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Abstract: In sea urchin, the immediate contact of the acrosome-reacted sperm with the egg surface
triggers a series of structural and ionic changes in the egg cortex. Within one minute after sperm fuses
with the egg plasma membrane, the cell membrane potential changes with the concurrent increases in
intracellular Ca2+ levels. The consequent exocytosis of the cortical granules induces separation of the
vitelline layer from the egg plasma membrane. While these cortical changes are presumed to prevent
the fusion of additional sperm, the subsequent late phase (between 1 and 4 min after fertilization) is
characterized by reorganization of the egg cortex and microvilli (elongation) and by the metabolic
shift to activate de novo protein and DNA syntheses. The latter biosynthetic events are crucial for
embryonic development. Previous studies suggested that the early phase of fertilization was not a
prerequisite for these changes in the second phase since the increase in the intracellular pH induced by
the exposure of unfertilized sea urchin eggs to ammonia seawater could start metabolic egg activation
in the absence of the cortical granule exocytosis. In the present study, we have demonstrated that the
incubation of unfertilized eggs in ammonia seawater induced considerable elongations of microvilli
(containing actin filaments) as a consequence of the intracellular pH increase, which increased the
egg’s receptivity to sperm and made the eggs polyspermic at fertilization despite the elevation of the
fertilization envelope (FE). These eggs also displayed compromised Ca2+ signals at fertilization, as
the amplitude of the cortical flash was significantly reduced and the elevated intracellular Ca2+ level
declined much faster. These results have also highlighted the importance of the increased internal
pH in regulating Ca2+ signaling and the microvillar actin cytoskeleton during the late phase of the
fertilization process.

Keywords: fertilization; sea urchin eggs; polyspermy; actin; Ca2+ signaling; cortical reaction; intracellular
pH; weak bases

1. Introduction

The fertilization of echinoderm eggs (starfish and sea urchin) in seawater comprises
early structural and ionic changes in the gametes. When sperm contacts the jelly coat
(JC) of the egg, the components of the JC induce exocytosis of the acrosome vesicle in
the sperm head, and the concurrent polymerization of F-actin promotes the formation
of the acrosomal process [1]. In starfish, it is possible to induce in vitro the formation
of the long and thin acrosomal filament (approximately 20 µm in length) [2,3]. This
morphological feature has also allowed for the recording of the electrical response of
the eggs at fertilization upon the contact of the tip of the sperm acrosomal process
with the egg plasma membrane and for the measurement of the Ca2+ signals before
and during the separation of the vitelline layer (VL) from the plasma membrane [4–7].
In sea urchin sperm, bindin, an adhesive protein that is secreted and exposed on the
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surface of the acrosomal process, has been suggested to be responsible for the species-
specific binding of the sperm to the glycoprotein receptors on the VL covering the
egg plasma membrane [8–11]. Upon the fusion of the sperm with the egg plasma
membrane, electrophysiological measurements of the eggs of several sea urchin species
have detected an initial response of the egg in the form of an increase in the plasma
membrane conductance (plasma membrane depolarization) due to a flow of Ca2+ and
Na+ into the egg, which is followed by a fertilization potential [12,13]. The existence
of a fast mechanism to allow for the fusion of only one sperm was suggested more
than one hundred years ago [14,15], and the prevailing idea is that the fast membrane
depolarization (1 to 3 s after insemination) could electrically block the entry of multiple
sperm [16]. This motion has also been challenged recently with another sea urchin
species (Paracentrotus lividus), in which eggs fertilized in artificial seawater containing
low Na+ remained monospermic. The observed abnormal embryonic development
of these zygotes resulted from the altered F-actin structure and dynamics in the eggs
fertilized in low Na+ media and not from the formation of multiple polar spindles related
to polyspermy [17]. The results also showed that a structural block to polyspermy
is established by the attachment of the fertilizing sperm to the egg surface, which
prevents the binding and fusion of additional sperm before the separation of the vitelline
layer [14,17].

Ca2+ imaging of the fertilization response with temporal and spatial resolution per-
formed in intact starfish and sea urchin eggs has revealed that the electrophysiological
response induced by the fertilizing sperm precisely mirrors the intracellular calcium re-
sponse [4,18]. In P. lividus eggs, the first step of depolarization (the so-called “latent period”),
recorded a few sec after insemination [19], is concurrent with the simultaneous increase
in Ca2+ in the egg cortex (cortical flash, CF) due to the influx through the L-type calcium
channels [20–22]. The latent period is followed by the fertilization potential, which corre-
sponds to the intracellular Ca2+ wave, propagating from the site of sperm–egg fusion to
the opposite pole [18].

Identification of the signal transduction pathways leading to the intracellular Ca2+

changes experienced by the fertilized eggs has been the subject of investigation for decades.
Results from experiments conducted in the 1980s on sea urchin and starfish eggs suggested
that the fertilizing sperm triggers the activation of phospholipase C isoforms through
heterotrimeric G proteins or tyrosine kinases (Src family kinases) to produce inositol 1,4,5-
trisphosphate (IP3), which releases Ca2+ from its receptor ion channels on the endoplasmic
reticulum [23–25]. Alternative hypotheses of egg activation also suggested that the sperm
introduced a bolus of Ca2+ or a soluble factor into the egg during the gamete fusion to
initiate the Ca2+ release [26,27]. Later studies pointed to the role of the nicotinic acid adenine
dinucleotide phosphate (NAADP) signaling pathway in initiating the sperm-induced Ca2+

response of starfish and sea urchin eggs. Still, they suggested that NAADP might have
different modes of action in the eggs of these two echinoderms. Whereas NAADP targets
distinct Ca2+ stores such as acidic vesicles in the cortex of sea urchin eggs, NAADP in
starfish eggs induces membrane depolarization and Ca2+ influx [28–33]. One of the primary
roles of the Ca2+ signals at fertilization is the activation of NAD kinase, which contributes
to the generation of H2O2 in collaboration with NADP/H oxidase in the plasma membrane
to crosslink the FE [34,35].

The outmost cortex of unfertilized eggs of starfish and sea urchin typically exhibits
short microvilli and actin filaments to which cortical granules are tightly associated. Recent
findings have revealed that the F-actin-dependent structural organization of the egg cortex
upon insemination plays a crucial role in controlling the temporal and spatial phases of
the fertilization response in starfish and sea urchin eggs [7,18,36–39]. In line with this,
the structural alteration of microvilli and cortical granules in the cortex of P. lividus eggs
is linked to compromised egg activation following fertilization, e.g., anomalies in the
generation of Ca2+ signals and the separation of the VL [17,22,40–42]. The cytoskeletal
modifications of the egg cortex occurring 5 min after insemination and during the decline
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of the intracellular Ca2+ increase to the baseline include microvillar elongation in the
perivitelline space and the lifting of the fertilization envelope (FE) [5,43–45]. These cortical
changes require fine regulation of actin dynamics. Indeed, the functional integrity of the
actin cytoskeleton is an index of the egg quality, ensuring physiological responses to the
fertilizing sperm.

In sea urchin eggs, what takes place concomitantly with the structural changes in
the egg cortex during the late phase of fertilization (5 min after insemination) includes:
(i) an increase in intracellular pH due to protons efflux (fertilization acid) [46,47], (ii) the
development of new K+ conductance [48] and metabolic derepressions that are crucial for
the embryonic development, i.e., protein synthesis and chromosome condensation [49,50],
and the polyadenylation of cytoplasmic messenger RNA [51].

The findings that the late metabolic activation seen in the fertilized sea urchin
eggs could be triggered in unfertilized eggs using membrane-permeant weak bases
such as ammonium hydroxide (NH4OH), ammonium chloride (NH4Cl), nicotine, and
procaine [52,53] in the absence of cortical granule exocytosis [54] led to the suggestion
that the increase in intracellular pH might be sufficient for cell division and differ-
entiation [48]. These results weakened the claimed critical roles played by plasma
membrane depolarization and Ca2+-linked breakdown of the cortical granules in in-
ducing metabolic derepression. However, later studies on sea urchin egg cortices
showed that not only the activation of biosynthetic events but also the extension of
microvilli based on actin polymerization require an increase in both intracellular pH
and Ca2+ [55–57].

The present study has examined the effect of the seawater titrated to pH 9 by NH4OH
on sea urchin eggs concerning the surface topography and the fertilization reaction. The
results have indicated that ammonia seawater induced dramatic alteration of the structural
organization of the egg surface as a result of the alkalinization of the egg cytoplasm [53]. The
cortical structural changes included microvilli elongation, which increased the receptivity
of the eggs to multiple sperm. Upon fusing with the eggs in ammonia seawater, multiple
sperm could enter the egg readily despite the elevation of the FE. Microvilli elongation
before fertilization and overextension after insemination also compromised the sperm-
induced Ca2+ signals, i.e., it reduced the amplitude of the initial CF and accelerated the
falling phase of the Ca2+ level to the baseline during the late phase. The results have
highlighted the strict relationship between the increase in internal pH and the modulation
of the intracellular Ca2+ levels mediated by actin polymerization in microvilli.

2. Materials and Methods
2.1. Gametes Collection, Modification of Seawater pH, and Embryos Observation

During the breeding season, adult specimens of P. lividus (October to May) and Arbacia
lixula (May to September) were collected in the Gulf of Naples and maintained at 16 ◦C
in circulating seawater. Artificial spawning was induced by the intracoelomic injection of
0.5 M KCl. The released eggs were collected in natural seawater (NSW) filtered with a Milli-
pore membrane of 0.2 µm pore size (Nalgene vacuum filtration system, Rochester, NY, USA)
and used for experiments shortly thereafter. For fertilization, “dry sperm” were collected
by pipetting on the male animal’s body surface and kept at 4 ◦C. A few minutes before
fertilization, dry sperm were diluted in NSW at a final concentration of 1.84 × 106 units/mL.
In this work, the incubation medium referred to as “ammonia seawater” was obtained by
adding NH4OH to NSW until reaching pH 9 (about 1 mM NH4OH). In most experiments,
eggs suspended in NSW (pH 8.1) were transferred to ammonia seawater at pH 9 and
incubated for 20 min before fertilization. In three independent experiments, the embryonic
development of 100 eggs from different batches incubated and inseminated in ammonia
seawater was observed with a Leica DMI6000 B inverted microscope (Leica Microsystems,
Wetzlar, Germany).
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2.2. Visualization of Egg-Incorporated Sperm

Sperm were stained with 5 µM Hoechst-33342 (Sigma–Aldrich, Saint Louis, MO, USA)
for 30 s before insemination. The labeled sperm nuclei incorporated into P. lividus eggs
were visualized and counted 5 min after insemination using a cooled CCD (charge-coupled
device) camera (MicroMax, Princeton Instruments Inc., Trenton, NJ, USA) mounted on a
Zeiss Axiovert 200 microscope with a Plan-Neofluar 40×/0.75 objective with a UV laser. For
A. lixula eggs with much less transparent cytoplasm than P. lividus, egg-incorporated sperm
were visualized by incubating the eggs with 25 µM Hoechst-33342 (Sigma–Aldrich) for
5 min before insemination in the fresh seawater. The number of independent experiments
(N) and the number of fertilized eggs examined (n) for each condition are shown in
Tables 1 and 2.

Table 1. Frequency of Polyspermy (%) in P. lividus and A. lixula eggs Fertilized in NSW (pH 8.1) and
Ammonia SW (pH 9).

P. lividus NSW P. lividus pH 9 A. lixula NSW A. lixula pH 9

Mean 0 100 * 5 100
SD 0 0 0.01 0
n 4 4 2 2

Note: * p < 0.01 in Tukey test compared to fertilization in NSW for the corresponding species.

Table 2. Number of Sperm Inside P. lividus and A. lixula Eggs Fertilized in NSW (pH 8.1) and
Ammonia SW (pH 9).

P. lividus NSW P. lividus pH 9 A. lixula NSW A. lixula pH 9

Mean 1 12.89 * 1.07 6.07 *
SD 0 5.79 0.35 1.33
n 80 80 40 40

Note: * p < 0.00001 in U-test compared to the control (fertilization in natural seawater, NSW for the correspond-
ing species).

2.3. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)

For SEM morphological analyses of the egg surface, P. lividus eggs were fixed in
seawater containing 0.5% glutaraldehyde (pH 8.1) for 1 h at room temperature and
post-fixed with 1% osmium tetroxide for an additional hour. Samples were dehydrated
in increasing ethanol concentrations, and the subsequent critical point drying was
performed with LEICA EM CP300. Specimens were then coated with a thin layer of
gold using a LEICA ACE200 sputter coater and observed with a JEOL 6700F scanning
electron microscope (Akishima, Tokyo, Japan) or a Zeiss EVO HD 15 scanning electron
microscope (Carl Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany). For
TEM observations, after the same fixation procedure, eggs were post-fixed with 1%
osmium tetroxide and 0.8% K3Fe(CN)6 for 1 h at 4 ◦C. After washing in NSW for 10 min
twice, the samples were rinsed in distilled water for 10 min twice and finally treated with
0.15% tannic acid for 1 min at room temperature. After extensive rinsing in distilled water
(3 times, 10 min each), specimens were dehydrated in increasing ethanol concentrations.
Residual ethanol was removed with propylene oxide before embedding in Epon 812.
Ultrathin sections were stained with UAR-EMS (Uranyl Acetate Replacement Stain,
Electron Microscope Sciences, Hatfield, PA) for 30 min and with 0.3% lead citrate for
30 s before observation with a transmission electron microscope (Zeiss LEO 912 AB, Carl
Zeiss Microscopy Deutschland GmbH).

2.4. Microinjection, Ca2+ Imaging, and Confocal Microscopy

Intact eggs were microinjected using an air pressure transjector (Eppendorf Femto-
Jet, Hamburg, Germany) as previously described [40]. To monitor Ca2+ level increases
at fertilization, 500 µM Calcium Green 488 conjugated with 10 kDa dextran were mixed
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with 35 µM Rhodamine Red (Molecular Probes, Eugene, OR, USA) in the injection buffer
(10 mM Hepes, 0.1 M potassium aspartate, pH 7.0) and microinjected into unfertilized
eggs. The fluorescence images of cytosolic Ca2+ increases were captured with a cooled
CCD camera (Micro-Max, Princeton Instruments) mounted on a Zeiss Axiovert 200
microscope with a Plan-Neofluar 40×/0.75 objective at about 3-s intervals, and the data
obtained were analyzed with MetaMorph (Universal Imaging Corporation). Following
the formula, Frel = [F − F0]/F0, where F represents the average fluorescence level of
the entire egg and F0 represents baseline fluorescence, the Ca2+ signals detected at a
given time point were quantified. Thus, Frel was defined in RFU (relative fluorescence
unit) for plotting Ca2+ trajectories. The formula Finst = [Ft–F(t−1)]/F(t−1) was applied
to analyze the instantaneous increments of the Ca2+ level at each moment to visualize
the eggs’ local area showing transient Ca2+ increase. The changes in the intracellular
Ca2+ level were analyzed in four independent experiments (N), and the number of eggs
(n) being used in each condition is specified in the Results. To visualize F-actin and its
remodeling following fertilization, living intact unfertilized eggs were microinjected
with 10 µM AlexaFluor568-phalloidin (Molecular Probes, pipette concentration) before
insemination and then observed with a Leica TCS SP8X confocal laser scanning mi-
croscope equipped with a white light laser and hybrid detectors (Leica Microsystem,
Wetzlar, Germany). The number of eggs (n) examined for each condition is reported in
the Results.

2.5. Statistical Analysis

The numerical MetaMorph data were compiled and analyzed with Excel of Microsoft
Office 2010 and reported as “mean ± standard deviation (SD)” in all cases in this manuscript.
One-way ANOVA and Mann-Whitney U-test were performed using Prism 5 (Graph-
Pad Software) and at the web site https://www.socscistatistics.com/tests/mannwhitney/
default2.aspx, accessed on 11 February 2022), respectively, and p < 0.05 was considered
statistically significant. For results showing p < 0.05, the statistical significance of the
difference between the comprising groups was assessed by Tukey post hoc tests.

3. Results
3.1. Microvillar Reorganization in Unfertilized P. lividus Eggs Exposed to NH40H-Seawater at
pH 9

Previous ultrastructural studies using SEM and TEM analyses on several species
of unfertilized sea urchin eggs treated with ammonia seawater have shown a gradual
elongation of microvilli after 3 h of incubation, with no changes in cortical granules’
morphology [54,57,58]. The present study analyzed differences in the surface topography
and the cortical ultrastructure of unfertilized P. lividus eggs incubated for 20 min in seawater
titrated to pH 9 by NH4OH (Figure 1). The control egg showed the typical spherical shape
(Figure 1A). By contrast, eggs incubated for 20 min in ammonia seawater (Figure 1B)
exhibited an undulating surface due to the structural reorganization of the surface of
unfertilized eggs. The short microvilli characteristics of non-activated eggs covering the
egg surface are visible at higher magnification. A correlative analysis of the topographical
structure of the egg surface (SEM) following alkalinization of the cytoplasm showed that
the intracellular pH increase induced alteration of the morphology of microvilli (elongation)
in some regions of the egg surface compared to the control (Figure 1C,D). The ultrastructure
analysis of the outer cytoplasm of eggs (TEM) evidenced changes in microvilli covered
by the vitelline layer and the presence of CG intact beneath the egg plasma membrane in
control and eggs incubated in NH4OH-seawater at pH 9 (Figure 1E,F). CG in F underwent
exocytosis upon insemination.

https://www.socscistatistics.com/tests/mannwhitney/default2.aspx
https://www.socscistatistics.com/tests/mannwhitney/default2.aspx
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Figure 1. Effect of ammonia seawater on the outer surface of unfertilized P. lividus eggs. Before
fixation, P. lividus eggs of the same batch were partitioned and incubated for 20 min either in NSW at
pH 8.1 (control) or in SW adjusted to pH 9 using NH4OH (ammonia seawater). Changes in the outer
egg surface and cortical ultrastructure were observed by SEM (A–D) or TEM (E,F). Note the eggs’
undulated surface (B) and microvilli’s changes in shape and length (D). Microvilli covered by the
vitelline layer are relatively uniform on the surface of the control egg (C,E) but are often elongated
on the surface of eggs incubated in ammonia seawater (D,F). Abbreviations: VL, vitelline layer; MV,
microvilli; CG, cortical granules.
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3.2. Eggs Incubated and Fertilized in Ammonia Seawater Display an Altered Ca2+ Response
at Fertilization

Given that the microvilli on the egg surface are altered by the preincubation of the
eggs in ammonia seawater (Figure 1B,D), we examined whether and how the patterns
of Ca2+ response would change in these eggs at fertilization. Even if 20 min incuba-
tion of unfertilized P. lividus eggs with ammonia seawater did not induce appreciable
Ca2+ changes in the resting value of the baseline (data not shown), we found that the
Ca2+ response at fertilization was altered in a few respects (Figure 2). In sea urchin
eggs at fertilization, CF represents the first detectable Ca2+ change upon sperm–egg
interaction on the egg surface (Figure 2A,B, arrow). CF takes place simultaneously in
the cortical region of the egg, and its amplitude is also dependent upon the length and
morphology of microvilli [7,17,22,41]. As expected for the unfertilized eggs bearing
longer microvilli [22], the amplitude of the CF in the eggs pretreated and fertilized in the
ammonia seawater was significantly diminished (0.033 ± 0.01 RFU, n = 25) in compari-
son with the eggs fertilized in NSW (0.078 ± 0.02 RFU, n = 32, p < 0.01) (Figure 2C,D).
The CF precedes the Ca2+ wave propagating from the sperm–egg site to the opposite
pole (Figure 2A,B, arrowheads). Unlike the CF, the peak amplitude of the Ca2+ wave was
not significantly changed by the exposure to the ammonia seawater (0.63 ± 0.04 RFU
n = 25 vs. 0.65 ± 0.07 RFU n = 32, Figure 2C). Nonetheless, it is noteworthy that the
Ca2+ wave in the eggs incubated and fertilized in ammonia seawater experienced a more
rapid decline in the intracellular Ca2+ level (Figure 2C brown lines, arrowhead) than
the control egg (green lines). Whereas the intracellular Ca2+ level in the control eggs
took 313.6 ± 44.6 s to go back to the basal level (0.2 RFU) after fertilization, the eggs
pre-incubated and fertilized in ammonia seawater took only 101.9 ± 14.2 s to arrive at
the same level (Figure 2D, p < 0.01). The latter result aligns with those obtained from the
P. lividus eggs incubated and inseminated in seawater titrated to pH 9 by ammonium
chloride [22] or with the other weak base, nicotine [42].

3.3. Eggs Fertilized in Ammonia Seawater Have a High Tendency of Polyspermy at Fertilization

Given that the microvilli of sea urchin eggs play essential roles in sperm binding
and incorporation [7,41,42,59,60], we examined how P. lividus unfertilized eggs with
altered microvillar structure following ammonia seawater incubation would receive
the fertilizing sperm. To this end, the eggs were incubated for 20 min in NSW (pH 8.1)
or ammonia seawater (pH 9) and fertilized by Hoechst 33342-stained sperm. Five
minutes after insemination, the egg-incorporated sperm were visualized and counted
for each egg using epifluorescence microscopy (Figure 3). Although the eggs fertilized
in ammonia seawater fully elevated the FE, it turned out that numerous sperm entered
the egg (Figure 3B). Indeed, while all of the eggs fertilized in NSW were monospermic
(Figure 3A), the average number of sperm inside the eggs fertilized in the ammonia
seawater was around 12 (Tables 1 and 2). It is conceivable that the FE in the eggs
inseminated in ammonia seawater may have structural abnormalities related to the
overextension of microvilli through the holes on the VL. This might have led to the
failure to preclude polyspermic fertilization. On the other hand, similar observations
of polyspermy in the eggs exhibiting full elevation of the FE in other experimental
conditions argue against the current idea that the primary role of the FE is to mechanically
block polyspermy [40,61]. Furthermore, the finding that multiple Arbacia lixula and not
P. lividus sperm can penetrate eggs of the same species following alkalinization of their
cytoplasm (data not shown) suggests that even if ammonia seawater enhances the
efficiency of the species-specific binding and fusion, the egg’s sperm receptor [10] still
discerns acrosome reacted sperm of the same species from those of others.
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Figure 2. Sea urchin eggs fertilized in ammonia seawater display altered Ca2+ response. P. lividus
eggs were microinjected with the calcium dye and incubated for 20 min either in NSW pH 8.1. (control)
or in ammonia seawater. Then, the sperm-induced Ca2+ increases in these eggs were compared.
(A) Momentary increases in Ca2+ levels were visualized in pseudocolor in the control egg (fertilized
in NSW) and in the egg fertilized in ammonia seawater (B). The time point showing cortical flash (CF,
indicated by an arrow) was set as t = 0. The arrowheads indicate the sperm interaction sites on the
egg surface and the Ca2+ waves triggered by two sperm. (C) The trajectory of the intracellular Ca2+

levels in control eggs (green curves) and the eggs fertilized in ammonia seawater (brown curves). The
vertical arrow indicates the CF, and the arrowhead indicates the more abruptly decaying intracellular
Ca2+ levels 300 s after insemination. The inset shows the same Ca2+ trajectories plotted on a different
time scale to visualize the initial Ca2+ changes more clearly. (D) Histograms showing the most
affected aspects of Ca2+ signal at fertilization: amplitude of the cortical flash (CF) and declining
kinetics of the Ca2+ wave expressed in terms of the time required for the Ca2+ level RFU to reach
0.2 RFU. Tukey HSD test, p < 0.01. Abbreviation: RFU, relative fluorescence unit.



Cells 2022, 11, 1496 9 of 19

Cells 2022, 11, x FOR PEER REVIEW 9 of 20 
 

 

number of sperm inside the eggs fertilized in the ammonia seawater was around 12 (Ta-

bles 1 and 2). It is conceivable that the FE in the eggs inseminated in ammonia seawater 

may have structural abnormalities related to the overextension of microvilli through the 

holes on the VL. This might have led to the failure to preclude polyspermic fertilization. 

On the other hand, similar observations of polyspermy in the eggs exhibiting full eleva-

tion of the FE in other experimental conditions argue against the current idea that the 

primary role of the FE is to mechanically block polyspermy [40,61]. Furthermore, the find-

ing that multiple Arbacia lixula and not P. lividus sperm can penetrate eggs of the same 

species following alkalinization of their cytoplasm (data not shown) suggests that even if 

ammonia seawater enhances the efficiency of the species-specific binding and fusion, the 

egg’s sperm receptor [10] still discerns acrosome reacted sperm of the same species from 

those of others. 

 

Figure 3. Effect of ammonia seawater on the egg receptivity to sperm. P. lividus eggs pre-incubated 

for 20 min in NSW (pH 8.1) (A) or in ammonia seawater (pH 9) were fertilized by Hoechst 33342-

stained sperm (B). The number of sperm in the living zygote was counted 5 min after insemination 

by a CCD camera with a UV laser in epifluorescence microscopy (middle panel). The elevation of 

the fertilization envelope (FE) was visualized in the bright field view, and the merged image was 

provided to distinguish sperm inside the egg from those attached to the FE. 

3.4. Effect of Ammonia Seawater on the Cortical F-Actin Changes in Fertilized Eggs 

We next applied confocal laser scanning microscopy to visualize F-actin in living 

eggs microinjected with AlexaFluor568-phalloidin before and after insemination. After 20 

min incubation in ammonia seawater, the overall structure of the actin cytoskeleton in the 

unfertilized egg had not much changed, as judged by the images obtained from the eggs 

incubated in NSW and ammonia seawater (data not shown). However, the ammonia sea-

water notably affected the way in which the cortical actin cytoskeleton was reorganized 

following fertilization (Figure 4). In the eggs fertilized in NSW, the actin filaments near 

the plasma membrane underwent centripetal translocation with the progress of egg acti-

vation (Figure 4A). By contrast, the eggs pre-incubated and fertilized in ammonia 

Figure 3. Effect of ammonia seawater on the egg receptivity to sperm. P. lividus eggs pre-incubated
for 20 min in NSW (pH 8.1) (A) or in ammonia seawater (pH 9) were fertilized by Hoechst 33342-
stained sperm (B). The number of sperm in the living zygote was counted 5 min after insemination
by a CCD camera with a UV laser in epifluorescence microscopy (middle panel). The elevation of
the fertilization envelope (FE) was visualized in the bright field view, and the merged image was
provided to distinguish sperm inside the egg from those attached to the FE.

3.4. Effect of Ammonia Seawater on the Cortical F-Actin Changes in Fertilized Eggs

We next applied confocal laser scanning microscopy to visualize F-actin in living
eggs microinjected with AlexaFluor568-phalloidin before and after insemination. After
20 min incubation in ammonia seawater, the overall structure of the actin cytoskeleton
in the unfertilized egg had not much changed, as judged by the images obtained from
the eggs incubated in NSW and ammonia seawater (data not shown). However, the
ammonia seawater notably affected the way in which the cortical actin cytoskeleton was
reorganized following fertilization (Figure 4). In the eggs fertilized in NSW, the actin
filaments near the plasma membrane underwent centripetal translocation with the progress
of egg activation (Figure 4A). By contrast, the eggs pre-incubated and fertilized in ammonia
seawater failed to translocate the actin fibers efficiently. Most actin fibers did not fully
evacuate the outmost cortical region (Figure 4B, n = 8). This centripetal F-actin translocation
is commonly observed in sea urchin species 10 min after insemination [17,41,42,60,62]. The
dramatic reorganization of the cortical F-actin is an indicator of optimum conditions of the
eggs showing a normal fertilization response. At variance with the eggs fertilized in NSW,
the eggs preincubated and fertilized in ammonia seawater did not display a clear sign of
the translocation of the cortical actin filaments as a result of the egg cortex remodeling.
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Figure 4. Effect of ammonia seawater on F-actin dynamics in fertilized eggs. P. lividus eggs were
microinjected with AlexaFluor568-phalloidin and incubated for 20 min in normal seawater (NSW,
pH 8.1) (A) or in ammonia seawater (pH 9) prior to fertilization in the same medium (B). The
structural changes in the actin cytoskeleton following fertilization were monitored with the laser
scanning confocal microscope. The moment of sperm addition was set as t = 0.

3.5. Effects of Ammonia Seawater on the Egg Surface Topography and Cortical Ultrastructure
at Fertilization

As mentioned, the egg surface and cortical region undergo drastic rearrangement
following fertilization. We investigated whether the preincubation and insemination
in ammonia seawater could affect these morphological changes in sea urchin eggs. To
this end, we used SEM and TEM to examine the ultrastructure of the eggs’ surface and
cortical region, respectively. In Figure 5A,C, scanning electron micrographs showed the
surface of a P. lividus egg fertilized in NSW (pH 8.1). At 5 min post-fertilization, no sperm
were visible on the FE. The higher magnification in Figure 5C highlights the continuous
structure of the FE, although the expanded perivitelline space collapsed during the
fixation procedure and created a wrinkled appearance. That the egg viewed 5 min after
fertilization had undergone extensive cortical granule exocytosis which resulted in the
elevation of the FE is verified by the general disappearance of cortical granules in the
cortex in the TEM image and by the presence of electron-dense hyaline layer covering
the extended microvilli (Figure 5E). The effects of ammonia seawater on the eggs at
fertilization may also be found in the structural modification of the VL forming the
FE upon insemination. The visible alteration of the FE in these eggs is indicated by:
(i) the presence of sperm attached on the FE (Figure 5B,D), implying an increase in
the sperm–egg binding capacity, (ii) FE pierced by numerous overextended microvilli
(Figure 5D,E), (iii) lack of assembly of the hyaline layer (HL) that was evident in the
control egg underneath the FE (Figure 5E,F), (iv) the FE being often interrupted, which
appears as a hole in TEM (Figure 5F, arrow). Indeed, microvilli in these eggs are seen to
emanate from such openings on the FE. Thus, the exaggerated elongation of microvilli
on the surface of eggs treated with ammonia seawater may be in part accountable for the
polyspermy, as the over-elongated microvilli may facilitate the fusion and penetration of
sperm through the holes of the VL.

3.6. Effect of Ammonia Seawater on Embryonic Development

Examination of the early stage (3 h after insemination) of development of the embryos
deriving from the eggs incubated and fertilized in NSW pH 8.1 (Figure 6A) or ammonia
seawater (Figure 6B) showed abnormal cleavage pattern in the latter embryos, probably
due to an excess of paternal chromosomes following polyspermic fertilization caused by
the increased receptivity of the eggs to sperm.
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Figure 5. Surface topography and cortical ultrastructure of the eggs fertilized in ammonia seawater.
P. lividus eggs were fertilized and fixed 5 min after insemination for SEM (A–D) and TEM (E,F) obser-
vations. (A,C) Control eggs fertilized in NSW at pH 8.1. (B,D) Eggs were pre-incubated (20 min) and
fertilized in ammonia seawater at pH 9. Enlarged view of the elevated FE covering the control egg
(C) and the punctured FE of the egg fertilized in ammonia seawater (D). Note in panel D the over-
elongated microvilli passing through the punctured FE. Abbreviations: FE, fertilization envelope; HL,
hyaline layer; MV, microvilli.
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Figure 6. Abnormal development of the eggs fertilized following alkalinization of their cytoplasm.
P. lividus eggs were fertilized after incubation in normal seawater (NSW, pH 8.1) (A) or ammonia
seawater (pH 9) (B), and then the subsequent development was monitored by light microscopy
after 3 hr. Note that the FE, which had undergone elevation in the eggs incubated and fertilized in
ammonia seawater, is seen collapsed on the surface of embryos after 3 h of insemination.

4. Discussion

The fertilization of starfish and sea urchin eggs is marked by a chain of structural and
biochemical changes in the egg cortex resulting in the fusion of the sperm and egg pronuclei.
Upon sperm–egg interaction, the generation of the wave-like process of breakdown of
the cortical region of the egg cytoplasm (early depolarization phase) is followed by rapid
reconstitution (late repolarization phase) [12]. In sea urchin eggs, the early response of the
egg to the fertilizing sperm includes depolarization of the membrane potential, which is
concurrent with intracellular Ca2+ changes and the separation of the VL from the plasma
membrane [18,19]. These ionic changes coincide with modifications of the light-scattering
properties of the fertilized eggs due to the dehiscence and discharge of cortical granules’
content into the perivitelline space [63,64]. Of the enzymes secreted during the exocytosis of
the cortical granules (cortical reaction), one has been suggested to alter the sperm receptor
proteins on the VL to preclude the attachment of supernumerary sperm onto the egg coat,
which, together with the swelling of the VL, mechanically block polyspermy [65–67].

As for the mechanisms leading to the sperm-induced Ca2+ signals, recent studies with
P. lividus suggested that the generation and propagation of the Ca2+ influx and Ca2+ wave
were significantly influenced by the organization of the actin cytoskeleton in the egg cortex
and microvilli, as well as by the cortical granules [22,40–42]. As shown in Figure 2, a sea
urchin egg (P. lividus) fertilized in normal conditions (NSW, pH 8.1) readily responds with
a cortical flash. The Ca2+ wave (arrowhead in A and B), which follows the cortical flash,
reaches its peak about one minute after insemination and declines to the baseline approx-
imately 5 min later. During this time of Ca2+ signaling, the fertilized egg activates and
shows: (i) development of new K+ conductance across the cell membrane as a consequence
of an increase in the intracellular pH [46,47,68], (ii) stimulation of the metabolic events
such as protein and DNA synthesis that are crucial for embryonic development [69]. While
early studies highlighted the intracellular Ca2+ changes as a primary cause of metabolic
activation of the fertilized eggs [70,71], later findings weakened this idea by showing that
the incubation of unfertilized sea urchin eggs with ammonia seawater could trigger protein
synthesis and chromosome condensation [49,50] in the absence of the early fertilization
response, i.e., the Ca2+-linked cortical granules exocytosis and separation of the VL. Indeed,
it was shown that unfertilized sea urchin eggs exposed to NH4OH seawater (pH 9) could
mimic what sperm do during the late phases of egg activation by showing: (i) the devel-
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opment of K+ conductance, which is characteristic of the late repolarization seen in the
fertilization process, (ii) increase in intracellular pH, (iii) increased rate of protein synthesis.
All of these effects were observed without the intracellular Ca2+-linked cortical granules
exocytosis. These findings added weight to the suggestion that the first early phase was
not a prerequisite for the late metabolic activation of the egg [48,54].

From a structural point of view, it is well known that the late phase of the fertilization
process of sea urchin eggs (phase III) [48] starting 5 min after insemination is coincident
with the decay of the Ca2+ wave down to the baseline levels (Figure 2C) and is marked by
a dramatic restructuration of the egg cortex. This includes dynamic structural changes in
actin in the egg cortex and microvilli elongation in the perivitelline space due to increased
intracellular pH [43,44,55,72]. Microvilli elongation resulting from actin polymerization,
which necessitates the uptake of external Ca2+, can also be induced in unfertilized sea urchin
eggs following their incubation in 10 mM NH4Cl seawater for several hours [57]. Similarly,
the incubation of sea urchin sperm in ammonia seawater at pH 9 for 10 min promotes the
Ca2+ uptake required for actin polymerization to form acrosomal filament in the absence of
the jelly coat, the natural stimulus triggering the acrosomal reaction [73,74]. Indeed, Ca2+

uptake and pH increase are essential for inducing the formation of the long actin filament
of the acrosomal process in starfish [75,76]. As for the molecular mechanism leading to
the formation of the acrosomal process, it has been suggested that the intracellular pH
would induce the dissociation of inhibitory proteins from the actin, allowing it to undergo
polymerization [76].

In the present contribution, the results of the sperm-induced Ca2+ signals in P. lividus
(control and ammonia-seawater treated eggs) have confirmed our previous findings on the
relationship between microvilli morphology and the amplitude of CF in fertilized sea urchin
eggs [17,22,41,42,60]. As evidenced in the histograms of Figure 2C, the CF amplitude was
significantly reduced when P. lividus eggs were pre-incubated and inseminated in ammonia
seawater. In this respect, the elongation of microvilli seen in the SEM and TEM images of
the unfertilized eggs pre-incubated in ammonia seawater (Figure 1) may have hampered
microvilli reorganization occurring upon sperm stimulation which is necessary to promote
a normal Ca2+ influx during CF [17,22,41,42,77–79].

It is noteworthy that ammonia seawater induced microvilli elongation without af-
fecting the structure of the egg cortex and cortical granules, which underwent normal
exocytosis upon insemination (Figures 1F and 5F), as previously reported in another
species of sea urchin [54]. The selective effect of ammonia seawater on microvillar mor-
phology lends credence to the idea that the modulation of CF amplitude is attributable to
the F-actin-based structure of microvilli. In line with this, other amines, such as urethane
and procaine, affecting their morphology altered the CF amplitude [22].

Another conspicuous finding in this work is that eggs pre-incubated and fertilized in
ammonia seawater displayed a faster decline in the intracellular Ca2+ level down to the
baseline levels (Figure 2C). Similarly, the rapid decline in the sperm-induced Ca2+ signals
has also been commonly observed in P. lividus eggs treated and fertilized in seawater
containing other weak bases and alkaloid amines, e.g., NH4Cl, urethane, procaine, Gly-Phe-
β-naphthylamide (GPN), and nicotine [22,42]. While these membrane-permeant agents
may produce a faster decline in intracellular Ca2+ level based on a common pathway such
as an increase in intracellular pH, the exact mechanism is not known. Nonetheless, a few
scenarios are conceivable. First, the function of the Ca2+ reabsorption system in the egg that
usually removes cytosolic Ca2+ may have been enhanced in the given intracellular condition,
such as cytoplasmic alkalinity. Here, Ca2+ uptake in acidic cortical organelles such as
cortical granules or the endoplasmic reticulum (ER) associated with them are possible
candidates [22,80–82]. However, cortical granules in ammonia-treated eggs underwent
exocytosis upon insemination, resulting in the elevation of the FE (Figures 3 and 5), and data
on physiological intracellular alkaline shifts have shown cytosolic Ca2+ increases due to the
depletion of the ER Ca2+ store [83,84]. Another possibility is that the hyperpolymerization
of microvilli following the intracellular Ca2+ increase may have absorbed free Ca2+ into
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the growing actin filaments [57]. Indeed, SEM and TEM images (Figure 5) show that 5 min
after insemination, ammonia seawater induced an exaggerated elongation of microvilli
in the perivitelline space. As a Ca2+-binding protein with extremely high affinity, actin
monomers can readily sequester Ca2+ when its concentration is raised and polymerize
themselves into F-actin, in which Ca2+ is no longer accessible for exchange. In this way,
polymerizing actin filaments can serve as a Ca2+ reservoir [77,78,85]. Thus, the formation
of much longer microvilli following alkalinization of the egg cytoplasm may explain the
faster decay time of the Ca2+ wave to reach 0.2 RFU of Ca2+ levels.

Microvilli elongation induced by internal pH increase [57,86] and the changes in K+

conductance in excitable cells [48,87,88] support the hypothesis that some specific ion
conduction may be modulated by microvillar actin cytoskeleton [77,78]. In line with this,
immature starfish oocytes, usually prone to polyspermy [61,89–91], undergo a decline in
K+ conductance during the maturation process. In this period of meiotic maturation, the
microvilli of the maturing oocyte become shorter [7,38,92]. Indeed, proper structural orga-
nization of microvilli and cortical granules beneath the plasma membrane of mature eggs
ensures the generation of a normal fertilization potential, Ca2+ response, cortical reaction,
and monospermic fertilization [7,38,92–94]. The results of this contribution support the idea
that the organization of microvilli has a profound effect on the activation of the Ca2+ influx
and the regulation of the pattern of the Ca2+ wave (decay). Furthermore, when depoly-
merization of cortical actin filaments is induced by latrunculin in starfish eggs (Astropecten
aranciacus), the VL separates from the plasma membrane following a Ca2+ increase, and the
activated eggs exhibit durable membrane depolarization in a Ca2+- and Na+-dependent
manner, which is reminiscent of what is observed in fertilized eggs [45,95,96]. Furthermore,
pre-treatment of unfertilized P. lividus eggs with the actin drugs generates an altered CF
and Ca2+ wave [22,40]. Thus, whatever ion channels are involved in these ion flux events,
they are heavily influenced by the F-actin-based structural organization of microvilli and
cortical granules tightly associated with them to the extent that a normal Ca2+ response is
triggered upon sperm stimulation.

Although the effect of weak and strong bases in inducing artificial parthenogenesis has
been studied for more than a hundred years [97], our results have shown that, in addition
to an altered Ca2+ response, the preincubation and fertilization of the eggs in ammonia
seawater give rise to polyspermy upon insemination [58]. The cause of polyspermy lies in
the chemical nature of ammonia, which efficiently increases intracellular pH and thereby
affects a variety of proteins sensitive to that pH shift. This idea is supported by the finding
that seawater with the same alkalinity (pH 9.0) adjusted with strong bases NaOH (n = 60) or
KOH (n = 20) had no such effect; all fertilized eggs were monospermic because strong bases
are much less membrane permeant [48]. Hence, it is not likely that the cell surface proteins
such as sperm receptors became hyper-activated by alkalinity itself to capture more sperm
and internalize them. It is more likely that the effect of polyspermy is attributed to the
membrane-permeant capability of the dissociated form of ammonia. Once inside the cell, it
is expected to receive a proton and increase intracellular pH as a base [98,99]. Thus, the
polyspermy here may be primarily attributable to some event inside the egg cytoplasm
whose effect is extended to the cell surface. In particular, the hyperreactive extension of
microvilli at the surface of unfertilized eggs may be relevant to the overwhelming tendency
of polyspermy.

The polyspermic response of P. lividus eggs fertilized in ammonia seawater is similar
to that of the eggs fertilized in the presence of nicotine in the sense that actin filaments
engulfing multiple sperm at that egg surface are often hyperactive and in favor to form thick
F-actin bundles extending well into and often beyond the perivitelline space [42]. In the sea
urchin eggs exposed to ammonia seawater, the overextension of microvilli was so evident
before and after fertilization to the extent that the tip of the outgrowing microvilli often
went out of the perivitelline space through the apparent “holes” on the FE (Figures 1 and 5).
While the pattern of polyspermy displayed by P. lividus eggs fertilized in ammonia seawater
(Tables 1 and 2) is very similar to that of the eggs pre-incubated and fertilized in the presence
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of nicotine, e.g., the number of egg-incorporated sperm and the frequency of polyspermic
fertilization [42], it is less likely that the polyspermy in nicotine-exposed eggs is mainly
due to the increase in intracellular pH potentially caused by nicotine. Firstly, if the change
in cytoplasmic alkalinity itself is the only way that nicotine gives rise to polyspermy, the
stereoisomers of nicotine are expected to have virtually the same tendency in causing
polyspermy. However, (−) nicotine was two times more effective than (±) nicotine in
inducing polyspermy in sea urchin eggs [42]. Secondly, nicotine is a weaker base (alkaloid),
with its second pKa value at 7.9, whereas pKa of ammonia is 9.36. Thus, nicotine is much
less effective as a base in the egg’s cytosolic pH, which is estimated to be around 6.84 in the
case of Lytechinus pictus [47]. However, it was nicotine, and not ammonia (data not shown),
that was able to drastically change the structure of the cortical actin cytoskeleton in the
unfertilized eggs of P. lividus [42]. Thus, the way nicotine affects the actin cytoskeleton
appears to still be different from that of ammonia seawater (see also the apparent lack of
cortical granules exocytosis as judged by light microscopy observations). Since ammonia
seawater elongated the microvilli on the surface of unfertilized eggs, which extended even
beyond the FE following fertilization, indeed, it is this overextension of microvilli that
may be related to polyspermy in these eggs. Although P. lividus eggs pre-incubated and
fertilized in the presence of 10 mM dithiothreitol (DTT) exhibited not only deregulated
centripetal translocation of F-actin (similar to what is shown in Figure 4) but also prominent
elongation of microvilli following fertilization [60], they were consistently monospermic
upon insemination. It should also be noted that 20 min incubation of sea urchin (Lytechinus
pictus) eggs in ammonia sewater shifts the eggs’ membrane potential to be more negative
(by >30 mV) and that the plasma membrane develops K+ permeability [48]. This profound
change in the electrical property of the plasma membrane may make a difference to the
sperm’s efficiency in generating the egg’s fertilization potential and its pattern, which
was suggested as an underlying mechanism for the fast block to polyspermy. However,
according to the same authors [48], the eggs exposed to ammonia seawater (and thereby
attaining hyperpolarized membrane potential) exhibited normal fertilization potential,
arriving at about +10 mV, which is supposed to be high enough to block polyspermy in the
electrical mechanism [16]. While the latter point awaits careful experimental investigation
in P. lividus eggs in the given conditions, the simple finding that polyspermy in ammonia
seawater takes place despite the elevation of FE suggests that the structural alteration of
the FE is insufficient to block polyspermy.

5. Conclusions

Sea urchin eggs respond to the fertilizing sperm with an intracellular Ca2+ increase
and membrane separation from the egg surface within 1 min after fertilization, a time
during which the susceptibility of the eggs is very high due to the disintegration of the
egg cortex [100]. This early phase is followed by a series of late changes beginning about
5 min after sperm–egg contact, including the cortical structural and metabolic changes
necessary for subsequent embryo development. Our previous studies have highlighted the
importance of egg quality characterized by optimal actin-linked structural organization of
the egg cortex that enables the egg to successfully respond to the fertilizing sperm with a
normal Ca2+ response concomitant with cortical granule exocytosis. This early phase of
egg activation is a sine qua non condition for regulating monospermic incorporation as a
result of the dynamic cortical cytoskeletal rearrangement and for the success of embryo
development [15,101]. Our present study has suggested the strict interdependence between
the intracellular pH increase occurring during the late phase of the fertilization response and
the regulation of intracellular Ca2+ levels following the F-actin-based structural remodeling
of the cortex of fertilized eggs. Even if biochemical mechanisms underlying the relationship
between protons and Ca2+ concentration in cell physiology to regulate various channels,
pumps, exchangers, organelles, and metabolic events are well established [102–104], the
data in the literature on the correlation between intracellular pH and cytosolic levels of
Ca2+ are scarce and therefore merit further investigation in the future.
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