
1

Vol.:(0123456789)

Scientific Reports |          (2022) 12:647  | https://doi.org/10.1038/s41598-021-04566-0

www.nature.com/scientificreports

Optimizing the geodetic 
networks based on the distances 
between the net points 
and the project border
Ahmed A. G. AbdAllah1,2 & Zhengtao Wang1*

Geodetic networks are important for most engineering projects. Generally, a geodetic network is 
designed according to precision, reliability, and cost criteria. This paper provides a new criterion 
considering the distances between the Net Points (NPs) and the Project Border (PB) in terms of 
Neighboring (N). Optimization based on the N criterion seeks to relocate the NPs as close as possible 
to PB, which leads to creating shorter distances between NPs or those distances linking NPs with 
Target Points (TPs) to be measured inside PB. These short distances can improve the precision of 
NPs and increase the accuracy of observations and transportation costs between NPs themselves or 
between NPs and TPs (in real applications). Three normalized N objective functions based on L1, L2, 
and L∞‒norms were formulated to build the corresponding N optimization models, NL1; NL2; and 
NL∞ and to determine the best solution. Each model is subjected to safety, precision, reliability, and 
cost constraints. The feasibility of the N criterion is demonstrated by a simulated example. The results 
showed the ability of NL∞ to determine the safest positions for the NPs near PB. These new positions 
led to improving the precision of the network and preserving the initial reliability and observations 
cost, due to contradiction problems. Also, N results created by all N models demonstrate their 
theoretical feasibility in improving the accuracy of the observations and transportation cost between 
points. It is recommended to use multi-objective optimization models to overcome the contradiction 
problem and consider the real application to generalize the benefits of N models in designing the 
networks.

Geodetic networks are indispensable for most engineering projects such as mining and construction, also they 
are important for studying natural events such as crustal movements. Depending on its stable and identifiable 
points positioned on the Earth’s surface or close to it and associated with a known coordinate reference system, 
the geodetic network can be used for monitoring, implementation, establishment, and maintenance purposes. 
To achieve these purposes, the geodetic network should be designed in such a way that satisfies the requirements 
of each purpose that contains precision, reliability, and cost.

Four orders were stated by Grafarend1 as a solution for the design problem. In zero-order design, the suitable 
datum is determined for the network; the first-order design calculates the adequate configuration for the network; 
the second-order design selects the type and weight of the observables; improving the network by densification 
or expansion is performed in the third-order design. Because each order is performed independently, incompat-
ibility between the results of these orders can arise. To solve this problem, the optimization technique should be 
used in the network design2. After solving the optimization model, the optimal weights presenting the optimal 
observables besides the optimal shifts of the initial NPs presenting the optimal configuration of the network 
are obtained. The mathematical meaning of optimizing the geodetic networks is maximizing or minimizing an 
objective function that represents the network quality comprising precision, reliability, and economy3, which 
may be subjected to some constraints. Moreover, the optimization model may be single or multi based on the 
number of objective functions. Norm selection plays an important role in formulating both objective function 
and constraints and consequently the optimized parameters3. The popular norms used in the optimization are 
L1, L2, and L∞. These norms can be defined as follow: L1 norm—known as the Mean Absolute Error (MAE)—is 
the sum of the absolute values of a vector; L2 norm—called as Mean Squared Error (MSE)—gives the square root 
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of the sum of the squared values of a vector; L∞—known as the uniform norm—provides the largest absolute 
value of a vector.

Since the pioneering works of Baarda4 and Garafarend1, a series of investigations and developments in this 
seminal field were released as published papers in scientific journals. In this context, Kuang3 has presented Single 
and Multi-Objective Optimization Models, (SOOM) and (MOOM), to optimize the control and deformation 
monitoring networks. SOOMs concern optimizing networks based on either maximum precision, maximum 
reliability, or low cost. While MOOMs are used for optimizing more than one criterion. Most studies followed this 
study used and modified these models to design the geodetic networks based on different targets. For instance, 
Dare and Saleh5 used optimization to reduce the cost of performing an epoch survey, which is required to moni-
tor network observed using GPS, consisting of several observing sessions by calculating the cheapest session 
schedules. They found that their optimization technique is suitable only for small networks. Seemkooei6 designed 
a geodetic network based on maximum reliability and introduced the relationship between the reliability and 
robustness of the network. It is found that the observations having minimum redundancy numbers lead to the 
greatest robustness parameters. He concluded that the network can be designed in sense of maximum reliability 
and checked by robustness to produce a network with high strength. The same author7 suggested a new method 
to design the geodetic networks in SOD considering maximum reliability. His method depends on improving 
the weight of the observations in such a way that all observations get the same redundancy numbers. To find 
the most suitable SOOM for designing the geodetic network, Eshagh, and Kiamehr2; Bagherbandi et al.8; and 
Alizadeh-Khameneh et al.9 made a comparison between the results obtained by these models in different stud-
ies. The results of all studies showed the superiority of SOOM of reliability in designing the geodetic networks 
optimally. The variances criterion that related the sum of total station coordinates and orientations was used 
by Alizadeh-Khameneh et al.10 to determine the optimal position of the total station. The results reported that 
the height component has an insignificant effect on determining the vertical position of the total station. Most 
of the aforementioned studies using SOOMs reported that there exist some cases facing inconsistency between 
constraints such as inconsistencies between cost and precision. Where these inconsistencies can lead to unac-
ceptable results2. This problem motivated researchers to use MOOMs instead SOOMs. In this regard, Mehrabi11 
used a Bi-Objective Optimization Model (BOOM) in optimizing the geodetic network considering maximum 
precision and reliability. Also, Bagherbandi et al.8 (in the same aforementioned study) performed a comparison 
between SOOMs and MOOMs and found that MOOMs provide the most suitable solution to overcome con-
tradictions between constraints. The capability of the BOOMs versus SOOMs was introduced in Eshagh and 
Alizadeh-Khameneh12. The study showed that the unconstrained BOOM of reliability and precision is the best 
model, by which the precision and reliability demand can be fulfilled. Moreover, this model is also economical 
where more observables are eliminated from the observation plan whilst adding the constraints leads to saving 
more insignificant observables. MOOMs were applied to the same example studied by Alizadeh-Khameneh 
et al.9 to investigate their ability in designing monitoring networks. They found that all quality requirements of 
the network were met by about 17% better than the initial observation plane, which means that time, cost, and 
efforts were saved by about 17%. As a summary for this part, these studies demonstrate the capability of MOOMs 
to solve the problem of contradiction between constraints that existed in SOOMs. This means that MOOMs 
can design precise, reliable, and low-cost networks at the same time. Some recent studies used diverse methods 
and procedures to modify the existing optimization technique. For example, Kobry13 presented a new approach 
to design geodetic networks accounting for different quality criteria. The new approach depends on design-
ing the geodetic network using the Multi-Criteria Decision Making (MCDM) methods. Alizadeh-Khameneh 
et al.14 used different observation methodologies to study the uncertainty of tunnel surveying networks. They 
found that the uncertainty and reliability of the network can be improved by inserting more free station setups 
and including observations from the points of the tunnel wall bracket. Moreover, the network precision can be 
improved significantly when gyro data is used. A new computer simulation method aiming for low observation 
cost and maintaining reliability and accuracy was introduced by Postek15 (see also Rofatto et al.16; Klein et al.17; 
Matsuoka et al.18; Pertusini et al.19; and Kobry13. In recent years, some modern heuristic techniques were used 
to solve complex problems that are hard to solve by the traditional techniques. Heuristic techniques depend 
on gradual improvement in quality criteria until the desired design requirement is fulfilled20. However, such 
techniques do not constantly assure the convergence to a global optimum moreover they are usually stuck in 
the local minima or maxima, based on the conventions followed21. Global optimization systems, such as simu-
lated annealing (SA), genetic algorithm (GA), and particle swarm optimization (PSO), are desired to avoid 
local minima22. In the last three decades, numerous evolutionary optimization algorithms have been helped in 
solving complex optimization problems, which imitate the process of natural progression in the direction of the 
solution of the optimization problem. Here some studies used these techniques: GA (Haupt and Haupt23; and 
Doma and Sedeek24), PSO (Eberhart and Kennedy25; Engelbrecht26; Banks et al.27), and SA (Azencott28; Berné 
and Baselga29; and Odziemczyk30).

As far as known, no study has investigated the feasibility of designing the geodetic network in such a way be 
close to the Project Border (PB). PB term represents the outer boundaries of the work area of the engineering 
project. For example, in mining and quarrying projects, the work area contains the locations of prospecting; 
drilling; blasting; exploiting; loading; stocking; explosives warehouse; etc. As logically known, locating Net 
Points (NPs) near the PB leads to reducing the length of the distances connecting either NPs or those distances 
connecting the NPs with the Target Points (TPs) located inside the PB. These short distances affect positively the 
precision of the NPs31. Moreover, short sight is less susceptible to the dramatic changes of natural errors, which 
change from point to point along the line of sight. Wind speed, air temperature, atmospheric pressure, humid-
ity, gravity, and atmospheric refraction are examples of such natural error sources3. Besides, the earth curvature 
error proportion directly with the sight distance. Human errors appearing due to the lack of hearing and vision 
abilities during the measuring process become minimum in case of short sight. All these errors can degrade the 
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accuracy of the observations and decrease communication between workers when the sight distance is long. 
Also, short distances reduce transportation costs along these distances. To determine the ideal locations for the 
NPs near PB, the distances between NPs and PB should be minimized based on optimization technique. This is 
because the optimization technique not only locates the NPs beside the PB but also provides the optimal con-
figuration, by which the precision of the network can be improved. Moreover, optimization avoids locating the 
NPs in dangerous areas, the work area. In contrast, simply fixing of NPs near PB without optimization requires 
to try and error technique to attain the suitable configuration, which leads to a suboptimal solution, consuming 
time and effort, and increasing the design cost.

This paper provides a novel quality criterion to design the horizontal network in terms of Neighboring (N). 
The proposed criterion measures how the network is close to PB. The optimization of the geodetic network 
based on the N criterion seeks to minimize the distances between NPs and the PB. Consequently, all distances 
will be shorter, then the quality of the network and accuracy of the observations, and cost of the transportation 
can be improved. The article is prepared into sections devoted to a completed discussion for optimization of the 
geodetic network based on the suggested criterion. The next section describes the optimization solution based 
on N criteria. The results and discussions illustrated by a numerical example are introduced in the third section. 
The fourth section contains the important findings and conclusions.

Research method
Contribution and objectives.  This study suggests a new criterion in terms of N to optimize the geodetic 
networks, by which both of quality of the network and accuracy of observations can be improved besides the 
transportation cost between points can be decreased. The main objectives of this study are listed below:

1.	 To derive the N criteria to be used as an objective function
2.	 To formulate N optimization models based on different approximation norms
3.	 To demonstrate the feasibility of N optimization models based on a numerical example
4.	 To validate the efficiency of the N criterion

The study was conducted by the scheme shown in Fig. 1. It presents four steps to perform the research target. 
Step 1 derives the N criterion by writing the distances linking the NPs with PB in a mathematical form compris-
ing parameters to be optimized. Step 2 is to formulate N optimization models based on three objective functions 
normalized by L1, L2, and L∞-approximation norms then subject each objective function to safety, precision, 
reliability, and cost constraints. Step 3 uses N models to optimize a simulated horizontal network to ensure the 
feasibility of the proposed criteria and determine which norm should be used to formulate the N objective func-
tion leading to the best design. Step 4 concerns the validation of the N models by comparing the results released 
by the N model with those derived by basic models, precision; reliability; and cost models.

Step 4
Optimizing the same simulated network using 

precision, reliability, and models considering placing 
NPs as close as possible to PB using possible shifts

Demonstrating the 
feasibility of N models 

using a numerical
example

Step 3
Specifying the network to be optimized

Performing optimization process

Defining the desired requirements

Assessing the optimization results

Determining the best N model

Formulating N models

Step 2
Formulating three N objective functions based on 

L1, L2, and L∞-approximation norms

Deriving the N criterion

Step 1

Determining the mathematical relationship between
the optimized parameters and the perpendicular 

distance connecting NPs with PB

Determining N constraints

Determining the final form of N models

Comparing the results of N models with those 
obtained by precision, reliability, and models 

Validating N

Figure 1.   Study scheme.
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Derivation of N criterion.  To find the optimal design of a geodetic network, certain changes must be 
added to the initial positions and observation weights. To attain an analytical technique to perform the network 
optimization, the changes of the initial NPs and the observation weights must be introduced by mathemati-
cal terms. Let us assume a network in two‒dimensional space with m NPs having approximate coordinates of 
(x0i , y

0
i ) , i = 1…m, and n observations having approximate weights of p0l  , l = 1…n. Assuming the changes in the 

approximate coordinates and initial weights are (�xi ,�yi ,�pl). Thus, the optimized positions and weights can 
be calculated according to the following formulas3

and

This solution for position changes and observation weights becomes optimal if it fulfills the optimality cri-
terion defining the quality of the network. At this point, the main problem is bringing the quality criterion into 
a strong mathematical form establishing the relationship that connects the quality criterion with the unknown 
parameters to be optimized, (�xi ,�yi,�pl). This step can be done using linearization of the nonlinear matrix 
equations correlated to network design, which alters the network quality requirement into restrictions on the 
unknown parameters.

In this paper, the N quality criterion is considered to optimize the geodetic network in two‒dimensional 
space. As mentioned in the introduction section, the N criterion measures how NP is close to the PB. So, it 
represents the distance between NPs and PB, as shown in Fig. 2. Here, the perpendicular distance should be 
considered because it represents the shortest distance. Assuming that PB is defined by k Fixed Points (FPs) 
having coordinates (xj , yj) , j = 1…k. For example, rectangular PB is defined by four FPs (k = 4). To calculate the 
perpendicular distance from any NP to the facing border side, the linear equation for this border side should be 
formulated first. This linear equation can be formulated by any two FPs located on this border side as

where a, b, and c are the coefficients of the linear equation of a specific border side. Accordingly, the N value for 
each NP can be calculated by the following common formula that calculates the distance from a point to a line

(1)
xi = x0i +�xi

yi = y0i +�yi

(2)pl = p0l +�pl

(3)ax + by + c = 0

(4)Ni =
∣

∣axi + byi + c
∣

∣

√
a2 + b2

0000 20000 Meters

NP1
NP1

NP2
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Figure 2.   N of NPs before and after optimization. The lines connecting the NPs were canceled for 
simplification.
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Ni stands for the N value of an initial NP (x0i , y
0
i ) ; a, b, and c are defined as before. It should be noted that the 

number of N in the network, either before or after optimization, equals the number of NPs even control points 
like NP4 or those NPs already located inside the PB like NP7, respectively. The possible shifts can be used to 
exclude any NP.

The next step is formulating the distance N in such a way comprising �xi ,�yi , and �pl . As mentioned before 
this step can be done using the Taylor linearization series as follows

with N0 is the vector of all Ns calculated at the approximate values of the network coordinates;∂N
∂xi

and ∂N
∂yi

 are the 
differentiation of the N concerning the coordinates of the NPs; �xi , and�yi are defined as before. Now, the N 
criterion can be written as follows

where

w is (2 m + n) by one vector; �p1 . . . �pn , m, and n are introduced before; N1 is m by (2m+ n) matrix; vec is 
an operator that produces a vector by stacking the columns of a quadratic matrix one under another in a single 
column. 0 is m by n submatrix of zeros corresponding to the weight changes.

Formulating the N models‑SOOMs of N.  Objective functions.  After deriving the N criterion and in-
troducing it as a function in the parameters to be optimized (Eq. 6), the N objective function should be normal-
ized by L2, L1, and L∞-norms, NL1,L2,L∞ . This is needed to find the best norm that can fit the N criterion and 
then provide the optimal solution. Where the norm choice controls the final solution of the optimization model3. 
This means three objective functions can be obtained. Accordingly, the simplified form for minimizing the N 
objective functions can be written as

The minimized values of N should be controlled by preset values to protect the NPs from destruction (safety 
constraint) due to falling in the danger area (blue line in Fig. 2) as follows

where N is the vector consisting of all initial N values; nm is the vector comprising the preset values of safety 
requirements; m is the number of Ns that equals the total number of NPs;‖.‖ is the vector norm. For more details 
about norms, the reader can see Kuang3.

Constraints.  To ensure that the designed network satisfies the desired requirements, N objective functions 
should be subjected to the desired precision, reliability, and cost besides physical constraints. The following men-
tions these constraints in a brief, where the details can be found in Kuang3.

Precision constraint.  The precision of the NPs is the most important demand in the designed network. Where 
the geodetic network should deliver precision not less than the client requirements. Accordingly, this constraint 
must be considered during the design process. The precision constraint intends to make the solution of the con-
figuration matrix A and the weight matrix P yield a variance–covariance matrix Cx of the coordinates in some 
sense at least equal to or better than the proposed criterion matrix Cs . The precision constraint can be expressed 
as

where

where

(5)N = N0 +
m
∑

1

(

∂N

∂xi

)

�xi +
m
∑

1

(

∂N

∂yi

)

�yi

(6)N = N0 +N1∗w

(7)N1 =
[

vec

(

∂N

∂x1

)

vec

(

∂N

∂y1

)

. . . vec

(

∂N

∂xm

)
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(

∂N

∂ym

)

0

]

(8)w = (�xi �yi . . . �xm �ym �p1 . . . �pn)
T

(9)�N�L1,L2,L∞ = min
(

optimal N
)

(10)�N�L1,L2,L∞ ≥ nm
(

N control-safety condition
)

(11)H1w − u1 ≤ 0

(12)H1 = (Iu�Iu)
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T u; and u = vec
(

C0
s

)
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(

C0
x

)

(13)
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(
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−

∂Cs

∂x1

)
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(

∂Cx

∂y1
−

∂Cs
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)
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∂Cx

∂xm
−

∂Cs

∂xm
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ATPA+ DDT
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(
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the configuration matrix A is n by 2 m and consists of the partial derivatives of the parametric equations of the 
observations (f) concerning unknown coordinates (X). The weight matrix P is n diagonal matrix, σ 2

0  (mm) is 
the prior variance factor taken equals 1 in the design stage and Cl stands for the variance–covariance matrix 
of the observation. The criterion matrix Cs is a 2 m covariance matrix representing the desired precision of the 
optimized coordinates. CTK is Taylor‒Karman criterion matrix. D and H are the minimum constrained and its 
agreeing inner constrained datum matrices. Iu is u unit matrix; � introduces the Khatri‒Rao product; C0

x and 
C0
s  are Cx and Cs , respectively, which are calculated at the approximated values of the coordinates and weights.

Reliability constraint.  Similar to precision, enough reliability for the geodetic network is essential to detect 
gross errors and diminish the effects of those hidden gross errors on the coordinates of the network. To do so, 
the designer should consider the required reliability. The reliability constraint tries to make the solution of the 
configuration matrix A and the observation weight matrix P produce a network with redundancy numbers r 
equal to or greater than the required one rm . The reliability constraint can be introduced as

where

In is n unit matrix; and R0 is the matrix of redundancy numbers R , which are calculated at the approximated 
values of the coordinates and weights.

Cost constraint.  The cost of the geodetic network is the third most important criterion affecting the network 
design and the most difficult criterion to formulate mathematically. The most approximate approach to formu-
late the cost criterion mathematically is dividing the costs for measurements as constant terms. For example, the 
cost of transportation between the stations, setting up the instruments and signaling the points. Considering 
that the small weight of an observation marks it as less expensive, the approximated mathematical formula of 
the cost criterion can be introduced as

The cost constraint intends to make the solution of the weight matrix P satisfy or less than the preset cost cm 
for the network. The cost constraint can be formulated as

where

0 is a submatrix of zeros that belongs to the position shifts, the other terms are defined as before.

Physical constraints. 

•	 Datum consideration

To prevent the network shape from changing due to rotation, scaling, and differential rotation, NPs shifts 
should be controlled. In the case of horizontal networks, fixing the coordinates of a specific NP and fixing the 
azimuth and distance from this NP to another one provides the following constraint equation

0 is zero submatrices related to the weight improvements. DT is the datum matrix (4 × 2 m), based on the meas-
ured observations, the related rows may be deleted. For example, the first two rows are deleted if the coordinates 

(15)A =
∂f

∂X
; P = σ 2

0C
−1
l ; Cs = SCTKS

T ; and S =
[

I −H
(

DTH
)−1

DT

]
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)
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TR1
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[

vec

(

∂R
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(
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of an NP are measured. The third row is deleted if an azimuth is measured. While the fourth row is deleted if 
distances are measured.

•	 Realizability

Field obstacles such as topography should be considered to introduce the possible shifts for the NPs. Also, the 
weights of observations are required to be positive and limited by the highest achievable accuracy of the existing 
instruments. The following equations show the shift and weight constraints.

[a1i , a2i] and [b1i , b2i] are the shift limits for the NPs; and (σl)2min is the least variance that can be performed for 
each observable3. Combining Eqs. (25) and (26), the following new equation can be obtained

where

I is a unit matrix with dimensions of (2 m + n) by (2 m + n).

SOOMs of N.  After formulating three N objective functions based on different norms and determining the 
constraints controlling the design results, three SOOMs for N were formulated namely, NL1, NL2, and NL∞ 
to determine which model can provide the best solution. The general mathematical form for the N models is 
presented by the following equations. Equation (29) shows three objective functions based on L2, L1, and L∞ 
norms. The safety constraint presented in equation (30) is normalized by the same norm used in the objective 
function in the same model. The precision constraint is shown in equation (31). Regardless of the model used, 
L∞ and L1 norms were used as the best fitting norms for the reliability, and cost constraints introduced in Eqs. 
(32) and (33), respectively, as reported by Kuang3. Datum constraints and realizability presented in Eqs. (34) 
and (35) are the same for all models. It should be noted here that the N models can be applied to all horizontal 
networks measured by either correlated or uncorrelated observations.

Subject to:

Results and discussion
Numerical example.  To study the capability of N models in designing the horizontal geodetic networks 
and its feasibility in improving the quality of the network and accuracy of the observations and decreasing 
the transportation cost, a simulated horizontal trilateration geodetic network was considered (see Fig. 3). It is 
assumed that this network serves a mining area surrounded by a rectangle border (purple border). This border 
is defined by four FPs, which are located at the corners. The network consists of 7 NPs connected by 21 distances 
having equal initial weights of 0.1. The approximated positions of NPs 2 and 5 are inside the unsafe area, which 
is marked as a blue rectangle and separated by 10 meters from the mining area (purple border). The reason here 
is to determine the ability of the N models to arrange these two NPs outside the unsafe area. While the remaining 
NPs were positioned outside the unsafe limits. NP 4 and the direction from NP 4 to NP1were kept fixed as the 
optimal datum of the network. It is supposed that the optimization process should be done in such a way that 
the precision of NPs ≤ 2mm and the redundancy number for each distance ≥ 0. 4. The optimized weights are 

(25)a1i ≤ �xi ≤ a2i; and b1i ≤ �yi ≤ b2i (i = 1, . . .m)

(26)0 ≤ pl ≤
σ 2
o

(σl)
2
min
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σ 2
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2
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)
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)
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0
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T
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∥
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(30)
∥

∥N1∗w +N0
∥

∥

L1,L2,L∞ ≥ nm

(31)H1∗w − u1 ≤ 0

(32)�R11∗w + r00�L∞ ≥ rm

(33)�C11∗w + c00�L1 ≤ cm

(34)
(

DT 0
)

w = 0

(35)A00 w ≤ b00.
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supposed to be positive and ≤ 1/(2 mm)2. The N value for each NPs should be ≥ 10 m to be safe from destruction 
(outside the blue border). In this example, realizability (Eq. 35) was not applied. This is to determine the capabil-
ity of the N model to find the best configuration.

Two targets should be realized to demonstrate the efficiency of the N models. The first target is the ability 
of N models to improve the quality of the observations and decrease the transportation cost between points. 
This target can be achieved if all NPs optimized very close to the PB outside the unsafe area to produce short 
distances, which can be concluded from N results. The second target is the ability of N models to improve the 
quality of the network itself. In other words, to design the geodetic network in such a way satisfying safety, pre-
cision, reliability, and cost requirements. Besides these two targets, it is required to determine which N mode 
can satisfy these two targets.

For the first target, improving the accuracy of the observations and transportation cost: the results delivered 
by N models showed that all NPs become closer to the PB after optimization as shown in Figs. 3, 4, and 5 and 
Table 1. Table 1 shows that the minimum N values were produced by NL1 and NL2, while NL∞ provided the 
greatest values. These values led to creating short distances between points as shown in Fig. 6. It shows that the 
initial distances decreased by ~ ¼ % (from 135 to 104 m, on average). These results demonstrate the ability of 
all N models in improving the observations accuracy and transportation cost with superiority for NL∞ because 
it relocated NPs at safe positions.   

For the second target, satisfying the quality of the network: due to minimization of the initial N values, all 
models minimized initial N significantly as shown before in Table 1. However, only NL∞ can provide the ideal 
results satisfying the safety requirements. Where all NPs produced by this model were replaced at safe positions 
with similar N values of 10 m, which are equal to the preset safety values. In contrast, the other models failed to 
relocate all NPs outside the dangerous area. All models provided almost similar improved precision and most 
of them met the precision demands (see Table 2 and Figs. 3, 4, and 5). This refers to the short distances created 
between NPs and the control points, 4. This explanation is demonstrated by Alizadeh-Khameneh et al.9 and 
Ghilani.31. They stated that the precision of NPs is proportional inversely with the length of distances connecting 
NPs. This result demonstrates the ability of the N models to satisfy the precision requirements.

Regarding observations cost requirements, the results of optimization showed that all N models failed to 
eliminate any observable from the design plan as presented in Table 3. This is because that all observations are 
necessary to satisfy the desired precision. Where it is shown from Table 2 that there are some NPs such as NP 3 
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and 5 are barely meet the requested precision. Thus, it can be concluded that there is an inconsistency between 
cost and precision constraints, which is common in SOOMs2. Thus, to remove some observables, the desired pre-
cision should decrease12. Accordingly, it appears that N models have no significant influence on the observation 
plane, in this example, and consequently on the cost of the observation. Table 3 also shows the reliability results 
after optimization. It demonstrates that no model succeeded to improve the initial reliability of the network 
(with an average redundancy number of 0.48). However, the desired reliability (0.4) was satisfied by all models. 
The reason here is that all observations still working after optimization due that all observations are needed to 
attain the desired precision. This result points to an inconsistency between reliability and precision constraints.

The most important point in this method for practitioners, to get its benefits, is determining the PB. Where the 
PB should be located at the ends of the work activities. The coordinates of the nodes (FPs) are determined based 
on any network existing in the field (the precision is not important). Then, the safety distance can be decided 
to ensure locating NPs outside the dangerous area. Considering NL∞ subjected to the desired safety; precision; 
reliability; cost, the designer can get a network that satisfies safety and precision requirements, and preserves the 
initial reliability and observation cost. Besides, the transportation cost between points will discount. To improve 
the initial reliability and observations cost, the designers are recommended to use MOOMs instead SOOMs as 
reported by Eshagh and Kiamehr2; Bagherbandi et al.8; and Alizadeh-Khameneh et al.9.

Validation.  There is an objection that may arise against the N models that similar results (minimum network 
after optimization) can be obtained by maximizing the precision without minimizing the distances between NPs 
and PB as demonstrated by Berné and Baselga29. The response to this is divided into two points based on if the 
shifts of the NPs are constrained or not.

For the first case, using shift boundaries: it is not inevitable to relocate NPs close to PB and at the same time 
satisfy the quality of the network at all times. This is because the suitable configuration providing the desired 
precision may not exist due to shifting limits. Accordingly, the NPs will not obey the shift limits and move to 
find the configuration providing maximum precision (objective function). In contrast, the N model, which is not 
subjected to shift limits, seeks to relocate NPs near PB in such a way form a configuration that meets the precision 
constraint. To demonstrate this, the existing network was redesigned not only in sense of maximum precision 
but also high reliability and low cost were considered. All three models were subjected to shift boundaries to 
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enforce the NPs to be near the PB. The optimization results listed in Table 4 show that precision, reliability, and 
cost models positioned NPs far from the PB with average N values of 23, 25, and 19 m, respectively. This result 
demonstrates the superiority of NL∞ (with N=10 m) over the other models.

For the second case, without shift boundaries: due to the absence of shift limits, the NPs may fail inside the 
danger area because the target of these models is maximizing the precision, or reliability, or reducing the cost. 
While in the case of NL∞, this cannot be happened due to the safety constraint controlling the position of the 
NPs.

Although the optimization results demonstrated the feasibility of the N criterion in designing the geodetic 
networks, there are two major limitations in this study that could be addressed in future research. First, the study 
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Table 1.   Results of N before and after optimization depending on different N models: Unit: m. The means and 
the standard deviations do not comprise NP 4.

Pt Before optimization

After optimization

NL1 NL2 NL∞

1 50 − 1 − 3 10

2 9 0 5 10

3 50 1 − 1 10

4 5 5 5 5

5 7 2 5 10

6 50 1 4 10

7 22 0 0 10

Mean 28 1 2 10
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focused on SOOMs and did not test the feasibility of MOOMs. Second, a simulated example was considered 
overlooking the real examples.

As mentioned in the introduction, SOOMs are required to improve only one quality criterion presented as 
an objective function. This may lead to producing a defective design due to the inconsistency between different 
criteria as presented in the existing example. Where the reliability and cost constraints were not satisfied due 
to the contradiction of these constraints with precision constraint/or N criterion. The main motivation to use 
SOOMs in the present study was to determine the feasibility of the proposed criterion (alone) in designing the 
geodetic networks. MOOMs can be used as an alternative to overcome this problem as demonstrated by Eshagh 
and Alizadeh-Khameneh12 and Alizadeh-Khameneh9. These models use more than one criterion as an objective 
function and thus all quality requirements can be fulfilled.

The results of the simulated networks can not be generalized because they do not present the field problems, 
by which the efficiency of the N models can be assessed. For example, the feasibility of N models in improving 
the accuracy of observations was demonstrated theoretically based on that the short sight is less susceptible to 
natural errors. This feasibility is required to be demonstrated in common measurements used in real applications 
such as angles and GPS observations. It should be noted here that this study used a simulated network only to 
simplify introducing the proposed criterion.

Conclusions
Optimizing the horizontal geodetic networks considering the distance between Net Points (NPs) and Project 
Border (PB)‒Neighboring (N) criterion‒was investigated in this paper. N represents the perpendicular distances 
from NPs to the PB. Minimizing N means relocating NPs near the PB which leads to creating short distances 
either between NPs or between NPs and Target Points (TPs) to be measured inside PB. As commonly known from 
the literature, creating short distances after optimization improves the precision of NPs, increases the accuracy of 
the observations, and decreases the transportation along these distances. So, the presented study aims to improve 
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Table 2.   The precision (Cx) of NPs before and after optimization based on different N models. Unit: mm.

Precision components Cs

Cx

Before optimization

Cx

After optimization

NL1 NL2 NL∞

σx1 2 2.1 1.3 1.4 1.4

σy1 2 0.3 0.2 0.2 0.2

σx2 2 2.3 1.6 1.8 1.8

σy2 2 2.3 2.0 2.0 2.0

σx3 2 2.8 1.9 1.9 2.0

σy3 2 2.3 2.2 2.2 2.2

σx5 2 2.3 1.3 1.6 1.5

σy5 2 2.4 2.3 2.2 2.3

σx6 2 2.7 0.7 1.2 1.0

σy6 2 2.1 1.8 1.8 1.8

σx7 2 2.2 1.5 1.6 1.5

σy7 2 2.4 2.0 2.0 2.0
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the quality of the network from one side and improve the quality of observations and reduce the transportation 
cost between points in real applications from another side based on minimizing distances between NPs and PB.

To be used as an objective function, the N criterion was brought into a solid mathematical form that func-
tions in the parameters to be optimized (NPs shifts and observation weights). Then three N objective functions 
were formulated based on L1, L2, and L∞ norms to build the corresponding optimization models‒NL1, NL2, 
and NL∞‒and to determine the best models giving the best design. Each model is subjected to safety, precision, 
reliability, and cost constraints. Then, a numerical example was considered to demonstrate the efficiency of the 
proposed criterion. The results are divided into two directions: the first, results demonstrate the feasibility of N 
models in improving the accuracy of observations and in decreasing the transportation cost between NPs them-
selves or between NPs and TPs in real applications. The second, results demonstrate the efficiency of N models 
in improving the quality of the network. For the first direction, the results of N values in all models became 
minimum. This led to relocating the NPs near the PB and created short distances between all points, due to an 
average reduction of ¼% in initial value. This means improving the accuracy of observation and transporta-
tion cost either in the network or during measuring TPs inside the PB in actual applications. In the case of the 

Table 3.   The optimized weight (P), accuracy (σ), and reliability ( redundancy number, r) that produced by the 
different N models. Accuracy unit: mm.

Line

P σ

Initial r

Optimized r

NL1 NL2 NL∞ NL1 NL2 NL∞ NL1 NL2 NL∞

1‒2 0.21 0.20 0.21 2.2 2.3 2.2 0.46 0.48 0.47 0.47

1‒3 0.22 0.21 0.21 2.2 2.2 2.2 0.47 0.49 0.49 0.49

1‒4 0.23 0.22 0.23 2.1 2.1 2.1 0.55 0.48 0.48 0.47

1‒5 0.21 0.20 0.20 2.2 2.2 2.2 0.48 0.46 0.47 0.47

1‒6 0.20 0.20 0.19 2.3 2.3 2.3 0.47 0.47 0.47 0.46

1‒7 0.18 0.18 0.18 2.3 2.3 2.3 0.47 0.46 0.46 0.46

2‒3 0.21 0.19 0.20 2.2 2.3 2.2 0.47 0.48 0.48 0.48

2‒4 0.21 0.20 0.20 2.2 2.2 2.2 0.45 0.43 0.44 0.44

2‒5 0.17 0.17 0.17 2.4 2.4 2.4 0.44 0.45 0.46 0.45

2‒6 0.18 0.18 0.18 2.4 2.4 2.4 0.51 0.47 0.48 0.47

2‒7 0.19 0.18 0.18 2.3 2.4 2.3 0.47 0.49 0.49 0.49

3‒4 0.16 0.16 0.16 2.5 2.5 2.5 0.28 0.41 0.42 0.42

3‒5 0.18 0.18 0.18 2.3 2.4 2.4 0.50 0.43 0.44 0.44

3‒6 0.23 0.21 0.22 2.1 2.2 2.1 0.56 0.46 0.47 0.47

3‒7 0.20 0.19 0.20 2.2 2.3 2.2 0.51 0.52 0.51 0.52

4‒5 0.23 0.21 0.22 2.1 2.2 2.1 0.52 0.46 0.46 0.46

4‒6 0.23 0.22 0.23 2.1 2.1 2.1 0.45 0.53 0.49 0.53

4‒7 0.21 0.21 0.21 2.2 2.2 2.2 0.52 0.53 0.52 0.52

5‒6 0.20 0.19 0.19 2.3 2.3 2.3 0.51 0.47 0.48 0.48

5‒7 0.20 0.19 0.20 2.2 2.3 2.3 0.48 0.52 0.52 0.52

6‒7 0.19 0.18 0.18 2.3 2.4 2.3 0.45 0.50 0.50 0.49

Mean 0.20 0.19 0.20 2.2 2.3 2.3 0.48 0.48 0.48 0.48

Table 4.   Results of N after optimization depending on precision, reliability, and cost models: Unit: m. The 
means and the standard deviations do not comprise NP 4.

Pt

After optimization
With shift limits

Precision model Reliability model Cost model

1 35 50 10

2 17 19 19

3 27 50 10

4 5 5 5

5 16 17 17

6 50 11 50

7 12 22 22

Mean 23 25 19

Std 15 18 15
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second direction, the NL∞ showed superiority in positioning all NPs outside the danger area over the other N 
models with an ideal N value of 10 m. The precision of the network improved and satisfied the requirements 
in all models, due to short distances between NPs and the control point. For cost results, no model succeeded 
to eliminate any observation to reduce the observation cost. Also, all models failed to improve the reliability of 
the initial network (0.48). The results of cost and reliability point to the inconsistency between these constraints 
and precision constraint and in turn N criterion. The proposed method was validated by comparing the results 
of N produced by NL∞ with those produced by precision, reliability, and cost models. The results proved the 
superiority of NL∞ over the other models in relocating the NPs at safe positions near PB.

In conclusion, the numerical results demonstrated the theoretical feasibility of N models in improving the 
accuracy of observations and transportation costs between points. Where it is required in future works to prove 
this feasibility in actual work. Also, the simulated results demonstrated the capability of NL∞ to provide a precise 
network and preserve the initial reliability and observation cost due to the contradiction of these criteria with 
the N criterion. To solve this problem, it is recommended to use MOOM instead of SOOMs in future works.
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