analyzed
the 147 cases of the training data set.

Results
Circulating miRNAs in plasma of GC patients versus
healthy controls
First, we compared the expression levels of four validated
miRNAs in plasma from healthy volunteers (n = 46) and GC
patients (n = 101) with different TNM stage using ddPCR.
All four miRNAs including miR-21, miR-93, miR-106a and
miR-106b levels were significantly lower in healthy controls
than GC patients with TNM stage I (p = 0.0021, p= 0.0084,
p= 0.0116 and p= 0.0168 respectively) (Fig. 1a), as well as
TNM stage II, III and IV (Table 2). To evaluate the diagnos-
tic value of the concentrations of these four circulating miR-
NAs, ROC curve analysis was performed. GC patients with
different TNM stage were combined as one group, the area
under the curve (AUC) values of miR-21, miR-93, miR-106a
and miR-106b were 0.811 (95% confidence interval [CI],
0.739–0.884), 0.751 (95% CI, 0.667–0.836), 0.731 (95% CI,
0.638–0.823) and 0.77 (95% CI, 0.683–0.857), respectively
(Fig. 1b). We also detect the CEA and CA19–9 in all 147
participants in the present study, the testing time was
pre-surgery for GC patients. The AUC values obtained for

Fig. 1 Diagnostic value of circulating miRNAs expression signature in discriminating gastric cancer patients from healthy volunteers. a Levels of
circulating miR-21, miR-93, miR-106a and miR-106b in plasma of gastric cancer patients and healthy volunteers. The levels of miRNA are
presented as copies/μl of PCR reaction. b ROC analysis for individual miRNA. c ROC analysis for the common tumor biomarkers including CEA
and CA19–9. d ROC analysis for the combined miRNA panel
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CEA and CA19–9 to distinguish the GC patients from the
healthy controls were 0.552 (95% CI, 0.456–0.648) and
0.584 (95% CI, 0.473–0.695), respectively (Fig. 1c).
Furthermore, through a combination of the expression

levels of four validated miRNAs, weighted by the regres-
sion coefficient, we developed a miRNA classifier using
logistic regression model. It could be used to evaluate
the predicted probability of being detected as GC, which
was calculated as follows: first, the expression levels of
four miRNAs were calculated as miRNA panel score
using the following equation: miRNA panel score =
5.218–0.011 ×miR-21-0.012 ×miR-93-0.037 ×
miR-106a-0.031 ×miR-106b. Then, the predicted prob-
ability was calculated by a second equation: predicted
probability = EXP (miRNA panel score)/[1 + EXP
(miRNA panel score)]. The combination of the four
miRNAs exhibited better diagnostic value compared to
any individual miRNA, with an AUC of 0.887 (95% CI,
0.83–0.943) (Fig. 1d) by logistic regression analysis, an
optimal cut-off point was indicated at 0.315 with a sensi-
tivity of 84.8% and a specificity of 79.2%. These results
indicated that the circulating miR-21, miR-93, miR-106a
and miR-106b could be considered as more accurate
biomarkers than CEA and CA19–9 for GC diagnosis.

Circulating miRNAs in plasma of GC patients with
different TNM stage
Although four miRNAs were up-regulated in GC pa-
tients with TNM stage II compared with stage I, as well
as TNM stage IV compared with stage III, but the differ-
ences had no statistically significant (p > 0.05) (Fig. 1a &
Table 2). However, miR-21 and miR-106b levels were
significantly increased in GC patients with TNM stage
III or IV compared with stage I (miR-21:p = 0.0133 and
p = 0.0018, miR-106b:p = 0.0018 and p = 0.0004 respect-
ively) (Table 2). miR-106b levels were still significantly

increased when compared TNM stage III or IV with
stage II in GC patients (p = 0.0335 and p = 0.02 respect-
ively), while it was significant for miR-21 levels only
when compared TNM stage IV with stage I in GC pa-
tients (p = 0.0163). Moreover, miR-93 and miR-106a
levels in GC patients had no significant difference be-
tween groups with different TNM stage, except for the
miR-93 levels in GC patients with TNM stage I and IV
(p = 0.0102).
Furthermore, we combined GC patients with TNM

stage I and II as one group, as well as TNM stage III
and IV. As expected, the results showed that miR-21
and miR-106b levels were significantly higher in stage
III and IV compared to stage I and II (p = 0.0004 and
p < 0.0001 respectively), while miR-106a levels still
had no significant difference between these two
groups (p = 0.3824) (Fig. 2a). However, there was an
unexpected significant increase for miR-93 levels in
GC patients with stage III and IV compared to stage
I and II (p = 0.0218) (Fig. 2a). The AUC values ob-
tained for miR-21, miR-93, miR-106a and miR-106b
to distinguish the GC patients with stage I and II from
stage III and IV were 0.704 (95% CI, 0.601–0.807), 0.634
(95% CI, 0.52–0.749), 0.552 (95% CI, 0.435–0.668) and
0.736 (95% CI, 0.635–0.836), respectively (Fig. 2b).
Same as previous analysis, we assigned each patient a risk

score which was calculated as follows: First, miRNA panel
score = − 2.875 + 0.005 ×miR-21 + 0.003 ×miR-93-0.034 ×
miR-106a + 0.115 ×miR-106b. Then, risk score = EXP
(miRNA panel score)/[1 + EXP (miRNA panel score)]. The
combination of the four miRNAs exhibited better capability
to discriminate GC with TNM stage I and II from stage III
and IV compared to any individual miRNA, with an AUC
of 0.809 (95% CI, 0.723–0.896) (Fig. 2c) by logistic regres-
sion analysis, an optimal cut-off point was indicated at
0.534 with a sensitivity of 78.3% and a specificity of 70.7%.
Taken together, these results demonstrated that circulating
miR-21, miR-93 and miR-106b might have a potential
diagnostic value for distinguishing GC with different TNM
stage.

Correlation between expression levels of circulating
miRNA in plasma and clinicopathologic factors in GC
patients
Except for the TNM stage, we evaluated whether the
levels of four circulating miRNAs are correlated with
other clinical characteristics of all GC patients. As it
was summarized in Table 1, the expression of
miR-21, miR-93, miR-106a and miR-106b didn’t sig-
nificantly differ between the GC patients based on
gender (p = 0.437, p = 0.318, p = 0.404 and p = 0.353
respectively), tumor differentiation (p = 0.078, p = 0.976, p
= 0.601 and p = 0.891 respectively) and distant metastasis
(p = 0.435, p = 0.371, p = 0.297 and p = 0.572 respectively).

Table 2 Performance of circulating miRNAs for detection of GC
with different TNM stages

miR-21 miR-93 miR-106a miR-106b

P-value

Health vs GC TNM I 0.0021** 0.0084** 0.0116* 0.0168*

Health vs GC TNM II 0.0014** 0.0263* 0.0013** 0.0132*

Health vs GC TNM III < 0.0001** < 0.0001** 0.0004** < 0.0001**

Health vs GC TNM IV < 0.0001** < 0.0001** 0.0001** < 0.0001**

GC TNM I VS II 0.5704 0.8142 0.2820 0.6043

GC TNM I VS III 0.0133* 0.1543 0.4864 0.0018**

GC TNM I VS IV 0.0018** 0.0102* 0.1118 0.0004**

GC TNM II VS III 0.0791 0.4665 0.5262 0.0335*

GC TNM II VS IV 0.0163* 0.0952 0.6097 0.0200*

GC TNM III VS IV 0.2985 0.0897 0.2164 0.3092

* means P < 0.05, ** means P < 0.01
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Fig. 2 (See legend on next page.)

Zhao et al. BMC Cancer  (2018) 18:676 Page 6 of 10



However, the levels of miR-21, miR-93 and miR-106b in
plasma from the GC patients is significantly related to
lymph node metastasis (p = 0.014, p = 0.019 and p = 0.0002
respectively). Moreover, the circulating miR-21 and
miR-106b levels are also related to tumor size and age re-
spectively (p = 0.029 and p = 0.019). The results demon-
strated the feasibility of these miRNAs for the diagnosis of
other clinicopathological characteristics of GC patients.

Random forest model used for GC diagnosis
To evaluate the diagnostic value of circulating miR-21,
miR-93, miR-106a and miR-106b combined with other
conventional clinical parameters including gender, age,
CEA and CA19–9 for GC with different TNM stage, we
used a classical random forest algorithm for analysis. A
total of 147 participants in the training cohort were
grouped as the training data set and used for developing
the model. And the other 28 participants in the valid-
ation cohort were grouped as the testing data set and
used for assessing predictive ability of the model.
In the training stage, using random forest supervised

classification algorithm, four microRNAs, three clinical
parameters including CEA, age and CA19–9 mostly
related to the diagnostic classification were selected
(Additional file 1: Figure S1). In the testing stage, we
used the developed random forest model to validate
both the training data set and the testing data set. It cor-
rectly discriminated 147 out of 147 samples in the train-
ing data set, and 23 out of 28 samples in the testing data
set, which showed 100 and 82.1% accuracy respectively
in identifying Healthy volunteers and GC patients with
different TNM stage (Table 3), by using the selected var-
iables based on their value cut-offs (Additional file 1:
Figure S1). In addition, the most influential factor in this
model was miR-21, followed by miR-106b, miR-93,
miR-106a, CA19–9, CEA, age and gender (Table 4).

Discussion
Early diagnosis could greatly improve the survival rates of
GC patients. However, the currently used diagnostic
methods are either invasive or insensitive, thus limited
their application in clinic. In recent years, a number of cir-
culating miRNAs, which are notably stable in the circula-
tion of body fluids [20, 21], are suggested as promising
non-invasive diagnostic markers for GC [9, 15, 22–24].
Unfortunately, since circulating miRNAs exist in blood at
extremely low concentrations [25], the test results would

be made poorly repeatable due to the interference of sev-
eral variables, such as sample processing protocols, RNA
isolation and so on [10, 26]. Most importantly, quantita-
tive real-time PCR is most commonly used but must rely
on the use of external calibrators, because it lacks reliable
endogenous reference miRNA for normalization of results
in plasma or serum. Therefore, the data which produced
by a variety of normalization methods in different studies,
become non-comparable or difficult to compare. This is a
major obstacle for their translation into clinically useful
applications [10, 27].
The present study, to our best knowledge, is the first to

evaluate the diagnostic value of circulating miRNAs for
GC patients using the ddPCR technique. ddPCR is a re-
cently introduced technology which can achieve absolute
quantification of nucleic acids based on the principles of
sample portioning, end-point PCR and Poisson statistics
[28, 29]. Thus, it overcomes the normalization and cali-
brator issues [30]. Besides, it has shown better precision
and sensitivity while detecting low concentration of target
nucleic acids molecules [31, 32]. More importantly,
ddPCR can tolerate PCR inhibitors which could influence
the efficiency of PCR amplification, without affecting the
quantitative results of the target [11].
Using ddPCR, we analyzed the levels of circulating

miR-21, miR-93, miR-106a and miR-106b in the plasma
of GC patients and healthy volunteers. Similar to previ-
ous studies [9, 14, 15], we found the significantly
increased levels of these miRNAs in GC patients
compared with healthy controls, and some miRNAs
were associated with advanced TNM stage. ROC curve
analysis showed that each miRNA had higher diagnostic

(See figure on previous page.)
Fig. 2 Diagnostic value of circulating miRNAs expression signature in discriminating gastric cancer at different TNM stage. a Levels of circulating
miR-21, miR-93, miR-106a and miR-106b in plasma of gastric cancer patients with low TNM stage (stage I and II) and high TNM stage (stage III
and IV), and healthy volunteers. The levels of miRNA are presented as copies/μl of PCR reaction. b ROC analysis for individual miRNA. c ROC
analysis for the combined miRNA panel

Table 3 Confusion matrix of the developed random forest
model in the testing stage

Predicted class

Healthy TNM I + II TNM III + IV

Training data set

Actual class Healthy 46 0 0

TNM I + II 0 41 0

TNM III + IV 0 0 60

Testing data set

Actual class Healthy 14 2 1

TNM I + II 0 4 1

TNM III + IV 1 0 5
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sensitivity and specificity than CEA and CA19–9 which
were widely used in clinic. Furthermore, through a com-
bination of the expression levels of four validated miR-
NAs, a patient will be considered to have GC if the
predicted probability is higher than the threshold set
(0.315 with a sensitivity of 84.8% and specificity of 79.2%)
in the model. An AUC of 0.887 (95% CI, 0.83–0.943) and
P-values< 0.001 indicate the great potential value of these
miRNAs as GC biomarkers.
Based on the results above, we further evaluate the po-

tential use of these miRNAs in discriminating GC with
different TNM stage. First, GC patients with TNM stage
I and II were combined as one group, as well as stage III
and IV, because there was no statistically significant dif-
ference between these groups. Then, our results showed
that the levels of circulating miR-21, miR-93 and
miR-106b in the plasma of GC patients were signifi-
cantly higher in TNM stage III and IV than stage I and
II, except for the miR-106a. As usual, a combination of
four miRNAs showed better capability to discriminate
GC with different TNM stage. A patient will be consid-
ered to have GC with TNM stage III or IV if the risk
score is higher than 0.534 (a sensitivity of 78.3% and
specificity of 70.7%). ROC analysis also showed an AUC
of 0.809 (95% CI, 0.723–0.896) and P-values< 0.001. To
our knowledge, this study is the first to demonstrate that
these miRNAs might be also used as biomarkers to
discriminate GC with TNM stage I and II from stage III
and IV.
In the search of possible correlations with clinico-

pathological features, it was noteworthy that the pres-
ence of lymph node metastases was significantly
correlated with increased levels of circulating miR-21,
miR-93 and miR-106b. Moreover, a high level of cir-
culating miR-21 was significantly related to a bigger
tumor size (≥5 cm). These results indicate that these
miRNAs might represent biomarkers of tumor aggres-
siveness, which further improved their value for dis-
criminating GC with different TNM stage. Some
studies have reported that high levels of miR-21

expression may induce tumor proliferation, migration
and invasion via the downregulation of Noxa or
PTEN expressions in GC cells [33, 34]. And miR-93
could promote proliferation and metastasis of GC via
targeting TIMP2 or inactivation of the Hippo signal-
ing pathway [35, 36]. In cancer-associated fibroblasts
from GC, miR-106b could promote cell migration
and invasion by targeting PTEN [37]. And it could
also promote cell cycling of GC cells through regula-
tion of p21 and E2F5 target gene expression [38].
These might be the mechanism of its correlation with
lymph node metastases and tumor size. However, al-
though it was reported that miR-106a could also
regulate invasion and metastasis of GC via targeting
TIMP2 [39, 40], and may inhibit extrinsic apoptotic
pathway through targeting FAS [41], our results
demonstrated that miR-106a expression was not asso-
ciated with the lymph node metastases and tumor
size. Further studies are required.
In clinic, due to the numerous factors that influence

the precision and accuracy of diagnosing diseases or pre-
dicting of patients’ prognosis, more and more studies
are applying machine learning algorithms to medical
data, including the detection of GC [20, 42, 43]. There
are several algorithms such as random forest, support
vector machine and neural networks were commonly
used [43, 44]. Here, we chose random forest model since
it is easy to interpret, and allowed us to estimate the im-
portance of a variable. After the random forest model
was established in the training stage, when we tested the
predictive value of this model using the testing data set,
our results showed that it correctly discriminated 14 out
of 17 healthy volunteers (false rate, 17.6%), 4 out of 5
GC patients with TNM stage I or II (false rate, 20%),
and 5 out of 6 GC patients with TNM stage III or IV
(false rate, 16.7%). However, the number of cases in-
cluded in the present study is still far from sufficient to
develop a reliable model, and we also didn’t have enough
cases to test and validate the model. Further studies with
much more cases are urgently required, to improve their
application in clinic. Moreover, despite our results and
accumulating evidences suggested that circulating miR-
NAs stably existed in circulation and can indeed be used
as biomarkers to identify and monitor a variety of
cancers and other diseases, it is still unknown how and
why GC causes changes in the levels of these four circu-
lating miRNAs, and whether or how they play roles in
physiology. Further studies are also needed.

Conclusions
Overall, the present study demonstrated that by using
the ddPCR technique, circulating miR-21, miR-93,
miR-106a and miR-106b could be used as diagnostic
plasma biomarkers in gastric cancer patients.

Table 4 The relative importance of variables in the developed
random forest model

Variables Mean Decrease Gini

Gender 1.134787

Age 9.342937

CA19–9 11.051689

CEA 9.918123

miR-21 19.143754

miR-93 16.274413

miR-106a 12.627928

miR-106b 16.550531
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Additional files

Additional file 1: Figure S1. A random forest model for discriminating
healthy volunteers, gastric cancer patients with low TNM stage (stage I
and II) and high TNM stage (stage III and IV) G0 represents healthy
volunteers; G1 represents GC patients with TNM stage I and II; G2
represents GC patients with TNM stage III and IV. (TIF 624 kb)
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